Способ получения ω-(бис(пиридин-2-илметил)амино)алифатических кислот - прекурсоров с хелатными центрами для связывания металлов



Способ получения ω-(бис(пиридин-2-илметил)амино)алифатических кислот - прекурсоров с хелатными центрами для связывания металлов
Способ получения ω-(бис(пиридин-2-илметил)амино)алифатических кислот - прекурсоров с хелатными центрами для связывания металлов
Способ получения ω-(бис(пиридин-2-илметил)амино)алифатических кислот - прекурсоров с хелатными центрами для связывания металлов
Способ получения ω-(бис(пиридин-2-илметил)амино)алифатических кислот - прекурсоров с хелатными центрами для связывания металлов
Способ получения ω-(бис(пиридин-2-илметил)амино)алифатических кислот - прекурсоров с хелатными центрами для связывания металлов
Способ получения ω-(бис(пиридин-2-илметил)амино)алифатических кислот - прекурсоров с хелатными центрами для связывания металлов
Способ получения ω-(бис(пиридин-2-илметил)амино)алифатических кислот - прекурсоров с хелатными центрами для связывания металлов
Способ получения ω-(бис(пиридин-2-илметил)амино)алифатических кислот - прекурсоров с хелатными центрами для связывания металлов

 


Владельцы патента RU 2616974:

федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский политехнический университет" (ФГАОУ ВО НИ ТПУ) (RU)
Государственное бюджетное образовательное учреждение высшего профессионального образования "Сибирский государственный медицинский университет" Министерства здравоохранения Российской Федерации (ГБОУ ВПО СибГМУ Минздрава России) (RU)

Изобретение относится к области органической химии, конкретно к способу получения ω-(бис(пиридин-2-илметил)амино)алифатических кислот, которые являются прекурсорами с хелатными центрами для связывания металлов. Предлагаемый способ включает получение эфиров ω-производных алифатических кислот с последующим взаимодействием с реагентом, содержащим пиколил-заместитель, и состоит из двух стадий. На первой стадии получают промежуточные продукты синтеза - эфиры ω-иодалифатических карбоновых кислот - путем окислительного расщепления алифатических циклических кетонов под действием пероксида водорода в присутствии катализатора ионов меди и соединений иода при комнатной температуре. Подвергают расщеплению циклические кетоны, в качестве катализатора используют меди(I) хлорид, получение проводят при соотношении компонентов циклические кетоны:пероксид водорода:меди(I) хлорид=1:5:0,1, при перемешивании в течение 10-20 ч в присутствии метанольных или этанольных растворов иода. Количество иода берут в соотношении циклические кетоны:иод=1:0,5. Далее в реакционную массу добавляют насыщенный раствор натрия гидрокарбоната, переводя ω-иодалифатические карбоновые кислоты в водный слой в виде натриевых солей, а их эфиры отделяют путем экстракции водного слоя этилацетатом. Затем этилацетатное извлечение осушают с помощью натрия сульфата безводного, этилацетат отгоняют и получают эфиры ω-иодалифатических карбоновых кислот. На второй стадии в эфирах ω-иодалифатических карбоновых кислот атом иода замещают на бис(пиридин-2-илметил)аминогруппу, для чего используют ди-2-пиколиламин. Вторую стадию проводят при соотношении компонентов эфиры ω-иодалифатических карбоновых кислот:ди-2-пиколиламин:триэтиламин=1:1,16:1, соответственно, при перемешивании при 50°C в течение 24 ч. После этого выделяют эфиры ω-(бис(пиридин-2-илметил)амино)алифатических кислот, для чего в реакционную массу добавляют насыщенный раствор натрия гидрокарбоната и экстрагируют этилацетатом. Этилацетатное извлечение осушают с помощью натрия сульфата безводного, этилацетат отгоняют, остаток подвергают очистке методом колоночной хроматографии на силикагеле с использованием в качестве элюента смеси гексан-этилацетат (1:1), постепенно повышая градиент последнего, и выделяют эфир ω-(бис(пиридин-2-илметил)амино)алифатической кислоты. Полученный эфир подвергают гидролизу в ацетонитриле под действием концентрированной хлороводородной кислоты в течение 2 ч при температуре 50°C, растворитель отгоняют под вакуумом и получают ω-(бис(пиридин-2-илметил)амино)алифатические кислоты, не требующие дополнительной очистки. Предлагаемый способ позволяет повысить выход ω-(бис(пиридин-2-илметил)амино)алифатических кислот. 9 ил., 16 пр.

 

Изобретение относится к области органической химии, в частности к способам получения ω-бис(пиридин-2-илметил)амино)алифатических кислот - прекурсоров с хелатными центрами для связывания металлов на основе реакции расщепления циклических кетонов, соответствующих принципам «зеленой» химии (Green Chemistry), которые могут применяться в различных областях техники, в том числе в органической и фармацевтической химии, биохимии и в медицине, в частности, в качестве радиофармпрепаратов (фиг 1).

Значительное место в диагностике и терапии занимают радиофармацевтические препараты на основе изотопов технеция-99 и рения-188 соответственно. Главным в разработке синтеза таких радиофармпрепаратов является введение в их структуры прекурсоров - лиганд с высокой хелатирующей способностью для прочного связывания технеция-99 или рения-188, в качестве которых успешно применяются ω-бис(пиридин-2-илметил)амино)алифатические кислоты. Таким образом, разработка на основе реакции расщепления алифатических циклических кетонов нового способа получения ω-бис(пиридин-2-илметил)амино)алифатических кислот в качестве прекурсоров для связывания металлов является актуальной.

Известен способ получения производных ω-бис(пиридин-2-илметил)амино)алифатических кислот, основанный на синтезе из омега-аминопропановой и омега-аминогексановой кислот и 2-пиколил хлорид гидрохлоридом (фиг. 2). Исходные кислоты и 2-пиколил хлорид гидрохлорид растворяют в воде и перемешивают в течение 5 дней при комнатной температуре. Далее реакционную смесь подвергают обработке последовательно кислотой и щелочью и экстрагируют хлороформом. Грубый продукт очищают перекристаллизацией, и выход продукта составляет не более 41%. Главным недостатком этого метода является длительность процесса получения и низкие выходы конечных продуктов [2].

Известен способ получения ω-бис(пиридин-2-илметил)амино)алифатических кислот, основанный на синтезе из омега-аминоалифатических кислот и пиридин-2-карбальдегида в присутствии натрия триацетоксиборгидрида и дихлорэтана. Синтез ведут при перемешивании в течение 8 часов при комнатной температуре с последующим выделением продуктов экстракцией хлороформом и очисткой флэш-хроматографией (фиг. 3) [3]. Выходы продуктов невысокие (40-80%), реагенты малодоступные.

