Конструкция сборки вибрационного датчика с монолитным держателем трубопровода



Конструкция сборки вибрационного датчика с монолитным держателем трубопровода
Конструкция сборки вибрационного датчика с монолитным держателем трубопровода
Конструкция сборки вибрационного датчика с монолитным держателем трубопровода
Конструкция сборки вибрационного датчика с монолитным держателем трубопровода
Конструкция сборки вибрационного датчика с монолитным держателем трубопровода
Конструкция сборки вибрационного датчика с монолитным держателем трубопровода

 


Владельцы патента RU 2598167:

МАЙКРО МОУШН, ИНК. (US)

Предоставляется конструкция сборки (200) вибрационного датчика. Сборка (200) вибрационного датчика включает в себя монолитный держатель (205) трубопровода. Монолитный держатель (205) трубопровода включает в себя впускной патрубок (206), выпускной патрубок (208) и опорное основание (210) трубопровода, вытянутое от впускного патрубка (206) к выпускному патрубку (208). Сборка (200) вибрационного датчика дополнительно включает в себя единственный флюидный трубопровод (203) с двумя или более контурами (204A, 204B), разделенными переходным коленом (213), который соединяется с монолитным держателем (205) трубопровода. Также используют суженные опорные блоки так, что трубка проходит напрямую через опорный блок к впускному или выпускному патрубку. Технический результат - обеспечение возможности легкой сборки расходомера и уменьшение возможности изгиба трубки. 3 н. и 11 з.п. ф-лы, 5 ил.

 

ОБЛАСТЬ ТЕХНИКИ

Варианты реализации, описанные ниже, относятся к сборкам вибрационного датчика и, более конкретно, к конструкции сборки вибрационного датчика, смонтированной на монолитном держателе трубопровода.

ОБЛАСТЬ ТЕХНИКИ

Вибрационные флюидные датчики, такие как массовые расходомеры Кориолиса и вибрационные денситометры, обычно функционируют посредством регистрации движения колеблющегося трубопровода, который содержит в себе текущий материал. Параметры, относящиеся к флюиду в трубопроводе, например массовый расход, плотность и т.п., могут быть определены обработкой измерительных сигналов, принятых от преобразователей движения, связанных с трубопроводом. Колебательные моды колеблющейся и заполненной материалом системы обычно определяются суммарной массой, жесткостью и параметрами демпфирования самого трубопровода и содержащегося в нем материала.

Типичный расходомер Кориолиса включает в себя один или несколько трубопроводов, которые соединяются в линейную магистраль или другую транспортную систему и транспортируют в системе материал, например флюиды, шламы и т.п. Каждый трубопровод можно рассматривать как систему, имеющую набор собственных колебательных мод, включающий в себя, например, простые изгибные, крутильные, радиальные моды и моды смешанного типа. В типичном применении метода Кориолиса для измерений массового расхода трубопровод возбуждается на одной или нескольких колебательных модах, когда материал течет через трубопровод, и движение трубопровода измеряется в точках, разнесенных вдоль трубопровода. Возбуждение обычно обеспечивается приводом, например электромеханическим устройством, таким как индукционный привод, работающий на звуковых частотах, который периодически возмущает трубопровод. Массовый расход может быть определен по измерению временной задержки, или по измерению разности фаз, между движениями в местоположениях датчиков-преобразователей. Для измерения колебательного отклика расходомерного трубопровода или трубопроводов обычно используются два таких преобразователя (или измерительных преобразователя) и обычно они располагаются в положениях выше и ниже по течению относительно привода. Два измерительных преобразователя обычно соединяются с электронным измерительным прибором посредством соединительного кабеля, например, двумя независимыми проводными парами. Измерительный прибор принимает сигналы от двух измерительных преобразователей и обрабатывает сигналы для получения измерения массового расхода.

В вибрационном измерителе одного типа используется одноконтурный последовательный трубопровод для измерения массового расхода. Однако использование конструкции одноконтурного последовательного трубопровода имеет тот характерный недостаток, что он оказывается несбалансированным и в большей степени может зависеть от внешних колебаний, чем измерители других типов. Одноконтурный последовательный расходомер Кориолиса имеет единственный изогнутый трубопровод, или контур, вытянутый консольным образом от монолитного держателя. Расходомер должен включать в себя жесткую структуру, установленную рядом с расходомерным трубопроводом, относительно которого расходомерный трубопровод может колебаться. Использование жесткой структуры может оказаться непрактичным во многих промышленных применениях.

