Композиции из тройных сополимеров на основе пропилена для труб



Композиции из тройных сополимеров на основе пропилена для труб
Композиции из тройных сополимеров на основе пропилена для труб
Композиции из тройных сополимеров на основе пропилена для труб
Композиции из тройных сополимеров на основе пропилена для труб
Композиции из тройных сополимеров на основе пропилена для труб
Композиции из тройных сополимеров на основе пропилена для труб
Композиции из тройных сополимеров на основе пропилена для труб
Композиции из тройных сополимеров на основе пропилена для труб
Композиции из тройных сополимеров на основе пропилена для труб

 


Владельцы патента RU 2583372:

БАЗЕЛЛЬ ПОЛИОЛЕФИН ИТАЛИЯ С.Р.Л. (IT)

Изобретение относится к полиолефиновой композиции, которая особенно подходит для производства труб, и в частности, труб малого диаметра. Полиолефиновая композиция имеет скорость течения расплава (230°C/5 кг, ISO 1133) от 0,2 г/10 мин до 4,0 г/10 мин и содержит от 85,0 до 99,5 мас.% тройного сополимера пропилена, этилена и 1-гексена и от 0,5 до 10,0 мас.% композиции на основе сополимера пропилена и этилена. Тройной сополимер пропилена, этилена и 1-гексена имеет температуру плавления от 130°C до 145°C. При этом содержание в нем производных единиц 1-гексена составляет от 1,0 до 5,0 мас.%, а содержание производных единиц этилена составляет от 0,5 до 10,0 мас.%. Композиция на основе сополимера пропилена и этилена содержит от 12 до 52 мас.%; гомополимера пропилена или сополимера пропилена и этилена с содержанием производных единиц этилена от 0,1 до 4,5 мас.% и от 48 до 88 мас.% сополимера пропилена и этилена с содержанием производных единиц этилена от 15,0 до 42,0 мас.%. Полиолефиновая композиция по изобретению характеризуется высокой ударопрочностью, особенно при низкой температуре. 2 н. и 5 з.п. ф-лы, 6 табл.

 

Настоящее изобретение относится к композиции, содержащей тройной сополимер пропилен/этилен/1-гексен и гетерофазный сополимер пропилена и этилена, которая особенно подходит для производства труб, и в частности, труб малого диаметра.

Тройные пропилен/этилен/1-гексеновые сополимеры уже известны в индустрии производства труб. Например, WO 2006/002778 относится к системе труб, содержащей тройной сополимер пропилена/этилена и альфа-олефина, где содержание этилена составляет от 0 до 9% в молях, предпочтительно от 1 до 7 мол.%, а содержание 1-гексена находится в диапазоне от 0,2 до 5 вес.%.

Для труб малого диаметра важна ограниченная толщина стенки трубы. Это позволяет получить трубы, содержащие меньше материала, улучшить характеристики трубы с точки зрения пропускной способности большего внутреннего диаметра. Однако при небольшой толщине стенки труба может быть хрупкой, поэтому возникает необходимость в использовании материала, характеризующегося высокой ударопрочностью, особенно при низкой температуре.

Заявитель обнаружил, что среди представленных диапазонов можно выбрать композицию с улучшенными свойствами, в частности, с лучшими ударными свойствами, которую можно использовать для труб малого диаметра.

Таким образом, предметом настоящего изобретения является полиолефиновая композиция, содержащая:

A) от 85,0 вес.% до 99,5 вес.%; предпочтительно от 90,0 вес.% до 99.5 вес.%, еще предпочтительней от 99,5 вес.% до 93,0 вес.%; и еще предпочтительней от 96,5 вес.% до 94,0 вес.% тройного сополимера, содержащего пропилен, этилен и 1-гексен, где:

i) содержание производных единиц 1-гексена колеблется от 1 вес.% до 5 вес.%;

ii) содержание производных единиц этилена колеблется от 0,5 вес.% до 10 вес.%;

(iii) температура плавления колеблется от 130°C до 145°C;

B) от 0,5 вес.% до 15 вес.%; предпочтительно от 0,5 вес.% до 10,0 вес.%, еще предпочтительней от 0,5 вес.% до 7,0 вес.%; и еще предпочтительней от 3,5 вес.% до 4 вес.% композиции пропилен-этиленового сополимера, содержащей:

b1) от 12 вес.% до 52 вес.%; предпочтительно от 15 вес.% до 43 вес.%; еще предпочтительнее от 20 вес.% до 33 вес.% пропиленового гомополимера или пропилен/этиленового сополимера с производными единицами этилена от 0,1 вес.% до 4,5 вес.%; с содержанием менее 10 вес.% ксилолового растворимого состава, измеренного при 25°C; предпочтительно ниже 8 вес.%; еще предпочтительнее ниже 7 вес.%;

b2) от 48 вес.% до 88 вес.%; предпочтительно от 57 вес.% до 85 вес.%; еще предпочтительнее от 67 вес.% до 80 вес.% пропилен-этиленового сополимера с содержанием производных единиц этилена от 15 вес.% до 42 вес.%;