Наиболее близким к предлагаемому можно считать способ получения 6-(бис(пиридин-2-илметил)амино)гексановой и 11-(бис(пиридин-2-илметил)амино)ундекановой кислот, который включает реакцию нуклеофильного замещения атомов водорода в амино-группах 6-аминокапроновой кислоты или 11-аминоундекановой кислоты на 2-пиколин бромид (фиг. 4) [4]. В данном способе на первой стадии исходные субстраты 6-аминогексановую кислоту или 11-(бис(пиридин-2-илметил)амино)ундекановую кислоту этерифицируют метиловым спиртом с использованием токсичного тионилхлорида. Выходы продуктов составили не более 45%. На второй стадии метилированные продукты реагируют с двухкратным избытком 2-пиколин бромида в течение 5 дней при перемешивании при температуре 50°C. Выходы целевых продуктов 34-41%. Недостатками способа являются необходимость проводить предварительно трудоемкую реакцию этерификацию исходных субстратов с использованием токсичного тионилхлорида, низкие выходы продуктов реакции, большой расход реагента 2-пиколин бромида и длительность синтеза.

Новая техническая задача - упрощение способа, повышение селективности способа, повышение выходов продуктов, универсальность метода.

Для решения поставленной задачи в способе получения ω-бис(пиридин-2-илметил)амино)алифатических кислот, включающем получение эфиров ω-производных алифатических кислот с последующим взаимодействием с реагентом, содержащим пиколил-заместитель, на первом этапе получают промежуточные продукты синтеза - эфиры ω-иодалифатических карбоновых кислот путем окислительного расщепления алифатических циклических кетонов под действием пероксида водорода в присутствии катализатора ионов меди и соединений иода, при комнатной температуре, при этом, подвергают расщеплению такие циклические кетоны, как циклопентанон, циклогексанон, или циклогептанон, или 4-метилциклогексанон, или любой другой циклический кетон, также, в качестве катализатора используют меди (I) хлорид; получение проводят при следующем соотношении компонентов: циклические кетоны - пероксид водорода - меди (I) хлорид - 1:5:0,1, при перемешивании, в течение 10-20 часов, в присутствии метанольных или этанольных растворов иода, также, количество иода берут в следующем соотношении: циклические кетоны - иод - 1:0,5. Для выделения и разделения промежуточных продуктов в реакционную массу добавляют насыщенный раствор натрия гидрокарбоната, при этом, ω-иодалифатические карбоновые кислоты переводят в водный слой в виде натриевых солей, а их эфиры отделяют путем экстракции водного слоя этилацетатом, после этого, этилацетатное извлечение осушают с помощью натрия сульфата безводного, этилацетат отгоняют и получают эфиры ω-иодалифатических карбоновых кислот. На второй стадии способа в эфирах ω-иодалифатических карбоновых кислот атом иода замещают на бис(пиридин-2-илметил)амино)-группу, для этого используют ди-2-пиколиламин. Вторую стадию проводят при следующем соотношении компонентов: эфиры ω-иодалифатических карбоновых кислот - ди-2-пиколиламин - триэтиламин - 1:1,16:1, при перемешивании при 50°C в течение 24 часов. Для выделения эфиров ω-бис(пиридин-2-илметил)амино)алифатических кислот в реакционную массу добавляют насыщенный раствор натрия гидрокарбоната и экстрагируют этилацетатом, этилацетатное извлечение осушают с помощью натрия сульфата безводного, этилацетат отгоняют. Остаток подвергают очистки методом колоночной хроматографии на силикагеле с использованием в качестве элюента смесь гексан - этилацетат (1:1) постепенно повышая градиент последнего и выделяют эфир ω-бис(пиридин-2-илметил)амино)алифатической кислоты. Полученный эфир подвергают гидролизу в ацетонитриле под действием концентрированной хлороводородной кислотой в течение 2 часов при температуре 50°C. Растворитель отгоняют под вакуумом и получают ω-бис(пиридин-2-илметил)амино)алифатические кислоты, не требующие дополнительной очистки.

Отличительные признаки проявили в заявляемой совокупности предлагаемого способа новые свойства, явным образом не вытекающие из уровня техники в данной области и не очевидные для специалиста.

Предлагаемая совокупность признаков не описана в патентной и научно-технической литературе.

Примеры конкретных способов получения ω-бис(пиридин-2-илметил)амино)алифатических кислот

Пример 1. Получение метилового эфира ω-иодгексановой кислоты

К раствору циклогексанона в 10 мл метанола (6 ммоль, 0,588 г, ρ=0,946 г/см3) добавляют иод (3 ммоль, 0,762 г), катализатор меди (I) хлорида (0,6 ммоль, 0,06 г). Затем при перемешивании при комнатной температуре по каплям вносят раствор пероксида водорода в метаноле (12 ммоль, 1,275 г пергидроля (32%-ного H2O2, ρ=1,125 г/см3) в 5 мл метанола) в течение 4 часов. Далее добавляют 12 ммоль (1,275 г) пергидроля и меди (I) хлорида (0,3 ммоль, 0,03 г), перемешивают при комнатной температуре 10 часов и после этого добавляют еще 6 ммоль (0,638 г) пергидроля при перемешивании еще 6 часов в тех же условиях.

К реакционной смеси добавляют насыщенный раствор натрия гидрокарбоната до прекращения выделения углекислого газа и натрия сульфит для окисления остатка иода. Далее реакционную смесь фильтруют, отбрасывая осадок, содержащий соли меди (I) хлориды и иодиды. Полученный фильтрат экстрагируют этилацетатом (2×10 мл). Этилацетатное извлечение осушают путем пропускания через натрий сульфат безводный и растворитель отгоняют. Полученную светло-желтую маслообразную массу сушат под вакуумом. Выход 1,248 г (81%). Спектр ЯМР 1Н (500 MHz, CDCl3, δ, м.д.): 3,67 (с, 3H), 3,18 (т, 2Н), 2,32 (т, 2Н), 1,84 (кв, 2Н), 1,62 (кв, 2Н), 1,43(кв, 2Н) (фиг. 5).

Пример 2. Получение метилового эфира 6-(бис(пиридин-2-илметил)амино)гексановой кислоты при 30°C

К метиловому эфиру ω-иодгексановой кислоты (2,37 ммоль, 0,6068 г), полученному по примеру 1, добавляют 500 мкл (2,76 ммоль) 2-(дипикалил)амина, 2 мл изопропанола и 330 мкл (2,37 ммоль) триэтиламина. Реакционную массу перемешивают при 30°C в течение 24 часов. Конец реакции определяют методом тонкослойной хроматографии (элюент : этилацетат-этанол =10:3).

После к реакционной массе добавляют 5 мл 10% раствора соды и экстрагируют этилацетатом (2×5 мл). Этилацетатное извлечение промывают рассолом, сушат с безводным натрия сульфатом и растворитель отгоняют. Полученный продукт подвергают очистки методом колоночной хроматографии на силикагели с использованием в качестве элюента смесь гексан - этилацетат (1:1) постепенно повышая градиент последнего. Выход продукта составил 32%.

