Абсорбент для очистки газов от сероводорода и диоксида углерода



Абсорбент для очистки газов от сероводорода и диоксида углерода
Абсорбент для очистки газов от сероводорода и диоксида углерода

 


Владельцы патента RU 2586159:

Общество с ограниченной ответственностью "Научно-исследовательский институт природных газов и газовых технологий - Газпром ВНИИГАЗ" (RU)

Изобретение относится к области очистки газов от сероводорода и/или диоксида углерода и может быть использовано в газовой, нефтяной и нефтеперерабатывающей отраслях промышленности. Абсорбент для очистки газа от H2S и СО2 содержит метилдиэтаноламин, аминоэтилпиперазин, метиловый или этиловый эфир диэтиленгликоля и воду. Использование заявленных компонентов в определенном соотношении обеспечивает повышение скорости регенерации насыщенного абсорбента и повышение качества очистки газа при сокращении затрат тепловой энергии. 2 табл.

 

Изобретение относится к области очистки газов от сероводорода и/или диоксида углерода и может быть использовано в газовой, нефтяной и нефтеперерабатывающей отраслях промышленности.

Известен абсорбент для очистки газов от H2S и CO2, содержащий водный раствор алканоламина или смесь алканоламинов (см. US 4368095, B01D 53/14, 1983 г.). В качестве алканоламинов используют соединения, содержащие первичные, вторичные или третичные аминогруппы, например моноэтаноламин (МЭА), диэтаноламин (ДЭА), метилдиэтаноламин (МДЭА). Недостатком известного абсорбента является невысокая эффективность по извлечению кислых компонентов (особенно для третичных аминов), повышенные затраты тепла при регенерации абсорбента (для первичных и вторичных аминов).

Наиболее близким техническим решением к предлагаемому является абсорбент для очистки газов от H2S и CO2, содержащий водный раствор третичного алканоламина или смесь третичных алканоламинов и активатор (см. US 5348714, C01B 3/20, 1994 г.). В качестве третичного алканоламина используют соединения, содержащие третичные аминогруппы, например метилдиэтаноламин (МДЭА), а в качестве активатора используют производное пиперазина, пиперидина.

Недостатком данного абсорбента является невысокая скорость регенерации насыщенного абсорбента, т.е. повышенные затраты тепловой энергии на десорбцию кислых компонентов.

Техническим результатом, на достижение которого направлено предлагаемое изобретение, является повышение скорости регенерации насыщенного абсорбента от кислых компонентов H2S и CO2, повышение качества очистки газа при сокращении затрат тепловой энергии.

Данный технический результат достигается за счет того, что абсорбент для очистки газа от H2S и CO2, содержащий метилдиэтаноламин, аминоэтилпиперазин и воду, дополнительно содержит метиловый или этиловый эфир диэтиленгликоля при следующем соотношении компонентов, масс.%:

метилдиэтаноламин 20÷50
миноэтилпиперазин 2÷10
метиловый или этиловый эфир диэтиленгликоля 2÷8
вода остальное

Сущность изобретения поясняется примерами.

Для испытаний используют образцы метилдиэтаноламина (МДЭА), выпускаемого по ТУ 2423-005-11159873-2000, аминоэтилпиперазина (АЭП) фирмы Akzo Nobel (номер CAS 140-31-8), метиловый эфир диэтиленгликоля (МДЭГ) или этиловый эфир диэтиленгликоля (ЭДЭГ) (ТУ 2422-125-05766801-2003) с массовой долей эфира 99%, растворяя данные реагенты в воде в необходимой концентрации.

Эксперимент по регенерации абсорбента проводят следующим образом.

В колбу объемом 0,25 дм с обратным водяным холодильником заливают по 100 дм3 испытуемого абсорбента, предварительно насыщенного СO2 до содержания 30 г/л, затем абсорбент нагревают до кипения с подачей через него азота со скоростью 2 л/ч при атмосферном давлении. Через определенные промежутки времени отбирают пробы раствора, в которых определяют остаточное содержание CO2 объемным методом.

Результаты испытаний по регенерации насыщенных СО2 абсорбентов различного состава (известного и предлагаемого) приведены в таблице 1. Из таблицы 1 следует, что при подводе одного и того же количества тепла (соответствующих равным промежуткам времени) абсорбенты различного состава регенерируются с разной скоростью.

В качестве известного абсорбента использовали водный раствор, включающий 30 масс.% МДЭА при содержании АЭП 6 или 10 масс.% (поз. 1, 2). Предлагаемый абсорбент включает водный раствор 30-50 масс.% МДЭА, 2-10 масс.% АЭП и добавки метилового или этилового эфира ДЭГ в количестве 2-8 масс.% (поз. 3-9).