где полученная полиолифеновая композиция имеет скорость течения расплава (230°C/5 кг, ISO 1133) в диапазоне от 0,2 г/10 мин до 4,0 г/10 мин; предпочтительно от 0,4 г/10 мин до 3,0 г/10 мин; еще предпочтительнее от 0,5 г/10 мин до 2 г/10 мин; сумма А+В составляет 100, и сумма b1+b2 составляет 100.

Предпочтительно используется компонент А) с одной или несколькими из следующих характеристик:

(i) содержание производных единиц 1-гексена от 1,0 вес.% до 4,5 вес.%; предпочтительно от 1,1 вес.% до 4,1 вес.%; еще предпочтительней от 1,5 вес.% до 3,5 вес.%; и еще предпочтительней от 1,6 вес.% до 3,1 вес.%; еще предпочтительней от 1,8 вес.% до 2,6 вес.%, например 1,8-2,4 вес.%;

(ii) содержание производных единиц этилена выше 1,4 вес.%, предпочтительно выше 1,5 вес.%, еще предпочтительней выше 1,6 вес.% и соответствует следующему соотношению (1):

где С2 - это содержание производных единиц этилена в вес.%, и С6 - это содержание производных единиц 1-гексена в вес.%; предпочтительное соотношение (1) -С2<С6-0,3; более предпочтительное -С2<С6-0,5;

(iii) скорость течения расплава (MFR) (ISO 1133 230°C, 5 кг) составляет от 0,1 до 3,9 г/10 мин; предпочтительно от 0,5 до 1,9 г/10 мин;

(iv) температура плавления колеблется от 130°C до 138°C; предпочтительно от 132°C до 136°C;

Компонент А) тройных сополимеров имеет стереорегулярность изотактического типа в отношении пропиленовых последовательностей; это видно по низкому значению соединений, экстрагируемых из ксилола, которое ниже 10 вес.%; предпочтительно ниже 8 вес.%; более предпочтительно - менее 7 вес.%.

Предпочтительно компонент А) тройного сополимера имеет коэффициент полидисперсности (КП) в диапазоне от 2,0 до 7,0, предпочтительно от 3,0 до 6,5, еще предпочтительней от 3,5 до 6,0.

Температура кристаллизации предпочтительно варьируется от 70°C до 100°C, предпочтительно от 80°C до 97°C; еще предпочтительней от 85°C до 97°C.

Компонент b1) компонента В) предпочтительно является гомополимером пропилена или пропилен-этиленовым сополимером с содержанием производных единиц этилена в диапазоне от 1,1 вес.% до 4,2 вес.%; более предпочтительно от 2,3 вес.% до 3,9 вес.%.

Компонент b2) компонента В) предпочтительно является сополимером пропилена и этилена с содержанием производных этилена в диапазоне от 18 вес.% до 38 вес.%, предпочтительно от 21 вес.% до 34 вес.%, более предпочтительно от 23 вес.% до 31 вес.%; указанный сополимер имеет собственную вязкость ксилолового растворимого состава при 25°C в диапазоне от 2,0 дл/г до 5,0 дл/г, предпочтительно от 2,5 дл/г до 4,5 дл/г.

Используя тройной сополимер согласно настоящему изобретению, можно производить трубы, в частности трубы малого диаметра с небольшой толщиной стенок, пригодные для использования даже под давлением. Результаты динамических испытаний при -5°C (ISO 9854) показали, что из 10 труб лопнуло 0 труб.

Таким образом, другим предметом настоящего изобретения является труба, выполненная из тройного сополимера.

Термин «труба», используемый в данном документе, также включает в себя фитинги, клапаны и все детали, которые обычно необходимы, например, для трубопроводов горячей воды. Также в определение входят одно- и многослойные трубы, где, например, один или несколько слоев выполнены из металла и могут включать клеевой слой.

Такие изделия могут быть изготовлены с помощью различных производственных процессов, хорошо известных в данной области, таких как литье, экструзия, и т.д.