Для идентификации синтезированного метил 6-(бис(пиридин-2-илметил)амино)гексаноата был получен 1H-ЯМР-спектр, вид которого соответствует структуре синтезированного эфира (300 МГц, CDCl3, δ, м.д., J, Гц): 8,48 (д, 2Наром, J=4,8 Гц), 7,61 (т, 2Наром), 7,48 (д, 2Наром, J=7,8 Гц), 7,11 (т, 2Наром), 3,8 (с, СН2), 3,67 (с, СН3), 2,52 (т, СН2), 2,24 (т, СН2), 1,52 (м, СН2), 1,25 (м, СН2) (фиг. 6). MS (ESI)-m/z: (М+Н)+ - найдено: 328,2032, (М+Н)+ - вычислено: 328,2020 (фиг. 7).

Пример 3. Получение метилового эфира 6-(бис(пиридин-2-илметил)амино)гексановой кислоты при 40°C

К метиловому эфиру ω-иодгексановой кислоты (2,37 ммоль, 0,6068 г), полученному по примеру 1, добавляют 500 мкл (2,76 ммоль) 2-(дипикалил)амина, 2 мл изопропанола и 330 мкл (2,37 ммоль) триэтиламина. Реакционную массу перемешивают при 40°C в течение 24 часов. Конец реакции определяют методом тонкослойной хроматографии (элюент : этилацетат-этанол =10:3).

После к реакционной массе добавляют 5 мл 10% раствора соды и экстрагируют этилацетатом (2×5 мл). Этилацетатное извлечение промывают рассолом, сушат с безводным натрия сульфатом и растворитель отгоняют. Полученный продукт подвергают очистки методом колоночной хроматографии на силикагели с использованием в качестве элюента смесь гексан - этилацетат (1:1) постепенно повышая градиент последнего. Выход продукта составил 61%.

Для идентификации синтезированного метил 6-(бис(пиридин-2-илметил)амино)гексаноата был получен 1H-ЯМР-спектр, вид которого соответствует структуре синтезированного эфира (300 МГц, CDCl3, δ, м.д., J, Гц): 8,48 (д, 2Наром, J=4,8 Гц), 7,61 (т, 2Наром), 7,48 (д, 2Наром, J=7,8 Гц), 7,11(т, 2Наром), 3,8 (с, СН2), 3,67 (с, СН3), 2,52 (т, СН2), 2,24 (т, СН2), 1,52 (м, СН2), 1,25 (м, СН2) (фиг. 6). MS (ESI)-m/z: (М+Н)+ - найдено: 328,2032, (М+Н)+ - вычислено: 328,2020 (фиг. 7).

Пример 4. Получение метилового эфира 6-(бис(пиридин-2-илметил)амино)гексановой кислоты при 45°C

К метиловому эфиру ω-иодгексановой кислоты (2,37 ммоль, 0,6068 г), полученному по примеру 1, добавляют 500 мкл (2,76 ммоль) 2-(дипикалил)амина, 2 мл изопропанола и 330 мкл (2,37 ммоль) триэтиламина. Реакционную массу перемешивают при 45°C в течение 24 часов. Конец реакции определяют методом тонкослойной хроматографии (элюент : этилацетат-этанол =10:3).

После к реакционной массе добавляют 5 мл 10% раствора соды и экстрагируют этилацетатом (2×5 мл). Этилацетатное извлечение промывают рассолом, сушат с безводным натрия сульфатом и растворитель отгоняют. Полученный продукт подвергают очистки методом колоночной хроматографии на силикагели с использованием в качестве элюента смесь гексан - этилацетат (1:1) постепенно повышая градиент последнего. Выход продукта составил 83%.

Для идентификации синтезированного метил 6-(бис(пиридин-2-илметил)амино)гексаноата был получен 1H-ЯМР-спектр, вид которого соответствует структуре синтезированного эфира (300 МГц, CDCl3, δ, м.д., J, Гц): 8,48 (д, 2Наром, J=4,8 Гц), 7,61 (т, 2Наром), 7,48 (д, 2Наром, J=7,8 Гц), 7,11 (т, 2Наром), 3,8 (с, СН2), 3,67 (с, СН3), 2,52 (т, СН2), 2,24 (т, СН2), 1,52 (м, СН2), 1,25 (м, СН2) (фиг. 5). MS (ESI)-m/z: (М+Н)+ - найдено: 328,2032, (М+Н)+ - вычислено: 328,2020 (фиг. 6).

Пример 5. Получение метилового эфира 6-(бис(пиридин-2-илметил)амино)гексановой кислоты при 50°C

К метиловому эфиру ω-иодгексановой кислоты (2,37 ммоль, 0,6068 г), полученному по примеру 1, добавляют 500 мкл (2,76 ммоль) 2-(дипикалил)амина, 2 мл изопропанола и 330 мкл (2,37 ммоль) триэтиламина. Реакционную массу перемешивают при 50°C в течение 24 часов. Конец реакции определяют методом тонкослойной хроматографии (элюент : этилацетат-этанол =10:3).

После к реакционной массе добавляют 5 мл 10% раствора соды и экстрагируют этилацетатом (2×5 мл). Этилацетатное извлечение промывают рассолом, сушат с безводным натрия сульфатом и растворитель отгоняют. Полученный продукт подвергают очистки методом колоночной хроматографии на силикагели с использованием в качестве элюента смесь гексан - этилацетат (1:1) постепенно повышая градиент последнего. Выход продукта составил 90%.

Для идентификации синтезированного метил 6-(бис(пиридин-2-илметил)амино)гексаноата был получен 1H-ЯМР-спектр, вид которого соответствует структуре синтезированного эфира (300 МГц, CDCl3, δ, м.д., J, Гц): 8,48 (д, 2Наром, J=4,8 Гц), 7,61 (т, 2Наром), 7,48 (д, 2Наром, J=7,8 Гц), 7,11 (т, 2Наром), 3,8 (с, СН2), 3,67 (с, СН3), 2,52 (т, СН2), 2,24 (т, СН2), 1,52 (м, СН2), 1,25 (м, СН2) (фиг. 6). MS (ESI)-m/z: (М+Н)+ - найдено: 328,2032, (М+Н)+ - вычислено: 328,2020 (фиг. 7).

Пример 6. Получение метилового эфира 6-(бис(пиридин-2-илметил)амино)гексановой кислоты при 55°C

К метиловому эфиру ω-иодгексановой кислоты (2,37 ммоль, 0,6068 г), полученному по примеру 1, добавляют 500 мкл (2,76 ммоль) 2-(дипикалил)амина, 2 мл изопропанола и 330 мкл (2,37 ммоль) триэтиламина. Реакционную массу перемешивают при 55°C в течение 24 часов. Конец реакции определяют методом тонкослойной хроматографии (элюент : этилацетат-этанол =10:3).