Другой подход техники предшествующего уровня использует двухконтурную конфигурацию расходомерного трубопровода с параллельным протоком. Расходомеры с двухконтурными параллельными расходомерными трубопроводами сбалансированы, и изменения плотности влияют на оба параллельных расходомерных трубопровода по существу одинаково. Колебания в расходомерных трубопроводах с параллельным протоком возбуждаются в противоположных направлениях относительно друг друга, при том, что колебательная сила одного расходомерного трубопровода компенсирует колебательные силы другого расходомерного трубопровода. Поэтому во многих применениях желательна двухконтурная параллельная конфигурация расходомерного трубопровода. Однако, поскольку поток расщепляется между двумя параллельными расходомерными трубопроводами, каждый из расходомерных трубопроводов делается меньшим, чем присоединенный линейный трубопровод. Это может быть проблематичным для применений с малым расходом. Конкретно, расходомерные трубопроводы с меньшим расходом, требуемые в расходомерах с двухконтурными, параллельными расходомерными трубопроводами, оказываются более подверженными закупорке, и манифольд, используемый для расщепления потока между расходомерными трубопроводами, приводит к большему перепаду давления.

Вышеупомянутые проблемы могут быть разрешены при использовании расходомера с двухконтурным последовательным протоком. Двухконтурный расходомер с последовательным протоком объединяет преимущества одноконтурного расходомера и расходомера с двухконтурным параллельным протоком.

На Фиг. 1 показан участок расходомера 100 с двухконтурным последовательным протоком техники предшествующего уровня. Расходомер 100 показан и описан более подробно в патенте США [6044715] 6332367, переуступленном по формальным признакам настоящим заявителям, и включен здесь посредством ссылки для всех своих положений. Расходомер 100 включает в себя единственный расходомерный трубопровод 101, который помещается внутри корпуса 102. Расходомерный трубопровод 101 включает в себя два контура 103, 104, которые лежат в параллельных друг другу плоскостях. Контуры 103, 104 вибрируют в ответ на сигнал, подаваемый приводом 110. Измерительные преобразователи 111, 111′ могут регистрировать движение контуров 103, 104 для определения различных параметров флюида. Контуры 103, 104 соединяются между собой переходным коленом 105. Переходное колено 105 соединяет два контура, формируя непрерывный расходомерный трубопровод 101. Переходное колено 105 вместе с этими двумя контурами 103, 104 присоединяется и фиксируется с использованием скрепляющей стяжки 106. Хотя стяжка 106 присоединяется к корпусу 102 с использованием шпилек 107, внешние колебания все же воспринимаются вибрирующим участком расходомерного трубопровода 101 (выше стягивающих скоб 108, 109). Кроме того, как показано, переходное колено 105 просто зависает свободно и никак не поддерживается. Когда длина переходного колена 105 увеличивается, отсутствие поддержки может стать проблематичным и привести к ошибочным измерениям, поскольку переходное колено 105 может быть подвергнуто деформациям.

Поэтому, хотя расходомер 100 с двухконтурным последовательным протоком техники предшествующего уровня предоставляет адекватный расходомер в некоторых ситуациях, все же имеется потребность дополнительно ограничить внешние колебания, испытываемые измерительными преобразователями, а также обеспечить лучшую опору для переходного колена. Варианты реализации, описанные ниже, преодолевают эти и другие проблемы, и обеспечивается усовершенствование в данной области техники. Варианты реализации, описанные ниже, предоставляют двухконтурный расходомер с последовательным протоком, установленный на монолитной трубопроводной опоре. Монолитная опора трубопровода может адекватно поддержать переходное колено трубопровода, минимизируя внешние колебания, испытываемые измерительными преобразователями расходомерного трубопровода. Поэтому расходы могут быть определены более точно в самых разнообразных средах.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Монолитный держатель трубопровода для сборки вибрационного датчика предоставляется в соответствии с вариантом реализации. Монолитный держатель трубопровода содержит впускной патрубок и выпускной патрубок. В соответствии с вариантом реализации монолитный держатель трубопровода дополнительно содержит опорное основание трубопровода, вытянутое от впускного патрубка до выпускного патрубка. В соответствии с вариантом реализации монолитный держатель трубопровода дополнительно содержит первый и второй опорные блоки, выступающие от опорного основания трубопровода.