Еще в одном варианте изобретения композиция, являющаяся предметом настоящего изобретения, дополнительно содержит неорганический наполнитель в количестве от 0,5 до 60 весовых частей из расчета на 100 весовых частей указанной композиции. Типичными примерами таких наполнителей являются карбонат кальция, сульфат бария, биоксид титана и тальк. Предпочтительными являются тальк и карбонат кальция. Некоторые наполнители также могут также иметь нуклеирующий эффект, включая тальк, который также имеет нуклеирующий эффект. Количество нуклеирующего агента обычно варьируется от 0,2 до 5 вес.% по отношению к количеству полимера.

Композиция изобретения также подходит для труб со стенками любой конфигурации, помимо труб с гладкой внутренней и внешней поверхностью. Примерами могут служить слоистые стенки труб, пустотелые трубы с продольно вытянутыми пустотами, пустотелые трубы со спиральными пустотами, трубы с гладкой внутренней поверхностью, и компактной или пустой, спиралеобразной или кольцеобразной ребристой наружной поверхностью независимо от конфигурации соответствующих концов труб.

Детали, напорные трубы и соответствующие фитинги согласно настоящему изобретению производятся известными способами, например соэкструзией или литьем.

Экструзия деталей может выполняться различными типами экструдеров для полиолефинов, например одно- или двухшнековыми экструдерами.

Еще один вариант осуществления настоящего изобретения представляет собой способ, в котором указанную композицию формуют в указанные изделия.

В многослойных трубах по меньшей мере один слой выполнен из тройного сополимера, описанного выше. Другие слои предпочтительно выполнены из аморфного или кристаллического полимера (например, гомополимера и со- или тройного сополимера) R-CH=CH2 олефинов, где R представляет собой атом водорода или C16 алкильный радикал. Особо предпочтительными являются следующие полимеры:

1) изотактические или в основном изотактические пропиленовые гомополимеры;

2) случайные сополимеры и тройные сополимеры пропилена с этиленом и/или С48 α-олефин, например, 1-бутен, 1-гексен, 1-октен, 4-метил-1-пентен, в которых общее содержание сополимера варьируется от 0,05% до 20% по весу, или комбинация указанных полимеров с изотактическими или в основном изотактическими пропиленовыми гомополимерами;

3) комбинация гетерофазных полимеров, состоящих из (а) гомополимера пропилена и/или одного из сополимеров и тройных сополимеров из пункта (2), и эластомерной части (b), включающей сополимеры и тройные полимеры этилена с пропиленом и/или С48 α-олефина, по выбору содержащего небольшие количества диена; то же относится к полимеру (2)(а); и

4) аморфные полимеры, такие как фторированные полимеры, например, поливинилдифторид (ПВДФ).

В многослойных трубах слои трубы могут иметь одинаковую или разную толщину.

Композиция по настоящему изобретению может быть получена путем смешивания различных компонентов А), b1) и b2) или путем получения компонента А) и его смешения с компонентом В), полученным путем единого процесса полимеризации при выполнении последовательных этапов.

Полимеризацию А) и В) можно проводить в присутствии катализаторов Циглера-Натта. Важным компонентом указанных катализаторов является твердый катализатор, включающий соединение титана, имеющее по меньшей мере одну связь титан-галоген, и электронодонорное соединение, нанесенные на галогенид магния в активной форме. Другим существенным компонентом (сокатализатором) является алюминийорганическое соединение, такое как соединение алкилалюминия.

По желанию добавляется внешний донор.

Катализаторы, обычно используемые в процессе, представленном в изобретении, позволяют производить полипропилен со значением нерастворимости в ксилоле при температуре окружающей среды более 90%, предпочтительно более 95%.

Катализаторы, имеющие вышеуказанные характеристики, хорошо известны в патентной литературе; особенно предпочтительными являются катализаторы, описанные в патенте США 4399054 и европейском патенте 45977. Другие примеры можно найти в патенте США 4472524.

Твердые компоненты катализатора, используемые в указанных катализаторах, содержат в качестве доноров электронов (внутренних доноров) соединения из группы, состоящей из эфиров, кетонов, лактонов, соединений, содержащих атомы N, Ρ и/или S атомы, и эфиров моно- и дикарбоновой кислоты.