После к реакционной массе добавляют 5 мл 10%) раствора соды и экстрагируют этилацетатом (2×5 мл). Этилацетатное извлечение промывают рассолом, сушат с безводным натрия сульфатом и растворитель отгоняют. Полученный продукт подвергают очистки методом колоночной хроматографии на силикагели с использованием в качестве элюента смесь гексан - этилацетат (1:1) постепенно повышая градиент последнего. Выход продукта составил 86%.

Для идентификации синтезированного метил 6-(бис(пиридин-2-илметил)амино)гексаноата был получен 1Н-ЯМР-спектр, вид которого соответствует структуре синтезированного эфира (300 МГц, CDCl3, δ, м.д., J, Гц): 8,48 (д, 2Наром, J=4,8 Гц), 7,61 (т, 2Наром), 7,48 (д, 2Наром, J=7,8 Гц), 7,11 (т, 2Наром), 3,8 (с, СН2), 3,67 (с, СН3), 2,52 (т, СН2), 2,24 (т, СН2), 1,52 (м, СН2), 1,25 (м, СН2) (фиг. 6). MS (ESI)-m/z: (М+Н)+ - найдено: 328,2032, (М+Н)+ - вычислено: 328,2020 (фиг. 7).

Пример 7. Получение метилового эфира 6-(бис(пиридин-2-илметил)амино)гексановой кислоты при 60°C

К метиловому эфиру ω-иодгексановой кислоты (2,37 ммоль, 0,6068 г), полученному по примеру 1, добавляют 500 мкл (2,76 ммоль) 2-(дипикалил)амина, 2 мл изопропанола и 330 мкл (2,37 ммоль) триэтиламина. Реакционную массу перемешивают при 60°C в течение 24 часов. Конец реакции определяют методом тонкослойной хроматографии (элюент : этилацетат-этанол =10:3).

После к реакционной массе добавляют 5 мл 10% раствора соды и экстрагируют этилацетатом (2×5 мл). Этилацетатное извлечение промывают рассолом, сушат с безводным натрия сульфатом и растворитель отгоняют. Полученный продукт подвергают очистки методом колоночной хроматографии на силикагели с использованием в качестве элюента смесь гексан - этилацетат (1:1) постепенно повышая градиент последнего. Выход продукта составил 64%.

Для идентификации синтезированного метил 6-(бис(пиридин-2-илметил)амино)гексаноата был получен 1H-ЯМР-спектр, вид которого соответствует структуре синтезированного эфира (300 МГц, CDCl3, δ, м.д., J, Гц): 8,48 (д, 2Наром, J=4,8 Гц), 7,61 (т, 2Наром), 7,48 (д, 2Наром, J=7,8 Гц), 7,11 (т, 2Наром), 3,8 (с, СН2), 3,67 (с, СН3), 2,52 (т, СН2), 2,24 (т, СН2), 1,52 (м, СН2), 1,25 (м, СН2) (фиг. 6). MS (ESI)-m/z: (М+Н)+ - найдено: 328,2032, (М+Н)+ - вычислено: 328,2020 (фиг. 7).

Пример 8. Получение метилового эфира 6-(бис(пиридин-2-илметил)амино)гексановой кислоты при 70°C

К метиловому эфиру ω-иодгексановой кислоты (2,37 ммоль, 0,6068 г), полученному по примеру 1, добавляют 500 мкл (2,76 ммоль) 2-(дипикалил)амина, 2 мл изопропанола и 330 мкл (2,37 ммоль) триэтиламина. Реакционную массу перемешивают при 70°C в течение 24 часов. Конец реакции определяют методом тонкослойной хроматографии (элюент : этилацетат-этанол =10:3).

После к реакционной массе добавляют 5 мл 10% раствора соды и экстрагируют этилацетатом (2×5 мл). Этилацетатное извлечение промывают рассолом, сушат с безводным натрия сульфатом и растворитель отгоняют. Полученный продукт подвергают очистки методом колоночной хроматографии на силикагели с использованием в качестве элюента смесь гексан - этилацетат (1:1) постепенно повышая градиент последнего. Выход продукта составил 42%.

Для идентификации синтезированного метил 6-(бис(пиридин-2-илметил)амино)гексаноата был получен 1H-ЯМР-спектр, вид которого соответствует структуре синтезированного эфира (300 МГц, CDCl3, δ, м.д., J, Гц): 8,48 (д, 2Наром, J=4,8 Гц), 7,61 (т, 2Наром), 7,48 (д, 2Наром, J=7,8 Гц), 7,11 (т, 2Наром), 3,8 (с, СН2), 3,67 (с, СН3), 2,52 (т, СН2), 2,24 (т, СН2), 1,52 (м, СН2), 1,25 (м, СН2) (фиг. 6). MS (ESI)-m/z: (М+Н)+ - найдено: 328,2032, (М+Н)+ - вычислено: 328,2020 (фиг. 7).

Пример 9. Получение метилового эфира 6-(бис(пиридин-2-илметил)амино)гексановой кислоты

К метиловому эфиру ω-иодгексановой кислоты (2,37 ммоль, 0,6068 г), полученному по примеру 1, добавляют 500 мкл (2,76 ммоль) 2-(дипикалил)амина, 2 мл изопропанола и 165 мкл (1,86 ммоль) триэтиламина. Реакционную массу перемешивают при 50°C в течение 24 часов. Конец реакции определяют методом тонкослойной хроматографии (элюент : этилацетат-этанол =10:3).

После к реакционной массе добавляют 5 мл 10% раствора соды и экстрагируют этилацетатом (2×5 мл). Этилацетатное извлечение промывают рассолом, сушат с безводным натрия сульфатом и растворитель отгоняют. Полученный продукт подвергают очистки методом колоночной хроматографии на силикагели с использованием в качестве элюента смесь гексан - этилацетат (1:1) постепенно повышая градиент последнего. Выход продукта составил 32%.

Для идентификации синтезированного метил 6-(бис(пиридин-2-илметил)амино)гексаноата был получен 1H-ЯМР-спектр, вид которого соответствует структуре синтезированного эфира (300 МГц, CDCl3, δ, м.д., J, Гц): 8,48 (д, 2Наром, J=4,8 Гц), 7,61 (т, 2Наром), 7,48 (д, 2Наром, J=7,8 Гц), 7,11 (т, 2Наром), 3,8 (с, СН2), 3,67 (с, СН3), 2,52 (т, СН2), 2,24 (т, СН2), 1,52 (м, СН2), 1,25 (м, СН2) (фиг. 6). MS (ESI)-m/z: (М+Н)+ - найдено: 328,2032, (М+Н)+ - вычислено: 328,2020 (фиг. 7).