Из таблицы 1 следует, что известный абсорбент на основе МДЭА без добавок эфиров обладает невысокой скоростью регенерации, причем остаточное содержание CO2 в абсорбенте через 15 мин составляет 13,5 г/л, через 30 - мин 7,3 г/л, а через 60 мин - 3,3 г/л.

Предлагаемый абсорбент с добавками МДЭГ (поз. 3-6) и ЭДЭГ (поз. 7-9) регенерируется существенно быстрее, что характеризуется остаточным содержанием CO2 по сравнению с известным абсорбентом за те же промежутки времени в 2-3 раза меньше.

Эксперименты по очистке газа проводят на опытной установке, включающей абсорбер с нерегулярной насыпной насадкой (10×10 мм), насос подачи абсорбента, тепловой регенератор амина, систему измерения и поддержания температуры, а также расходомеры газа и жидкости. В качестве модельного газа используют природный газ с давлением 50 атм, в который подают кислые компоненты (3,5% CO2 и 2,5% H2S). Подачу газа осуществляют со скоростью 10 м3/ч при температуре 22°C в нижнюю часть абсорбционной колонки, подачу абсорбента осуществляют со скоростью 15 л/ч при температуре 50°C наверх абсорбера. Содержание кислых компонентов в исходном и очищенном газе определяют хроматографически по ГОСТ 31371.1-2008. Экспериментальные данные приведены в таблице 2: составы абсорбентов по п. 1 - известного, по пп. 2-5 - предлагаемого.

Из данных таблицы 2 следует, что предлагаемый абсорбент позволяет уменьшить затраты тепла на регенерацию абсорбента при обеспечении требуемого качества очистки газа, либо повысить качество очистки газа от кислых компонентов (при фиксированном расходе тепла).

Эффективная массовая доля МДЭГ или ЭДЭГ составляет от 2 до 8%. Заявляемый интервал содержания эфиров диэтиленгликоля в абсорбенте обусловлен тем, что их массовая доля менее 2% в абсорбенте не изменяет существенно скорости регенерации в сравнении с известным абсорбентом, а увеличение массовой доли более 8% приводит к уменьшению скорости регенерации абсорбента.

Использование предлагаемого абсорбента позволяет уменьшить затраты тепловой энергии на регенерацию до остаточного содержания СO2, в сравнении с известным абсорбентом на 15-25%. В то же время при одинаковых затратах энергии использование предлагаемого абсорбента, имеющего лучшие характеристики по регенерации, позволяет повысить эффективность очистки газа.

Абсорбент для очистки газа от H2S и СO2, содержащий метилдиэтаноламин, аминоэтилпиперазин и воду, отличающийся тем, что абсорбент дополнительно содержит метиловый или этиловый эфир диэтиленгликоля при следующем соотношении компонентов, масс.%:

метилдиэтаноламин 30÷50
аминоэтилпиперазин 2÷10
метиловый или этиловый эфир диэтиленгликоля 2÷8
вода остальное



 

Похожие патенты:

Изобретение относится к способам селективного удаления примесей из газообразных выбросов. В частности, к селективному удалению и извлечению диоксида серы из газообразных выбросов в способе абсорбции/десорбции диоксида серы, в котором применяют буферизованый водный абсорбирующий раствор, содержащий малат натрия, чтобы селективно абсорбировать диоксид серы газообразного выброса.

Изобретение относится к области нефтехимических производств, в частности к процессам подготовки газов пиролиза углеводородов для дальнейшей переработки, и может быть использовано для очистки пирогаза, содержащего ацетилен и этилен в качестве целевых компонентов, от примесей их гомологов и сопутствующих углеводородов C3 и C4.

Изобретение относится к области мембранной технологии. Автоматизированная мембранно-абсорбционная газоразделительная система, состоящая из двух последовательно соединенных мембранно-контакторных модулей, причем каждый мембранно-контакторный модуль состоит из контакторного абсорбера и контакторного десорбера с системой обеспечения рециркуляционного потока между абсорбером и десорбером, причем первый мембранно-контакторный модуль предназначен для очистки биогаза от примесей СО2, а второй мембранно-контакторный модуль - для осушки биогаза от водяных паров, отличающаяся тем, что на выходе из второго мембранно-контакторного модуля установлены датчик влажности газовой смеси, соединенный с блоком регулирования величины потока рециркулята в процессе осушки биогаза во втором мембранно-контакторном модуле, и датчик содержания диоксида углерода в газовой смеси, соединенный с блоком регулирования величины потока и температуры рециркулята в процессе очистки биогаза в первом мембранно-контакторном модуле.