Особенно пригодные электронодонорные соединения - это эфиры фталевой кислоты и 1,3-диэфиры, имеющие формулу:

в которой RI и RII одинаковы или различны и являются C1-C18 алкильными, C3-C18 циклоалкильными или С718 арильными радикалами; RIII и RIV одинаковы или различны и являются С14 алкильными радикалами; или являются 1,3-диэфирами, в которых атом углерода в положении 2 принадлежит к циклической или полициклической структуре, состоящей из 5, 6 или 7 атомов углерода, или 5-n или 6-n′ атомов углерода и, соответственно, n атомов азота и n′ гетероатомов из группы, состоящей из Ν, О, S и Si, где n равно 1 или 2 и n′ обозначает 1, 2 или 3; указанная структура содержит две или три ненасыщенности (циклополиеновая структура) и дополнительно может конденсироваться другой циклической структурой или заменяться одним или несколькими заместителями из группы, состоящей из линейных или разветвленных алкильных радикалов; циклоалкильных, арильных, аралкильных, алкарильных радикалов и галогенов или конденсироваться другими циклическими структурами и замещаться одним или несколькими вышеупомянутыми заместителями, которые также могут быть связаны с конденсированными циклическими структурами; один или несколько указанных выше алкильных, циклоалкильных, арильных, аралкильных, алкарильных радикалов и конденсированные циклические структуры, дополнительно содержащие один или более гетероатомов в качестве заменителей атомов углерода или водорода или веществ.

Эфиры этого типа описаны в опубликованных европейских патентных заявках 361493 и 728769.

Типичными примерами указанных диэфиров являются 2-метил-2-изопропил-1,3-диметоксипропан, 2,2-диизобутил-1,3-диметоксипропан, 2-изопропил-2-циклопентил-1,3-диметоксипропан, 2-изопропил-2-изоамил-1,3-диметоксипропан, 9,9-бис (метоксиметил) флуорен.

Другие подходящие электронодонорные соединения - это сложные эфиры фталевой кислоты, такие как диизобутил, диоктил, дифенил и бензилбутил фталат.

Вышеупомянутый компонент катализатора изготавливается различными способами. Например, аддукт MgCl2·nROH (в частности, в виде сфероидальных частиц), где n обычно равно 1-3 и ROH представляет собой этанол, бутанол или изобутанол, взаимодействует с избытком TiCl4, содержащим электронодонорное соединение. Температура реакции составляет от 80 до 120°C. Твердое вещество выделяется и реагирует еще раз с TiCl4 в присутствии или в отсутствие электронодонорного соединения, после чего оно отделяются и промывается аликвотами углеводорода до тех пор, пока не исчезнут все ионы хлора.

В твердом каталитическом компоненте титановое соединение, выраженное как Ti, обычно присутствует в количестве от 0,5 до 10% по весу. Количество электронодонорного соединения, которое остается на твердом компоненте катализатора, обычно составляет от 5 до 20% по молям по отношению к дигалогениду магния.

Соединения титана, которые могут быть использованы для получения твердого компонента катализатора, являются галогенидами и галогеналкоголятами титана. Тетрахлорид титана является предпочтительным соединением.

Описанные выше реакции приводят к образованию галогенида магния в активной форме. В литературе представлены другие реакции, которые вызывают образование галогенида магния в активной форме, начиная с соединений магния, отличных от галогенидов, таких как карбоксилаты магния.

Al-алкильные соединения, используемые в качестве сокатализаторов, включают Al-триалкилы, такие как Al-триэтил, Al-триизобутил, Al-три-н-бутил, и линейные или циклические Al-алкильные соединения, содержащие два или более атомов Al, соединенных друг с другом посредством атомов О или N атомов, или группы SO4 или SO3.

Al-алкильное соединение обычно используют в таком количестве, чтобы соотношение Al/Ti находилось в диапазоне от 1 до 1000.

Электронодонорные соединения, которые могут быть использованы в качестве внешних доноров, включают эфиры ароматических кислот, такие как алкил бензоаты, и, в частности, соединения кремния, содержащие по меньшей мере одну связь Si-OR, где R представляет собой углеводородный радикал.

Примерами соединений кремния являются (трет-бутил)2Si(ОСН3)2, (циклогексил)(метил)Si(ОСН3)2, (циклопентил)2Si(ОСН3)2 и (фенил)2Si(ОСН3)2 и (1,1,2-триметилпропил)Si(ОСН3)3.

Также могут использоваться 1,3-диэфиры, имеющие формулы, описанные выше. Если внутренним донором является один из этих диэфиров, внешние доноры могут быть опущены.

В частности, даже если многие другие комбинации ранее указанных компонентов катализатора позволяют получать композиции в соответствии с настоящим изобретением, компоненты А9 и В) предпочтительно готовить с использованием катализаторов, содержащих фталат в качестве внутреннего донора и (циклопентил)2Si(ОСН3)2 в качестве внешнего донора, или указанные 1,3-диэфиры в качестве внутренних доноров.

Компонент А) производится путем процесса полимеризации, показанного в заявке ЕР 1012195.