Пример 10. Получение метилового эфира 6-(бис(пиридин-2-илметил)амино)гексановой кислоты

К метиловому эфиру ω-иодгексановой кислоты (2,37 ммоль, 0,6068 г), полученному по примеру 1, добавляют 430 мкл (2,37 ммоль) 2-(дипикалил)амина, 2 мл изопропанола и 330 мкл (2,37 ммоль) триэтиламина. Реакционную массу перемешивают при 50°C в течение 24 часов. Конец реакции определяют методом тонкослойной хроматографии (элюент : этилацетат-этанол =10:3).

После к реакционной массе добавляют 5 мл 10% раствора соды и экстрагируют этилацетатом (2×5 мл). Этилацетатное извлечение промывают рассолом, сушат с безводным натрия сульфатом и растворитель отгоняют. Полученный продукт подвергают очистки методом колоночной хроматографии на силикагели с использованием в качестве элюента смесь гексан - этилацетат (1:1) постепенно повышая градиент последнего. Выход продукта составил 32%.

Для идентификации синтезированного метил 6-(бис(пиридин-2-илметил)амино)гексаноата был получен 1H-ЯМР-спектр, вид которого соответствует структуре синтезированного эфира (300 МГц, CDCl3, δ, м.д., J, Гц): 8,48 (д, 2Наром, J=4,8 Гц), 7,61 (т, 2Наром), 7,48 (д, 2Наром, J=7,8 Гц), 7,11 (т, 2Наром), 3,8 (с, СН2), 3,67 (с, СН3), 2,52 (т, СН2), 2,24 (т, СН2), 1,52 (м, СН2), 1,25 (м, СН2) (фиг. 6). MS (ESI)-m/z: (М+Н)+ - найдено: 328,2032, (М+Н)+ - вычислено: 328,2020 (фиг. 7).

Пример 11. Методика синтеза 6-(бис(пиридин-2-илметил)амино)гексановой кислоты при 50°C

Метил 6-(бис(пиридин-2-илметил)амино)гексаноат 0,053 г (0,16 ммоль) растворяют в 2 мл ацетонитрила и добавляют 50 мкл HCl (36%). Реакционную массу перемешивают в течение 2 часов при температуре 50°C. Конец реакции определяют методом тонкослойной хроматографии (элюент : этилацетат - этанол =10:3). После окончания гидролиза растворители отгоняют при пониженном давлении. Выход продукта составил 96%. Для идентификации синтезированной 6-(бис(пиридин-2-илметил)амино)гексановой кислоты был получен 1Н-ЯМР-спектр, вид которого соответствует структуре синтезированной кислоте (300 МГц, H2O, δ, м.д., J, Гц): 8,65 (д, 2Наром, J=5,7 Гц), 8,4 (т, 2Наром), 7,97 (д, 2Наром, J=9,1 Гц), 7,89 (т, 2Наром), 4,24 (с, СН2), 2,20 (т, СН2), 1,40 (м, СН2), 1,10 (м, СН2). (фиг. 8). MS (ESI)-m/z для C18H24N3O2: (М+Н)+ - найдено: 314,1879; (М+Н)+ - вычислено: 314,1869 (фиг. 9)

Пример 12. Методика синтеза 6-(бис(пиридин-2-илметил)амино)гексановой кислоты при 40°C

Метил 6-(бис(пиридин-2-илметил)амино)гексаноат 0,053 г (0,16 ммоль) растворяют в 2 мл ацетонитрила и добавляют 50 мкл HCl (36%). Реакционную массу перемешивают в течение 2 часов при температуре 40°C. Конец реакции определяют методом тонкослойной хроматографии (элюент : этилацетат - этанол =10:3). После окончания гидролиза растворители отгоняют при пониженном давлении. Выход продукта составил 76%. Для идентификации синтезированной 6-(бис(пиридин-2-илметил)амино)гексановой кислоты был получен 1H-ЯМР-спектр, вид которого соответствует структуре синтезированной кислоте (300 МГц, H2O, δ, м.д., J, Гц): 8,65 (д, 2Наром, J=5,7 Гц), 8,4 (т, 2Наром), 7,97 (д, 2Наром, J=9,1 Гц), 7,89 (т, 2Наром), 4,24 (с, СН2), 2,20 (т, СН2), 1,40 (м, СН2), 1,10 (м, СН2). (фиг. 8). MS (ESI)-m/z для C18H24N3O2: (М+Н)+ - найдено: 314,1879; (М+Н)+ - вычислено: 314,1869 (фиг. 9).

Пример 13. Методика синтеза 6-(бис(пиридин-2-илметил)амино)гексановой кислоты при 45°C

Метил 6-(бис(пиридин-2-илметил)амино)гексаноат 0,053 г (0,16 ммоль) растворяют в 2 мл ацетонитрила и добавляют 50 мкл HCl (36%). Реакционную массу перемешивают в течение 2 часов при температуре 45°C. Конец реакции определяют методом тонкослойной хроматографии (элюент : этилацетат - этанол =10:3). После окончания гидролиза растворители отгоняют при пониженном давлении. Выход продукта составил 95%. Для идентификации синтезированной 6-(бис(пиридин-2-илметил)амино)гексановой кислоты был получен 1Н-ЯМР-спектр, вид которого соответствует структуре синтезированной кислоте (300 МГц, H2O, δ, м.д., J, Гц): 8,65 (д, 2Наром, J=5,7 Гц), 8,4 (т, 2Наром), 7,97 (д, 2Наром, J=9,1 Гц), 7,89 (т, 2Наром), 4,24 (с, СН2), 2,20 (т, СН2), 1,40 (м, СН2), 1,10 (м, СН2). (фиг. 8). MS (ESI)-m/z для C18H24N3O2: (М+Н)+ - найдено: 314,1879; (М+Н)+ - вычислено: 314,1869 (фиг. 9).

Пример 14. Методика синтеза 6-(бис(пиридин-2-илметил)амино)гексановой кислоты при 55°C

Метил 6-(бис(пиридин-2-илметил)амино)гексаноат 0,053 г (0,16 ммоль) растворяют в 2 мл ацетонитрила и добавляют 50 мкл HCl (36%). Реакционную массу перемешивают в течение 2 часов при температуре 55°C. Конец реакции определяют методом тонкослойной хроматографии (элюент : этилацетат - этанол =10:3). После окончания гидролиза растворители отгоняют при пониженном давлении. Выход продукта составил 96%. Для идентификации синтезированной 6-(бис(пиридин-2-илметил)амино)гексановой кислоты был получен 1H-ЯМР-спектр, вид которого соответствует структуре синтезированной кислоте (300 МГц, H2O, δ, м.д., J, Гц): 8,65 (д, 2Наром, J=5,7 Гц), 8,4 (т, 2Наром), 7,97 (д, 2Наром, J=9,l Гц), 7,89 (т, 2Наром), 4,24 (с, СН2), 2,20 (т, СН2), 1,40 (м, СН2), 1,10 (м, СН2). (фиг. 8). MS (ESI)-m/z для C18H24N3O2: (М+Н)+ - найдено: 314,1879; (М+Н)+ - вычислено: 314,1869 (фиг. 9).