Сборка вибрационного датчика предоставляется в соответствии с вариантом реализации. Сборка вибрационного датчика содержит монолитный держатель трубопровода, включающий в себя впускной патрубок, выпускной патрубок и опорное основание трубопровода, вытянутое от впускного патрубка до выпускного патрубка. В соответствии с вариантом реализации сборка вибрационного датчика дополнительно содержит единственный флюидный трубопровод с двумя или более контурами, разделенными переходным коленом, который соединен с монолитным держателем трубопровода.

Способ для формирования сборки вибрационного датчика предоставляется в соответствии с вариантом реализации. Способ содержит этап формирования единственного флюидного трубопровода в двух или более контурах. Способ дополнительно содержит этап разделения двух или более контуров с переходным коленом. В соответствии с вариантом реализации способ дополнительно содержит этап соединения монолитного держателя трубопровода с переходным коленом, причем монолитный держатель трубопровода включает в себя впускной патрубок, выпускной патрубок и опорное основание трубопровода, вытянутое от впускного патрубка до выпускного патрубка.

ОБЪЕКТЫ

В соответствии с объектом монолитный держатель трубопровода для сборки вибрационного датчика содержит:

впускной патрубок;

выпускной патрубок;

опорное основание трубопровода, проходящее от впускного патрубка до выпускного патрубка;

и первый и второй опорные блоки, выступающие от опорного основания трубопровода.

Предпочтительно первый и второй опорные блоки сужены и содержат первую толщину t1 на конце, обращенном к соответствующему патрубку, и содержат вторую толщину t2 на конце, обращенном к другому опорному блоку, причем t2 меньше, чем t1.

Предпочтительно монолитный держатель трубопровода дополнительно содержит одно или несколько отверстий, имеющих размеры и форму для приема соединительного приспособления.

В соответствии с другим объектом сборка вибрационного датчика содержит:

монолитный держатель трубопровода, включающий в себя впускной патрубок, выпускной патрубок и опорное основание трубопровода, проходящее от впускного патрубка до выпускного патрубка; и

единственный флюидный трубопровод с двумя или более контурами, разделенными переходным коленом, которое соединено с монолитным держателем трубопровода.

Предпочтительно переходное колено присоединяется к опорному основанию трубопровода.

Предпочтительно сборка вибрационного датчика дополнительно содержит первый и второй опорные блоки, выступающие от опорного основания трубопровода.

Предпочтительно первый контур из двух или более контуров соединен с первой стороной первого и второго опорных блоков, и причем второй контур из двух или более контуров присоединен ко второй стороне первого и второго опорных блоков.

Предпочтительно сборка вибрационного датчика дополнительно содержит впускной участок трубопровода, присоединенный к впускному патрубку.

Предпочтительно сборка вибрационного датчика дополнительно содержит выпускной участок трубопровода, присоединенный к выпускному патрубку.

Предпочтительно сборка вибрационного датчика дополнительно содержит корпус, по меньшей мере частично покрывающий флюидный трубопровод.

В соответствии с другим объектом способ для формирования сборки вибрационного датчика содержит этапы:

формирования единственного флюидного трубопровода в два или более контуров;

разделения двух или более контуров переходным коленом и

присоединения монолитного держателя трубопровода к переходному колену, причем монолитный держатель трубопровода включает в себя впускной патрубок, выпускной патрубок и опорное основание трубопровода, вытянутое от впускного патрубка до выпускного патрубка.

Предпочтительно этап соединения содержит присоединение переходного колена к опорному основанию трубопровода.

Предпочтительно монолитный держатель трубопровода содержит первый и второй опорные блоки, и этап соединения содержит:

присоединение первого контура двух или более контуров к первой стороне первого и второго опорных блоков и

присоединение второго контура двух или более контуров ко второй стороне первого и второго опорных блоков.

Предпочтительно этап соединения содержит присоединение впускного участка трубопровода к впускному патрубку монолитного держателя трубопровода и присоединение участка выпускного трубопровода к выпускному патрубку монолитного держателя трубопровода.

Предпочтительно способ дополнительно содержит этап по меньшей мере частичного покрытия флюидного трубопровода корпусом.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Фиг. 1 изображает двухконтурный расходомер с последовательным протоком техники предшествующего уровня.