В частности, указанный процесс включает подачу мономеров в упомянутые зоны полимеризации в присутствии катализатора в условиях реакции и отбор полимерного продукта из указанных зон полимеризации. В указанном процессе растущие полимерные частицы движутся вверх через одну (первую) из указанных зон полимеризации (трубу с восходящим потоком) в условиях быстрого псевдоожижения, выходят из указанной трубы с восходящим потоком и попадают в другую (вторую) зону полимеризации (трубу с нисходящим потоком), через которую они движутся вниз в уплотненной форме под действием силы тяжести, выходят из указанной трубы с нисходящим потоком и попадают в трубу с восходящим потоком, таким образом обеспечивая циркуляцию полимера между трубой с восходящим потоком и трубой с нисходящим потоком.

В трубе с нисходящим потоком достигаются высокие значения плотности твердого вещества, приближающиеся к объемной плотности полимера. Увеличение положительного давления таким образом может быть получено по направлению потока, благодаря чему становится возможным повторный ввод полимера в трубу с восходящим потоком без помощи специальных механических средств. Таким образом получается циркуляционный контур, определяемый балансом давлений между двумя зонами полимеризации и потерей давления в системе.

Как правило, условия для быстрого псевдоожижения в трубе с восходящим потоком достигаются путем подачи газовой смеси, содержащей соответствующие мономеры, в указанную трубу. Желательно, чтобы подача газовой смеси осуществлялась ниже точки повторного ввода полимера в указанную трубу с восходящим потоком путем использования необходимых газораспределительных средств. Скорость переноса газа в трубу с восходящим потоком выше, чем переносная скорость в рабочих условиях, и предпочтительно составляет от 2 до 15 м/с.

Как правило, полимер и газовая смесь, выходящая из трубы с восходящим потоком, поступают в зону сепарации твердых веществ и газа. Разделение твердых веществ и газа может выполняться обычными методами сепарации. Из зоны сепарации полимер поступает в трубу с нисходящим потоком. Газовую смесь, выходящую из зоны сепарации, сжимают, охлаждают и передают при необходимости в трубу с восходящим потоком с добавлением соответствующих мономеров и/или регуляторов молекулярной массы. Передача может осуществляться посредством рециркуляционного трубопровода для газовой смеси.

Управление полимером, циркулирующим между двумя зонами полимеризации, может осуществляться путем дозировки количества полимера, выходящего из трубы с нисходящим потоком, используя подходящие средства для регулирования потока твердых веществ, таких как механические клапаны.

Рабочие параметры, такие как температура, соответствуют тем, которые обычно используются в процессе полимеризации олефинов, например от 50 до 120°C.

Этот первый этап процесса может осуществляться при рабочем давлении от 0,5 до 10 МПа, предпочтительно от 1,5 до 6 МПа.

Преимущественно один или несколько инертных газов сохраняются в зонах полимеризации в таких количествах, при которых сумма парциального давления инертных газов предпочтительно составляет от 5 до 80% от общего давления газов. В качестве инертного газа можно использовать азот или пропан.

Различные катализаторы подаются в трубу с восходящим потоком в любой точке данной трубы. Однако их можно также подавать в любой точке трубы с нисходящим потоком. Катализатор может быть в любом физическом состоянии, поэтому можно использовать катализаторы в твердом или жидком состоянии.

Ниже представлены примеры для иллюстрации настоящего изобретения без ограничения его целей.

Примеры

Характеристика методов

- Температура плавления и температура кристаллизации: Определяется методом дифференциальной сканирующей калориметрии (ДСК); 6±1 мг нагревается до 220±1°C при скорости 20°C/мин и поддерживается при 220±1°C в течение 2 минут в потоке азота, затем охлаждается при скорости 20°C/мин до 40±2°C, затем выдерживается в течение 2 минут при этой температуре для кристаллизации образца. Затем образец снова расплавляется при скорости повышения температуры 20°C/мин до 220°C±1. Процесс плавления записывается для получения термограммы, на основании которой определяются значения температуры плавления и кристаллизации.

- Скорость течения расплава: Определяется по методу ISO 1133 (230°C, 5 кг).

- Растворимость в ксилоле: Определяется следующим образом.

2,5 г полимера и 250 мл ксилола помещаются в стеклянную колбу с холодильником и магнитной мешалкой. Температуру повышают в течение 30 минут до температуры кипения растворителя. Полученный прозрачный раствор затем выдерживают в колбе с обратным холодильником и перемешивают в течение еще 30 минут. Затем закрытая колба выдерживается в течение 30 минут в бане со льдом и водой и в термостатической водяной бане при 25°C в течение 30 минут. Образовавшееся твердое вещество отфильтровывают на бумаге быстрой фильтрации. 100 мл отфильтрованной жидкости выливают в предварительно взвешенный алюминиевый контейнер, который нагревают на нагревательной плитке в потоке азота, чтобы удалить растворитель выпариванием. Контейнер выдерживают в печи при 80°C под вакуумом до получения постоянного веса. Затем вычисляется массовый процент полимера, растворимого в ксилоле при комнатной температуре.