Пример 15. Методика синтеза 6-(бис(пиридин-2-илметил)амино)гексановой кислоты при 60°C

Метил 6-(бис(пиридин-2-илметил)амино)гексаноат 0,053 г (0,16 ммоль) растворяют в 2 мл ацетонитрила и добавляют 50 мкл HCl (36%). Реакционную массу перемешивают в течение 2 часов при температуре 50°C. Конец реакции определяют методом тонкослойной хроматографии (элюент : этилацетат - этанол =10:3). После окончания гидролиза растворители отгоняют при пониженном давлении. Выход продукта составил 90%. Для идентификации синтезированной 6-(бис(пиридин-2-илметил)амино)гексановой кислоты был получен 1H-ЯМР-спектр, вид которого соответствует структуре синтезированной кислоте (300 МГц, Н2О, δ, м.д., 7 Гц): 8,65 (д, 2Наром, J=5,7 Гц), 8,4 (т, 2Наром), 7,97 (д, 2Наром, J=9,1 Гц), 7,89 (т, 2Наром), 4,24 (с, СН2), 2,20 (т, СН2), 1,40 (м, СН2), 1,10 (м, СН2). (фиг. 8). MS (ESI)-m/z для C18H24N3O2: (М+Н)+ - найдено: 314,1879; (М+Н)+ - вычислено: 314,1869 (фиг. 9)

Пример 16. Методика синтеза 6-(бис(пиридин-2-илметил)амино)гексановой кислоты

Метил 6-(бис(пиридин-2-илметил)амино)гексаноат 0,053 г (0,16 ммоль) растворяют в 2 мл ацетонитрила и добавляют 50 мкл HCl (36%). Реакционную массу перемешивают в течение 1,5 часов при температуре 50°C. Конец реакции определяют методом тонкослойной хроматографии (элюент : этилацетат - этанол =10:3). После окончания гидролиза растворители отгоняют при пониженном давлении. Выход продукта составил 86%. Для идентификации синтезированной 6-(бис(пиридин-2-илметил)амино)гексановой кислоты был получен 1Н-ЯМР-спектр, вид которого соответствует структуре синтезированной кислоте (300 МГц, H2O, δ, м.д., 7 Гц): 8,65 (д, 2Наром, J=5,7 Гц), 8,4 (т, 2Наром), 7,97 (д, 2Наром, J=9,1 Гц), 7,89 (т, 2Наром), 4,24 (с, СН2), 2,20 (т, СН2), 1,40 (м, СН2), 1,10 (м, СН2). (фиг. 8). MS (ESI)-m/z для C18H24N3O2: (М+Н)+ - найдено: 314,1879; (М+Н)+ - вычислено: 314,1869 (фиг. 9)

Обоснование режима

Экспериментальным путем подобран оптимальный температурный режим получения ω-бис(пиридин-2-илметил)амино)алифатических кислот (примеры 2-8). Установлено, что реакцию получения эфиров ω-бис(пиридин-2-илметил)амино)алифатических кислот необходимо проводить при температуре 45-55°C, при этом выход продуктов составляет 80-90%, а увеличение температуры до 60-70°C приводит к снижению выхода на 20-40%.

Оптимальным является соотношение компонентов в реакционной смеси эфиры ω-иодалифатических карбоновых кислот - ди-2-пиколиламин - триэтиламин - 1:1,16:1. Такое соотношение позволяет практически полностью заместить атомы иода на остаток ди-2-пиколиламин, что необходимо для достижения высоких выходов целевых продуктов (примеры 5, 9-10).

Для стадии гидролиза принципиальными оказались температурный режим и время проведения гидролиза. Оптимальным является проведение гидролиза при температуре 45-55°C, при этом выход ω-бис(пиридин-2-илметил)амино)алифатических кислот свыше 98%. Так, при более высокой температуре (более 60°C) выходы существенно снижались (на 10-15%), так как помимо гидролиза происходило образованию побочных продуктов (примеры 11-15).

Выход ω-бис(пиридин-2-илметил)амино)алифатических кислот достигается наибольшим при проведении гидролиза в течение 2-3 часов (примеры 11, 16). Уменьшение времени реакции (менее 2 ч) приводит к неполному гидролизу эфиров и, следовательно, к снижению выхода целевых кислот.

Таким образом, предлагаемый способ имеет принципиальные преимущества перед известными способами получения ω-бис(пиридин-2-илметил)амино)алифатических кислот. Во-первых, это доступность субстратов - эфиров ω-иодалифатических карбоновых кислот, которые предлагается получать из дешевых, коммерчески доступных, не обладающих токсичностью циклических кетонов. Используемые остальные компоненты синтеза также отвечают принципам «зеленой» химии. Во-вторых, подобранные условия, а именно соотношения реагентов, время реакции и температура реакции, позволяют получить продукты с выходами 80-95%). Также, по результатам экспериментов было установлено, что выход меченного комплекса 99mTc с ω-бис(пиридин-2-илметил)амино)алифатическими кислотами составил 83,6% при радиохимической чистоте 90,3%, что позволяет успешно предлагать ω-бис(пиридин-2-илметил)амино)алифатические кислоты, полученные по разработанному способу, для связывания технеция-99 м.

Источники информации

1. Патент №2494087 от 27.09.2013. Способ получения ω-иодалифатических карбоновых кислот и их эфиров / Юсубов М.С., Жданкин В.В., Ларькина М.С., Дрыгунова Л.А.

2. Amino Acid and Peptide Bioconjugates of Copper(II) and Zinc(II) Complexes with a Modified N,N-Bis(2-picolyl)amine Ligand / Srecko I. Kirin, Pierre Dubon, Thomas Weyhermuller, Eckhard Bill, and Nils Metzler-Nolte // Inorganic Chemistry, Vol. 44, No. 15, 2005. P. 5405-5415.

3. Synthesis and Evaluation of a Series of 99mTc(CO)31 Lisinopril Complexes for In Vivo Imaging of Angiotensin-Converting Enzyme Expression / Frank J. Femia, Kevin P. Maresca, Shawn M. Hillier, Craig N. Zimmerman, John L. Joyal, John A. Barrett, Omer Aras, Vasken Dilsizian, William C. Eckelman, and John W. Babich // The journal of nuclear medicine. Vol. 49. No. 6. June 2008. P. 970-977.