Фиг. 2 - вибрационный измеритель в соответствии с вариантом реализации.

Фиг. 3 - вид сверху флюидного трубопровода в соответствии с вариантом реализации.

Фиг. 4 - впускной участок флюидного трубопровода, присоединенный к опорному основанию трубопровода в соответствии с вариантом реализации.

Фиг. 5 - конструкция сборки датчика в соответствии с вариантом реализации.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Чертежи на Фиг. 2-5 и нижеследующее описание демонстрируют конкретные примеры для пояснения специалистам в данной области техники того, как реализовать и использовать наилучший вариант изобретения. С целью пояснения принципов изобретения некоторые обычные объекты были упрощены или исключены. Специалисты в данной области техники увидят возможные вариации этих примеров, которые находятся в пределах объема притязаний изобретения. Специалисты в данной области техники увидят, что описанные ниже признаки могут быть различным образом скомбинированы, образуя множественные вариации вибрационного измерителя. Таким образом, описываемые ниже варианты реализации не ограничиваются описанными ниже конкретными примерами, но только пунктами формулы и их эквивалентами.

На Фиг. 2 показан вибрационный измеритель 5 в соответствии с вариантом реализации. Вибрационный измеритель 5 содержит сборку 200 датчика и электронный измеритель 20. Сборка 200 датчика и электронный измеритель 20 могут быть связаны друг с другом с помощью кабельных соединений 10. Вибрационный измеритель 5 показан как содержащий расходомер Кориолиса. Однако специалисты в данной области техники легко увидят, что вибрационный измеритель 5 может содержать другие типы датчиков, которые не имеют измерительных возможностей расходомеров Кориолиса. Например, вибрационный измеритель 5 может содержать вибрационный денситометр, вибрационный объемный расходомер и т.д. Поэтому, хотя нижеследующее рассмотрение относится к расходомеру Кориолиса, варианты реализации никоим образом не должны быть ограничены этим.

В соответствии с вариантом реализации сборка 200 датчика содержит единственный флюидный трубопровод 203, который формирует два или более контуров 204A, 204B, чтобы создать двухконтурную сборку датчика с последовательным протоком. Поэтому, хотя два контура 204A, 204B показаны на чертежах и описываются ниже, сборка 200 датчика может включать в себя больше, чем два контура, при этом оставаясь в пределах объема притязаний нижеприведенных пунктов формулы. В соответствии с вариантом реализации флюидный трубопровод 203 монтируется на монолитном держателе 205 трубопровода. Как можно заметить, флюидный трубопровод 203 и монолитный держатель 205 трубопровода могут быть покрыты корпусом (см. Фиг. 5) при их эксплуатации. Монолитный держатель 205 трубопровода может быть соединен с флюидным трубопроводом 203 больше, чем в одном местоположении. Например, монолитный держатель 205 трубопровода может содержать впускной патрубок 206, который может быть присоединен к флюидному магистральному трубопроводу (не показан). Участок 207 впускного трубопровода флюидного трубопровода 203 может быть принят впускным патрубком 206. Монолитный держатель 205 трубопровода может также содержать выпускной патрубок 208, который может быть присоединен к флюидному магистральному трубопроводу и также принимать участок 209 выпускного трубопровода. В соответствии с вариантом реализации впускной и выпускной участки 207, 209 трубопровода могут быть присоединены к впускному и выпускному патрубкам 206, 208, чтобы сформировать флюидонепроницаемые соединения. Дополнительно участок впускного и выпускного участков 207, 209 трубопровода может быть присоединен к опорному основанию 210 трубопровода (см. Фиг. 4, например) монолитного держателя 205 трубопровода. В соответствии с вариантом реализации опорное основание 210 трубопровода может простираться по существу полностью между впускным и выпускным патрубками 206, 208. Опорное основание 210 трубопровода может предоставить подходящую монтажную поверхность для различных участков флюидного трубопровода 203.

В соответствии с вариантом реализации флюидный трубопровод 203 может простираться от впускного участка трубопровода 207 к первому контуру 204A. В соответствии с показанным вариантом реализации, поскольку флюидный трубопровод 203 простирается далеко вверх от опорного основания 210 трубопровода, чтобы сформировать первый контур 204A, флюидный трубопровод 203 может быть присоединен к первому опорному блоку 211. Первый опорный блок 211 может быть присоединен к опорному основанию 210 трубопровода или может содержать объединенный участок опорного основания 210 трубопровода, например. Первый опорный блок 211 показан как выступающий от опорного основания 210 трубопровода вверх, как показано на чертежах.