Изобретение относится к способу подготовки топливного газа и может быть использовано в нефтегазовой промышленности и энергетике. Способ включает сжатие газа, его охлаждение и сепарацию.

Изобретение относится к способам регенерации насыщенного раствора поглотителя влаги - диэтиленгликоля, который используют в качестве абсорбента для извлечения водяных паров из газа в установках осушки природных и нефтяных газов.

Изобретение относится к сельскому хозяйству. Осуществляют обработку топочного газа от энергоустановки на биомассе для получения газа с объемной концентрацией диоксида углерода более 85%.

Изобретение может быть использовано в химической области и в области цветной металлургии. Способ очистки отходящих газов титано-магниевого производства включает обработку отходящих газов смесью щелочного реагента с водным раствором карбамида.

Сначала в первом процессе абсорбции абсорбируют диоксид углерода при введении в контакт подводимого содержащего диоксид углерода природного газа с первым обводным потоком растворителя.

Настоящее изобретение предлагает систему обработки жидкостью, включающую реактор, где реактор сконструирован так, что он содержит газообразную фазу и водную фазу, обе фазы, контактирующие с агетерогенным катализатором гидрогенации, иммобилизованным или суспендированным внутри водной фазы, где газообразная фаза включает водород и где водная фаза включает (i) раствор аминов; и (ii) соединения нитрозамина и/или нитрамина, полученные в результате способов десульфуризации газа с помощью аминов.

Изобретение относится к процессам обессеривания газов и может быть использовано в различных отраслях промышленности для очистки газов от сероводорода с одновременным получением серы.

Изобретение относится к способу выделения углеводородов из полиолефинового газообразного продукта продувки. Способ включает следующие стадии: выделение полиолефинового продукта, включающего один или более летучих углеводородов из реактора полимеризации; контактирование полиолефинового продукта с продувочным газом с целью удаления по меньшей мере части летучих углеводородов с получением полимерного продукта, в котором снижена концентрация летучих углеводородов, и газообразного продукта продувки, обогащенного летучими углеводородами, причем летучие углеводороды включают водород, метан, один или более С2-12углеводородов, или любую комбинацию перечисленного, причем газообразный продукт продувки находится при давлении от примерно 50 до примерно 250 кПа (абс.); сжатие газообразного продукта продувки до давления, составляющего от примерно 2500 до примерно 10000 кПа (абс.), в котором газообразный продукт продувки сжимают по меньшей мере в две стадии, причем на первой стадии его сжимают при отношении давлений, которое не меньше, чем отношение давлений на последующих стадиях; охлаждение сжатого газообразного продукта продувки; разделение охлажденного газообразного продукта продувки на газообразный продукт, включающий по меньшей мере первый продукт, и конденсированный продукт, включающий второй продукт и третий продукт; и возврат по меньшей мере части по меньшей мере одного из продуктов в перечисленные места: первого продукта в виде продувочного газа, второго продукта в реактор полимеризации или третьего продукта в виде газообразного продукта продувки, обогащенного летучими углеводородами, на стадию до сжатия. Также изобретение относится к системе. Использование настоящего изобретения позволяет осуществлять контроль давления, что помогает защитить потенциальные продукты полимеризации при формировании и увеличить потенциал полимеризации. 2 н. и 19 з.п. ф-лы, 4 табл., 3 пр., 5 ил.

Изобретение направлено на создание способа разделения газов в подаваемом смешанном газовом потоке и аппарата для реализации указанного способа. Способ в соответствии с изобретением включает в себя: i) контактирование подаваемого смешанного газового потока с жидким абсорбентом в абсорбционной колонне под давлением 1 бар или больше, при этом указанный жидкий абсорбент является избирательным в отношении абсорбции одного или больше газов в подаваемом смешанном газовом потоке таким образом, чтобы часть газа в подаваемом смешанном газовом потоке абсорбировалась жидким абсорбентом, что приводит к получению обогащенного жидкого абсорбента; ii) регенерирование по меньшей мере части жидкого абсорбента посредством контакта обогащенного жидкого абсорбента с десорбционной мембраной, при этом давление со стороны проникновения десорбционной мембраны по меньшей мере на 1 бар выше давления со стороны проникновения десорбционной мембраны, чтобы по меньшей мере часть абсорбированного газа десорбировалась из обогащенного жидкого абсорбента и проникала через десорбционную мембрану, тем самым образуя обедненный жидкий абсорбент; и iii) рециркуляцию по меньшей мере части обедненного жидкого абсорбента на стадии i) для контактирования с подаваемым смешанным газовым потоком. Изобретение позволяет использовать экономически эффективную регенерацию абсорбента. 2 н. и 13 з.п. ф-лы, 4 ил.
Наверх