- Содержание 1-гексена и этилена: Определяется методом 13С-ЯМР-спектроскопии в тройных сополимерах:

ЯМР-анализ. Спектры 13С-ЯМР получают на спектрометре AV-600, работающем при 150,91 МГц в режиме преобразования Фурье при 120°C. Пик пропилена СН используется в качестве внутреннего стандарта при 28,83. Спектр 13С-ЯМР получается при следующих параметрах:

Общий объем 1-гексена и этилена в виде молярных процентов рассчитывают из диады на основе следующих соотношений:

[Р]=РР+0,5РН+0,5РЕ

[Η]=ΗΗ+0,5ΡΗ

[Ε]=ЕЕ+0,5РЕ

Значения спектра 13С ЯМР сополимеров пропилена/1-гексена/этилена рассчитаны согласно следующей таблице:

Удлинение при пределе текучести: измерено согласно ISO 527.

Удлинение при разрыве: измерено согласно ISO 527.

Напряжение при разрыве: измерено согласно ISO 527.

Динамическое испытание: ISO 9854

Образцы для механического анализа

Образцы были получены в соответствии с ISO 294-2.

Модуль упругости при изгибе

Определяется в соответствии с ISO 178.

Модуль упругости при растяжении

Определяется в соответствии с ISO 527.

Изготовление компонента А)

Сополимеры изготавливаются путем полимеризации пропилена, этилена и гексена-1 в присутствии катализатора в непрерывном режиме в установке, состоящий из полимеризационного аппарата, описанного в ЕР 1012195.

Катализатор направляется в полимеризационное устройство, содержащее два взаимосвязанных цилиндрических реактора, трубу с восходящим потоком и трубу с нисходящим потоком. В трубе с восходящим потоком создаются условия для быстрого псевдоожижения посредством рециркулирующего газа из сепаратора газа/твердых веществ. В примерах 1-5 потоки, служащие в качестве затвора, не использовались.

В используемом катализаторе присутствует компонент, произведенный по аналогии с примером 5 ЕР-А-728 769, но с использованием микросферического MgCl2·1.7C2H5OH вместо MgCl2·2.1C2H5OH. Такой компонент катализатора используют с дициклопентилдиметоксисиланом (ДЦПМС) в качестве внешнего донора и с триэтилалюминием (ТЭА).

Частицы полимера, выходящие из реактора, подвергаются обработке паром для удаления реакционноспособных мономеров и летучих веществ, а затем сушатся. Основные эксплуатационные условия и характеристики полученных полимеров указаны в Таблице 1.

С2 - этилен; С3 - пропилен; С6 1 - гексен

Свойства полученного материала представлены в Таблице 2:

Компонент В)

Компоненты В) включают два гетерофазных полимера (В1 и В2), полученных путем последовательной газофазной полимеризации; характеристики двух полимеров представлены в Таблице 3.

* Оставшееся значение относится к компоненту А

С1 - это сравнительный пример, характеристики представлены в Таблице 5.

Из смесей 3 и 6 методом экструзии получены трубы с наружным диаметром 22 мм и толщиной стенки 2,8 мм; они прошли динамическое испытание при -5°C. В результате из 10 труб поломалось 0. Из смеси в сравнительном примере С1 методом экструзии получены трубы с наружным диаметром 22 мм и толщиной стенки 2,8 мм; они прошли динамическое испытание при -5°C. В результате из 10 труб поломалось 10.

Сравнительный пример С1

Сравнительный пример С1 представляет собой смесь пропилен/этилен/1-гексенового тройного сополимера и пропилен/этиленового сополимера. Характеристики компонента и смеси представлены в Таблице 5.