Флюидный трубопровод 203 может простираться далеко от первого опорного блока 211, где он формирует первый контур 204A. Первый контур 204A может также быть присоединен ко второму опорному блоку 212. Первый и второй опорные блоки 212 могут способствовать поддержанию первого и второго контуров 204A, 204B и способствовать заданию изгибных осей контуров (см. Фиг. 5). Первый и второй опорные блоки 211, 212 также могут способствовать позиционированию плоскостей Р1, P2 первого и второго контуров (см. Фиг. 3). В соответствии с вариантом реализации флюидный трубопровод 203 присоединяется ко второму опорному блоку 212, если трубопровод 203 выходит из первого контура 204A и входит в переходное колено 213. В соответствии с вариантом реализации переходное колено 213 обеспечивает переход между первым и вторым контурами 204A, 204B.

В соответствии с вариантом реализации переходное колено 213 может быть соединено с монолитным держателем 205 трубопровода. Более конкретно, в показанном варианте реализации переходное колено 213 может быть присоединено к опорному основанию 210 трубопровода. Переходное колено 213 может быть присоединено к опорному основанию 210 трубопровода с использованием разнообразных способов, например с помощью пайки твердым припоем, сварки, механического крепежа, адгезивов и т.д. Конкретный способ, используемый для присоединения переходного колена 213 к опорному основанию 210 трубопровода, не важен для целей настоящей заявки и никоим образом не должен ограничивать нижеследующие пункты формулы. В соответствии с вариантом реализации переходное колено 213 может быть присоединено к опорному основанию трубопровода 210 во множественных местоположениях. Как можно заметить, в отличие от фиксирующей стяжки 106 вибрационного измерителя 100 техники предшествующего уровня, которое позволяет подвесить свободно переходное колено 105, монолитный держатель 205 трубопровода соединяется с переходным коленом 213 так, чтобы гарантировать, что переходное колено 213 поддерживается надлежащим образом. Как показано, переходное колено 213 соединяется с верхней поверхностью (во время нормальной ориентации) монолитного держателя 205 трубопровода так, что вес переходного колена 213 может быть поддержан опорным основанием 210 трубопровода. Поэтому колебания и напряжения, которые испытываются переходным коленом 213, могут быть минимизированы. Кроме того, поскольку опора трубопровода 213 сформирована из одной детали, то напряжения, которые могут возникать, когда устанавливается корпус 500 или когда сборка 200 датчика устанавливается в трубопроводную магистраль, могут быть нивелированы держателем 205 трубопровода, а не флюидным трубопроводом 203.

Поскольку флюидный трубопровод 203 простирается от переходного колена 213 ко второму контуру 204B, флюидный трубопровод 203 может быть присоединен к первому опорному блоку 211 еще раз. Однако, поскольку флюидный трубопровод 203 входит во второй контур 204B, флюидный трубопровод 203 присоединяется к противоположной стороне первого опорного блока 211. Флюидный трубопровод 203 создает второй контур 204B и проходит к выпускному участку 209 трубопровода. В соответствии с вариантом реализации флюидный трубопровод 203 может также быть присоединен ко второму опорному блоку 212, если флюидный трубопровод 203 переходит от второго контура 204B к выпускному участку 209 трубопровода.

С флюидным трубопроводом 203, надежно соединенным с монолитным держателем 205 трубопровода, привод 225 может возбуждать колебания первого и второго контуров 204A, 204B с противоположными фазами вокруг изгибных осей W-W, W′-W′ (см. Фиг. 5), которые по меньшей мере частично задаются стягивающими скобами 220-223. Привод 225 может принимать приводной сигнал через кабельное соединение 235 от электронного измерителя 20. Когда первый и второй контуры 204A, 204B колеблются, движение может быть зарегистрировано первым и вторым измерительными преобразователями 226, 226′. Тензометрические сигналы могут быть переданы на электронный измеритель 20 через кабельные соединения 236, 236′ для определения одного или более флюидных параметров для флюида в пределах флюидного трубопровода 203, такого как массовый расход, объемный расход, плотность, температура и т.д.