4. Huahui, Z. Synthesis, characterization and biodistribution of new fatty acids conjugates bearing N,N,N-donorsincorporated [99mTc/Re(CO)3]+ / Dalton Transaction. - 2012. - Vol. 42. - P. 2894.

Фигура 1 - Схема получения ω-бис(пиридин-2-илметил)амино)алифатических кислот - прекурсоров с хелатными центрами для связывания металлов

Фигура 2 - Схема получения 6-(бис(пиридин-2-илметил)амино)гексановой кислоты

Фигура 3 - Схема получения производных ω-бис(пиридин-2-илметил)амино)алифатических кислот

Фигура 4 - Схема получения производных ω-бис(пиридин-2-илметил)амино)алифатических кислот

Фигура 5 - 1H-ЯМР-спектр метил 6-иодгексаноата (300 МГц, CDCl3, δ, м.д., J, Гц)

Фигура 6 - 1H-ЯМР-спектр метил 6-(бис(пиридин-2-илметил)амино)гексаноата (300 МГц, CDCl3, δ, м.д., J, Гц)

Фигура 7 - Элементный анализ метил 6-(бис(пиридин-2-илметил)амино)гексаноата

Фигура 8 - 1Н-ЯМР-спектр 6-(бис(пиридин-2-илметил)амино)гексановой кислоты (в виде гидрохлорида) (300 МГц, H2O, δ, м.д., J, Гц)

Фигура 9 - Элементный анализ 6-(бис(пиридин-2-илметил)амино)гексановой кислоты

Способ получения ω-(бис(пиридин-2-илметил)амино)алифатических кислот, включающий получение эфиров ω-производных алифатических кислот с последующим взаимодействием с реагентом, содержащим пиколил-заместитель, отличающейся тем, что на первом этапе получают промежуточные продукты синтеза - эфиры ω-иодалифатических карбоновых кислот - путем окислительного расщепления алифатических циклических кетонов под действием пероксида водорода в присутствии катализатора ионов меди и соединений иода при комнатной температуре, далее подвергают расщеплению циклические кетоны, в качестве катализатора используют меди(I) хлорид; получение проводят при следующем соотношении компонентов: циклические кетоны:пероксид водорода:меди(I) хлорид=1:5:0,1, при перемешивании в течение 10-20 ч в присутствии метанольных или этанольных растворов иода, также количество иода берут в следующем соотношении: циклические кетоны:иод=1:0,5, далее в реакционную массу добавляют насыщенный раствор натрия гидрокарбоната, переводя ω-иодалифатические карбоновые кислоты в водный слой в виде натриевых солей, а их эфиры отделяют путем экстракции водного слоя этилацетатом, затем этилацетатное извлечение осушают с помощью натрия сульфата безводного, этилацетат отгоняют и получают эфиры ω-иодалифатических карбоновых кислот; на второй стадии в эфирах ω-иодалифатических карбоновых кислот атом иода замещают на бис(пиридин-2-илметил)аминогруппу, для этого используют ди-2-пиколиламин, также вторую стадию проводят при следующем соотношении компонентов: эфиры ω-иодалифатических карбоновых кислот:ди-2-пиколиламин:триэтиламин=1:1,16:1, соответственно, при перемешивании при 50°C в течение 24 ч, после этого выделяют эфиры ω-(бис(пиридин-2-илметил)амино)алифатических кислот, для чего в реакционную массу добавляют насыщенный раствор натрия гидрокарбоната и экстрагируют этилацетатом, этилацетатное извлечение осушают с помощью натрия сульфата безводного, этилацетат отгоняют, остаток подвергают очистке методом колоночной хроматографии на силикагеле с использованием в качестве элюента смеси гексан-этилацетат (1:1), постепенно повышая градиент последнего, и выделяют эфир ω-(бис(пиридин-2-илметил)амино)алифатической кислоты, полученный эфир подвергают гидролизу в ацетонитриле под действием концентрированной хлороводородной кислоты в течение 2 ч при температуре 50°C, растворитель отгоняют под вакуумом и получают ω-(бис(пиридин-2-илметил)амино)алифатические кислоты, не требующие дополнительной очистки.



 

Похожие патенты:

Изобретение относится к новым сокристаллам нифлумовой кислоты с изоникотинамидом или кофеином, где молярное соотношение нифлумовой кислоты с изоникотинамидом или кофеином составляет 1:1, причем сокристалл нифлумовой кислоты с изоникотинамидом имеет эндотермический пик от 152 до 162°C по данным измерений при помощи дифференциальной сканирующей калориметрии и пики при 2θ(°) 6.3, 7.4, 12.5, 14.5, 19.2, 23.2, 25.0 по данным измерения дифракции рентгеновского излучения на порошке, а сокристалл нифлумовой кислоты с кофеином имеет эндотермический пик от 155 до 165°C по данным измерений при помощи дифференциальной сканирующей калориметрии и пики при 2θ(°) 9.7, 12.0, 13.26, 14.3, 17.0, 18.1, 22.5, 26.2 и 26.9 по данным измерения дифракции рентгеновского излучения на порошке.

Изобретение относится к сульфонамидным соединениям формулы (1) или к их фармацевтически приемлемым солям, в которой А представляет собой фенил, необязательно замещенный от 1 до 2 атомами галогена, C1-6 алкильной группой, трифторметильной группой, С1-6 алкоксигруппой или -SCH3 группой, тиофенил, необязательно замещенный C1-C6 алкильной группой или атомом галогена, пиридинил, необязательно замещенный атомом галогена, нафталенил или дигидроинденил; R1 представляет собой следующие формулы (Rla) или (Rlb): [в формулах (Rla) и (Rlb) Ar1 представляет собой следующие формулы (Arla), (Arlb) или (Ar1c): (каждый R5 и R6 независимо представляет собой атом водорода, атом галогена, C1-6 алкильную группу, необязательно замещенную вплоть до трех атомов галогена, C1-6 низшую алкоксигруппу, необязательно замещенную вплоть до трех атомов галогена); Ar2 представляет собой следующие формулы (Ar2a), (Ar2b) или (Ar2c): (каждый R7 и R8 независимо представляет собой атом водорода, гидроксильную группу, атом галогена, C1-6 алкильную группу, необязательно замещенную вплоть до трех атомов галогена, или C1-6 низшую алкоксигруппу, необязательно замещенную вплоть до трех атомов галогена, аминогруппу, нитрогруппу, С2-6 ацильную группу, или R7 и R8 образуют вместе -СН2СН2О-; R9 представляет собой атом водорода или -J-COOR10; J представляет собой ковалентную связь, алкилен, содержащий от 1 до 5 атомов углерода, алкенилен, содержащий от 2 до 5 атомов углерода, или алкинилен, содержащий от 2 до 5 атомов углерода, где один атом углерода в упомянутых алкиленовых группах может быть заменен атомом кислорода, атомом серы, NR11, CONR11 или NR11CO в любом химически разрешенном положении; R11 представляет собой атом водорода; и R10 представляет собой атом водорода); и р равно 0 или 1]; R2 представляет собой C1-6 алкильную группу; каждый R3 и R4 независимо представляет собой C1-6 алкильную группу; * обозначает асимметрический атом углерода; и m равно целому числу от 1 до 3.