1. Полиолефиновая композиция для производства труб, в частности труб малого диаметра, включающая:
A) от 85,0 до 99,5 мас.%; тройной сополимер, содержащий пропилен, этилен и 1-гексен, в котором:
(i) содержание производных единиц 1-гексена составляет от 1,0 до 5,0 мас.%;
(ii) содержание производных единиц этилена составляет от 0,5 до 10,0 мас.%;
(iii) температура плавления находится в интервале от 130 до 145°С;
B) от 0,5 до 15,0 мас.%; содержит композицию на основе пропилена, этиленового сополимера, в которой:
b1) от 12 до 52 мас.%; содержит пропиленовый гомополимер или пропиленовый/этиленовый сополимер с содержанием производных единиц этилена от 0,1 до 4,5 мас.%; и содержит менее 10 мас.% ксилолового растворимого состава, измеренного при 25°С;
b2) от 48 до 88 мас.% пропилен-этиленового сополимера с содержанием производных единиц этилена от 15,0 до 42,0 мас.%;
где полученная полиолефиновая композиция имеет скорость течения расплава (230°С/5 кг, ISO 1133) от 0,2 г/10 мин до 4,0 г/10 мин; сумма А+В равна 100 и сумма b1+b2 равна 100.

2. Полиолефиновая композиция согласно п. 1 формулы изобретения, где содержание компонента А) находится в диапазоне от 90,0 до 99,5 мас.%, и содержание компонента В) находится в диапазоне от 0,5 до 10,0 мас.%.

3. Полиолефиновая композиция в соответствии с п. 1 или 2 формулы изобретения, в которой содержание производных единиц 1-гексена в компоненте А) составляет от 1,0 до 4,5 мас.%, и содержание производных единиц этилена выше 1,5 мас.%, и композиция соответствует соотношению (1):
C 2 < C 6 0,2                       ( 1 )
где С2 - это содержание производных единиц этилена в мас.%, и С6 - это содержание производных единиц 1-гексена в мас.%.

4. Полиолефиновая композиция в соответствии с п. 1 или 2 формулы изобретения, в которой компонент b2) является пропилен-этиленовым сополимером с содержанием производных единиц этилена от 18 до 38 мас.%, указанный сополимер имеет приведенную вязкость ксилоловой растворимой фракции при 25°С от 2,0 до 5,0 дл/г.

5. Полиолефиновая композиция в соответствии с п. 1 или 2 формулы изобретения, у которой скорость течения расплава (MFR) (ISO 1133 230°С, 2,16 кг) составляет от 0,4 до 13 г/10 мин;

6. Система трубопроводов, выполненная из полиолефиновой композиции в соответствии с п. 1 формулы изобретения.

7. Однослойная или многослойная труба, в которой по меньшей мере один слой выполнен из полиолефиновой композиции в соответствии с п. 1 или 2 формулы изобретения.



 

Похожие патенты:

Изобретение относится к слоистым изделиям из полимерных материалов и может быть использовано в качестве оболочек, например оболочек акустических антенн, способных функционировать в агрессивных средах.
Изобретение относится к гетерофазной композиции на основе полипропилена и к использованию указанной композиции для изготовления труб, работающих под давлением. Композиция содержит A) от 80 до 97 мас.% статистического сополимера пропилена, содержащего от 0,1 до 4 мас.% полученных из 1-гексена звеньев и B) от 3 до 20 мас.% сополимера пропилена и этилена, имеющего содержание полученных из этилена звеньев, составляющее от 50 до 55 мас.%, за исключением предельных значений.
Изобретение относится к полиолефиновой композиции, предназначенной для изготовления систем для труб и листов. Композиция имеет индекс текучести расплава от 0,05 до 10 дг/мин и содержит от 1 мас.% до 9,5 мас.% сополимера пропилена и 1-гексена и от 80,5 мас.% до 99 мас.% гетерофазной полипропиленовой композиции.

Изобретение относится к области машиностроения для использования в конструкциях авиационной, ракетной и космической техники и касается оболочки из композиционных материалов.

Изобретение относится к β-нуклеированным полипропиленовым смесям. Описана полипропиленовая смесь для получения труб.

Изобретение относится к области авиации и касается разработки силовых авиационных конструкций крыла и фюзеляжа из полимерных композиционных материалов (КМ) и их защите.

Изобретение относится к неметаллическим трубам, способу и устройству для их непрерывного изготовления. Согласно способу осуществляют намотку стекловолокнистого материала, пропитанного связующим, на вращающуюся самоподающую оправку с последующим отверждением связующего сформированной оболочки трубы.

Изобретение относится к композиции на основе полиамидной смолы для изготовления формованных изделий. Композиция содержит полиамид, состоящий из звеньев диамина, содержащих звенья 1,3-бис(аминометил)циклогексана и звенья дикарбоновой кислоты, включающие звенья адипиновой и/или себациновой кислоты, (В) соединения ароматического вторичного амина, (С) органическое соединение на основе серы и (D) фенольный антиоксидант.

Изобретение относится к трубе, обладающей повышенным сопротивлением к росту трещин труб и изготовленной из полиэтиленовой композиции, а также к применению стабилизатора фенольного типа (С) и стабилизатора фенольного типа (D) для увеличения сопротивления труб медленному росту трещин.