На Фиг. 3 показан вид сверху флюидного трубопровода 203 в соответствии с вариантом реализации. На Фиг. 3 флюидный трубопровод 203 показан до его присоединения к монолитному держателю 205 трубопровода. Как можно видеть, флюидный трубопровод 203 включает в себя впускной участок 207 трубопровода, который переходит в первый контур 204A. Вблизи конца первого контура 204A флюидный трубопровод 203 переходит в переходное колено 213. В соответствии с вариантом реализации переходное колено 213 может соединять первый и второй контуры 204A, 204B. Переходное колено 213 проходит поперек от первой плоскости Р1 ко второй плоскости P2. Второй контур 204B тогда заканчивается у выпускного участка 209 трубопровода. В соответствии с вариантом реализации первый и второй контуры 204A, 204B по существу параллельны плоскостям Р1, P2 соответственно. Как рассмотрено выше, в некоторых вариантах реализации первый и второй опорные блоки 211, 212 могут способствовать заданию плоскостей Р1, P2. В ситуации предоставления двух контуров в параллельных плоскостях эти два контура 204A, 204B могут колебаться относительно друг друга и могут действовать как двухконтурный расходомер с параллельным протоком, даже при том, что эти два контура 204A, 204B содержат последовательный проток.

На Фиг. 4 показан участок сборки 200 датчика в соответствии с вариантом реализации. На Фиг. 4 показан наилучший вид участка 207 впускного патрубка, который соединен с опорным основанием 210 трубопровода. Опорное основание 210 трубопровода включает в себя два отверстия 440. Отверстия 440 могут быть предоставлены для приема фиксирующего крепления (не показано), используемого в присоединении флюидного трубопровода 203 к монолитному держателю 205 трубопровода.

На Фиг. 5 показан другой вид сборки 200 датчика в соответствии с вариантом реализации. При этом на Фиг. 5 показан участок предоставляемого корпуса 500. Как можно заметить, другой соответствующий участок корпуса может быть присоединен к участку, показанному как полностью покрывающий флюидный трубопровод 203.

На Фиг. 5 опорное основание 210 трубопровода показано более детально. Как можно видеть из Фиг. 5, переходное колено 213 проходит между первым и вторым опорными блоками 211, 212. Показано множество отверстий 440 в монолитном держателе 205 трубопровода, которые предоставляются для размещения соединительных креплений, используемых при присоединении флюидного трубопровода 203 к держателю 205 трубопровода.

В показанном варианте реализации опорные блоки 211, 212 могут быть сужены для приспособления изменений при переходе от первой плоскости Р1 ко второй плоскости P2.

Например, второй опорный блок 212 показан как содержащий первую ширину t1 в конце, ближайшем к выпускному патрубку 208, и вторую ширину t2 в конце, ближайшем к первому опорному блоку 211. В показанном варианте реализации t2 меньше, чем t1. В соответствии с вариантом реализации первый опорный блок 211 также может быть сужен. В показанном варианте реализации опорные блоки 211, 212 могут также способствовать действию стягивающих скоб 220, 221, задающих изгибные оси W-W, W′-W′. Как можно видеть, показанный на Фиг. 5 вариант реализации включает в себя только единственную стягивающую скобу 220, 221 на каждом конце. Поэтому опорные блоки 211, 212 могут действовать как вторая стягивающая скоба в некоторых вариантах реализации.

Также на Фиг. 5 более подробно показаны элементы привода и измерительных преобразователей. В соответствии с вариантом реализации привод 225 содержит первый элемент 225А привода, присоединенный к первому контуру 204A, и второй элемент 225B привода, присоединенный ко второму контуру 204B. Аналогично первый и второй измерительные преобразователи 226, 226′ содержат первый элемент 226A, 226′А измерительного преобразователя, присоединенный к первому контуру 204A, и второй элемент 226B, 226′B измерительного преобразователя, присоединенный ко второму контуру 204B соответственно. Как рассмотрено выше, элементы привода 225 и измерительных преобразователей 226, 226′ могут содержать комбинацию магнит/катушка, которая хорошо известна в данной области техники, или некоторая конфигурация другого типа, которая позволяет возбуждать колебания и регистрировать движение контуров 204A, 204B.

Варианты реализации, описанные выше, предоставляют улучшенный многоконтурный вибрационный измеритель с последовательным протоком. В отличие от измерителей техники предшествующего уровня, которые подразделяют опору флюидного трубопровода на множественные элементы, описанные выше варианты реализации содержат монолитный держатель 205 трубопровода. Монолитный держатель 205 трубопровода может обеспечить лучшую опору для переходного колена 213 флюидного трубопровода, чем в технике предшествующего уровня. Дополнительная опора переходного колена 213 может минимизировать искажения и внешние колебания, испытываемые измерительными преобразователями 226, 226′.

Подробные описания вышеупомянутых вариантов реализации не являются исчерпывающими описаниями всех вариантов реализации, рассмотренных авторами как находящиеся в пределах объема притязаний настоящего описания. Действительно, специалисты в данной области техники увидят, что некоторые элементы вышеописанных вариантов реализации могут по-разному быть объединены или исключены, чтобы создать дополнительные варианты реализации, и такие дополнительные варианты реализации находятся в пределах объема притязаний и принципов настоящего описания. Специалистам в данной области техники должно быть также очевидно, что вышеописанные варианты реализации могут быть объединены полностью или частично, чтобы создать дополнительные варианты реализации в пределах объема притязаний и принципов настоящего описания.

Таким образом, хотя конкретные варианты реализации описаны здесь в иллюстративных целях, различные эквивалентные модификации возможны в пределах объема притязаний настоящего описания, которые распознают специалисты в данной области техники. Предоставляемые здесь принципы могут быть применены к другим вибрационным измерителям, а не только к описанным выше и показанным на сопровождающих чертежах вариантов реализации. Соответственно, объем притязаний описанных выше вариантов реализации должен быть определен из нижеследующих пунктов формулы.

1. Монолитный держатель (205) трубопровода для сборки (200) вибрационного датчика, содержащий:
впускной патрубок (206);
выпускной патрубок (208);
опорное основание (210) трубопровода, проходящее от впускного патрубка (206) к выпускному патрубку (208); и
первый и второй опорные блоки (211, 212), выполненные с возможностью опоры флюидного трубопровода (203) и выступающие от опорного основания (210) трубопровода, причем
первый и второй опорные блоки (211, 212) сужены и имеют первую толщину t1 на конце, обращенном к соответствующему патрубку, и имеют вторую толщину t2 на конце, обращенном к другому опорному блоку, причем t2 меньше, чем t1.

2. Монолитный держатель (205) трубопровода по п. 1, дополнительно содержащий одно или несколько отверстий (440), имеющих размер и форму для приема соединительного приспособления.

3. Сборка (200) вибрационного датчика, содержащая:
монолитный держатель (205) трубопровода, включающий в себя впускной патрубок (206), выпускной патрубок (208) и опорное основание (210) трубопровода, проходящее от впускного патрубка (206) к выпускному патрубку (208); и
единственный флюидный трубопровод (203) с двумя или более контурами (204А, 204В), разделенными переходным коленом (213), который соединяется с монолитным держателем (205) трубопровода.

4. Сборка (200) вибрационного датчика по п. 3, причем переходное колено (213) присоединяется к опорному основанию (210) трубопровода.

5. Сборка (200) вибрационного датчика по п. 3, дополнительно содержащая первый и второй опорные блоки (211, 212), выступающие от опорного основания (210) трубопровода.

6. Сборка (200) вибрационного датчика по п. 5, причем первый контур (204А) из двух или более контуров (204А, 204В) присоединяется к первой стороне первого и второго опорных блоков (211, 212), и причем второй контур (204В) из двух или более контуров (204А, 204В) присоединяется ко второй стороне первого и второго опорных блоков (211, 212).

7. Сборка (200) вибрационного датчика по п. 3, дополнительно содержащая участок (207) впускного трубопровода, соединенный с впускным патрубком (206).

8. Сборка (200) вибрационного датчика по п. 3, дополнительно содержащая участок (209) выпускного трубопровода, присоединенный к выпускному патрубку (208).

9. Сборка (200) вибрационного датчика по п. 3, дополнительно содержащая корпус (500), по меньшей мере частично покрывающий флюидный трубопровод (203).

10. Способ для формирования сборки вибрационного датчика, содержащий этапы:
формирования единственного флюидного трубопровода в два или более контура;
разделения двух или более контуров переходным коленом и
присоединения монолитного держателя трубопровода к переходному колену, причем монолитный держатель трубопровода включает в себя впускной патрубок, выпускной патрубок и опорное основание трубопровода, проходящее от впускного патрубка до выпускного патрубка.