Изобретение относится к магистральному трубопроводному транспорту, предназначенному, преимущественно, для транспортировки газа. Газопровод содержит линейные участки труб для перемещения транспортируемого газа от входа названного участка к его выходу, при этом, по меньшей мере, на части линейных участков установлена бесшовная труба, длина которой равна длине этого участка, которая выполнена из стекло - или углепластика, и имеет внутренний диаметр не менее 2500 мм.
Изобретение относится к гетерофазной композиции на основе полипропилена и к использованию указанной композиции для изготовления труб, работающих под давлением. Композиция содержит A) от 80 до 97 мас.% статистического сополимера пропилена, содержащего от 0,1 до 4 мас.% полученных из 1-гексена звеньев и B) от 3 до 20 мас.% сополимера пропилена и этилена, имеющего содержание полученных из этилена звеньев, составляющее от 50 до 55 мас.%, за исключением предельных значений.
Изобретение относится к полиолефиновой композиции, предназначенной для изготовления систем для труб и листов. Композиция имеет индекс текучести расплава от 0,05 до 10 дг/мин и содержит от 1 мас.% до 9,5 мас.% сополимера пропилена и 1-гексена и от 80,5 мас.% до 99 мас.% гетерофазной полипропиленовой композиции.

Изобретение относится к композиции сополимера пропилена, предназначенной для получения изделий, подвергающихся тепловой сварке, ее получению и применению. Композиция содержит сополимер пропилена (А) с содержанием сомономера по меньшей мере 1,0 мас.%, сомономеры представляют С5-С12 α-олефины и сополимер пропилена (В) с содержанием сомономера в пределах от 4,0 до 20,0 мас.%, сомономеры представляют С5-С12 α-олефины.

Изобретение относится к композиции сополимера пропилена, ее получению и применению. Композиция сополимера пропилена содержит полипропилен (A) с содержанием сомономера не более чем 1,0 мас.% и сополимер пропилена (В) с содержанием сомономера в пределах от 4,0 до 20,0 мас.%.

Изобретение относится к композиции для получения формовых изделий на основе пропиленового полимера. Пропиленовая композиция включает (в процентах по массе) 60-90% кристаллического пропиленового сополимера, содержащего от 3,5% до 10,0% звеньев, образованных этиленом и 10-40% сополимера пропилена, содержащего от 18,5 до 23,5% звеньев, образованных этиленом.

Изобретение относится к пропиленовой композиции для получения формовых изделий. Пропиленовая композиция включает (в процентах по массе) 60-90% кристаллического пропиленового сополимера, содержащего от 3,5 до 10,0% звеньев, образованных этиленом, и имеющего температуру плавления Tm (измеренную методом ДСК на реакторном полимере) в интервале от 146°С до 160°С, и 10-40% сополимера пропилена, содержащего от 15 до 30% звеньев, образованных этиленом.

Изобретение относится к композиции на основе полипропилена, подходящей для получения формованных изделий, а также к изделиям, таким как бутылки. Композиция имеет скорость течения расплава MFR2 (230°С), измеренную согласно ISO 1133, равную по меньшей мере 2,0 г/10 минут, и включает сополимер пропилена (С-РР), полипропилен с высокой прочностью расплава (HMS-PP) и α-нуклеатирующий агент.

Изобретение относится к термосвариваемым пленкам, ламинированным материалам, мембранам или другим полимерным изделиям на основе сшитых полимеров, которые обладают каучукоподобной теплостойкостью (тепловой деформацией) и размерной стабильностью при температуре выше температуры плавления полимера, при сохранении свойств соединения, полученного термосвариванием (термоклеевое соединение).

Изобретение относиться к способу получения ударопрочного пропиленового сополимера с низким содержанием летучих органических соединений, композиции на основе ударопрочного пропиленового сополимера и изделия на его основе.

Изобретение относится к статистической композиции пропилена и α-олефина, изделиям и способам их получения. Описан способ полимеризации, включающий контактирование пропилена и этилена с каталитической композицией, содержащей замещенный ароматический фенилендиэфир.
Изобретение относится к композиции для изготовления формованием с раздувом изделий, представляющих собой бутылку, широкогорлый контейнер, канистру или бак. Композиция содержит полипропилен с индексом текучести расплава MFI (230°C, 2,16 кг) менее 2,0 г/10 мин, модуль упругости при изгибе от 1200 до 2400 МПа, плотность от 0,895 до 0,910 г/см3, полиэтилен высокой плотности и неорганический наполнитель.
Наверх