11. Способ по п. 10, причем этап соединения содержит присоединение переходного колена к опорному основанию трубопровода.

12. Способ по п. 10, причем монолитный держатель трубопровода содержит первый и второй опорные блоки и этап соединения содержит:
присоединение первого контура из двух или более контуров к первой стороне первого и второго опорных блоков и
присоединение второго контура из двух или более контуров ко второй стороне первого и второго опорных блоков.

13. Способ по п. 10, причем этап соединения содержит присоединение впускного участка трубопровода к впускному патрубку монолитного держателя трубопровода и присоединение участка выпускного трубопровода к выпускному патрубку монолитного держателя трубопровода.

14. Способ по п. 10, дополнительно содержащий этап по меньшей мере частичного покрытия флюидного трубопровода корпусом.



 

Похожие патенты:

Предоставляется расходомер (205) Кориолиса. Расходомер (205) Кориолиса включает в себя сборку (206) расходомера, включающую в себя один или более расходомерных трубопроводов (210), привод (220), связанный со сборкой (206) расходомера и сконфигурированный для возбуждения колебаний сборки (206) расходомера, два или более измерительных преобразователей (230, 231), связанных со сборкой (206) расходомера и сконфигурированных для создания двух или более колебательных сигналов от сборки (206) расходомера, и электронный измеритель (20), связанный с приводом (220) и двумя или более измерительными преобразователями (230, 231), с электронным измерителем (20), сконфигурированным для предоставления приводного сигнала на привод (220) и приема образующихся двух или более колебательных сигналов от двух или более измерительных преобразователей (230, 231), причем два или более измерительных преобразователя (230, 231) закреплены при двух или более соответствующих местоположениях измерительных преобразователей, которые максимизируют колебательную моду Кориолиса расходомера (205) Кориолиса.

Изобретение относится к вибрационным измерителям, в частности к вибрационному измерителю с корпусом из синтетической обмотки. Предложен датчик (10) в сборе вибрационного измерителя (5).

Изобретение относится к области измерительной техники и может быть использовано для определения плотности жидкости. В предложенном в изобретении способе, или системе измерения, соответственно, предусмотрен контактирующий с жидкостью (FL) вибрационный корпус (10), который приводится в состояние вибрации таким образом, что он испытывает, по меньшей мере, частично, механические колебания с резонансной частотой (резонансные колебания), зависящей от плотности жидкости, контактирующей с первой поверхностью (10+) вибрационного корпуса, а также от температуры вибрационного корпуса.

Изобретение относится к измерительному датчику вибрационного типа для измерения проведенной в трубопроводе текучей среды, в частности газа, жидкости, порошка или другого текучего материала, в частности для измерения плотности и/или процента массового расхода, в частности, также суммированного в течение определенного временного интервала общего массового расхода протекающей в трубопроводе по меньшей мере периодически с массовым расходом более 1000 т/ч, в частности более 1500 т/ч, среды.

Изобретение относится к области измерительной техники и может быть использовано для измерения массового расхода жидкостей, протекающих по трубопроводам, например, при транспортировке нефтепродуктов.

Настоящее изобретение относится к вибрационному устройству измерения параметров потока. Вибрационное устройство включает в себя, по меньшей мере, один трубопровод, по меньшей мере, один привод, по меньшей мере, один датчик и, по меньшей мере, один кожух.

Изобретение относится к измерительному преобразователю вибрационного типа, а также к способу регулировки по меньшей одной временной частоты конструкции труб, служащей, в частности, в качестве измерительной трубы такого измерительного преобразователя.

Изобретение относится к кориолисовому массовому расходомеру. Кориолисовый массовый расходомер (1) содержит по меньшей мере четыре изогнутые измерительные трубы (2а, 2b, 2c, 2d), по меньшей мере одну приводную систему и по меньшей мере одну сенсорную систему.

Изобретение относится к полевому устройству обслуживания и способу для облегчения замены системы обработки в вибрационном расходомере. Техническим результатом является повышение надежности работы полевого устройства обслуживания вибрационного расходометра.

Изобретение обеспечивает вибрационный датчик (310) в сборе. Вибрационный датчик (310) в сборе включает в себя трубку (103А), привод (104) и, по меньшей мере, один первый измерительный преобразователь (105).
Наверх