Изобретение относится к улучшенному способу получения 4-метил-N3-[4-(3-пиридинил)-2-пиримидинил]-1,3-фенилендиамина, формулы 1 например, иматиниба: (4-[(4-метил-1-пинеразинил)метил]-N-[4-метил-3-[[4-(3-пиридинил)-2-пиримидинил]амино]фенил]бензамида.

Изобретение относится к фторсодержащему сераорганическому соединению, представленному формулой (I): , где m равно 0; n равно 2; А представляет собой 6-членную ароматическую гетероциклическую группу, выбранную из пиридина или пиримидина, замещенные группой E1; R1 и R 3 являются одинаковыми или различными и представляют собой С1-С4алкильную группу, группу -C(=G)R5, атом галогена или атом водорода; R2 и R4 являются одинаковыми или различными и представляют собой атом водорода; Q представляет собой С1-С5галогеналкильную группу, содержащую по меньшей мере один атом фтора; G представляет собой атом кислорода; R5 представляет собой С1-С4алкоксигруппу; группа Е1 представляет собой С1-С6алкильную группу, замещенную группой, выбранной из группы L, OR6, и атом галогена; R6 представляет собой С1-С4алкильную группу; группа L представляет собой атома галогена.

Изобретение относится к кристаллической форме (R)-6-циклопентил-6-(2-(2,6-диэтилпиридин-4-ил)этил)-3-((5,7-диметил-[1,2,4]триазоло[1,5-а]пиримидин-2-ил)метил)-4-гидрокси-5,6-дигидропиран-2-она, показывающей характеристические пики в картине дифракции рентгеновских лучей на порошке, выраженные в градусах два-тета, выбранные из примерно 7,1, примерно 12,1 и примерно 16,1; или примерно 7,1, примерно 12,1 и примерно 17,5; или примерно 7,1, примерно 12,1 и примерно 23,5; или примерно 12,1, примерно 16,1 и примерно 17,5; или примерно 12,1, примерно 16,1 и примерно 23,5; или примерно 16,1, примерно 17,5 и примерно 23,5; или примерно 7,1, примерно 17,5 и примерно 23,5; или примерно 7,1, примерно 12,1 и примерно 23,5; или примерно 7,1, примерно 16,1 и примерно 23,5 и к фармацевтической композиции на основе указанного соединения, которые могут найти применение в медицине для изготовления лекарственного средства, воздействующего на вирус гепатита С (HCV) у HCV-инфицированного млекопитающего.

Изобретение относится к новым производным антраниловой кислоты, обладающим ингибирующей активностью в отношении продуцирования металлопротеазы 13 матрикса формулы 1 ,где R1 представляет собой атом водорода или карбоксизащитную группу, выбранную из C 1-3алкила; R2 представляет собой фенил, С 3-6циклоалкил, насыщенную или ненасыщенную 5-6-членную гетероциклическую группу, содержащую 1-3 гетероатома, выбранных из N, О, S, которая может быть конденсирована с фенилом, которые могут быть необязательно замещены C1-6алкилом, C 1-6алкокси, ацетилом, ацетокси, галогеном, галогенС 1-6алкилом, нитрогруппой, гидроксильной группой, CN, аминогруппой, фенилом, насыщенной или ненасыщенной 5-6-членной гетероциклической группой, содержащей 1-4 гетероатома, выбранных из N, О, S, которая может быть дизамещена C1-6алкилом; R3 представляет собой фенил, С3-6циклоалкил, С5циклоалкенил, насыщенную или ненасыщенную 5-6-членную гетероциклическую группу, содержащую 1-3 гетероатома, выбранных из N, О, S, которая может быть конденсирована с фенилом (за исключением бензоксазола), которые могут быть необязательно замещены C1-6алкилом, C1-6алкокси, фенилом, ацетилом, галогеном, галогенС 1-6алкилом, галогенС1-6алкокси, нитрогруппой, гидроксильной группой, гидроксиС1-6алкилом, CN, ацетиламино, кето, фенокси, бензоилом, бензилом, аминогруппой, которая может быть дизамещена C1-6алкилом, карбоксигруппой, C 1-6алкилсульфонильной группой или пирролилом; X1 представляет собой карбонильную группу или сульфонильную группу; X2 представляет собой C1-3алкиленовую, С2-3алкениленовую или С2-3алкиниленовую группу, которая может быть необязательно замещена C1-3 алкилом, или связь; при условии, что, когда X1 представляет собой сульфонильную группу и X4 представляет собой связь, X2 представляет собой C1-3алкиленовую, С2-3алкениленовую или С2-3алкиниленовую группу, которая может быть необязательно замещена C1-3 алкилом; X3 представляет собой атом кислорода или связь; и X4 представляет собой группу, представленную общей формулой -Х5-Х6- или -Х6 -Х5-, где связь с левой стороны каждой общей формулы присоединена к R3; и X5 представляет собой атом кислорода, атом серы, иминогруппу, которая может быть необязательно защищена, или связь; и X6 представляет собой С 1-4алкиленовую, С2-3алкениленовую или С 2-3алкиниленовую группу, или связь, а также к их фармацевтически приемлемым солям.

Изобретение относится к новым соединениям формулы (I), включая его фармацевтически приемлемые соли, сольваты, сложные эфиры и амиды, обладающим способностью связывать ER - и ER -эстрогеновые рецепторы, к фармацевтической композиции на их основе, к вариантам применения предлагаемых соединений в изготовлении лекарства и к способу связывания ER - и ER -эстрогеновых рецепторов.

Изобретение относится к соединению формулы I или его фармацевтически приемлемым солям, где группировка Het представляет собой пиридинил или тиазолил; каждый из R1 и R2 представляет собой Н; каждый из R3 и R4 независимо представляет собой Н, -С1-8алкил или R3 и R4, взятые вместе, образуют С3-6циклоакил; W представляет собой -Н, -РО(ОН)2 или -СН2ОРО(ОН)2; каждый из X и Y представляет собой хлор или каждый из X и Y представляет собой фтор, и Z представляет собой Н.

Изобретение относится к соединению формулы [1] или его фармацевтически приемлемой соли, где R1 и R2 являются одинаковыми или отличаются и каждый из них представляет собой атом водорода, С1-6алкильную группу, С3-8циклоалкильную группу или С1-6алкоксигруппу (С1-6алкильная группа, С1-6алкоксигруппа и С3-8циклоалкильная группа могут быть замещены 1-3 заместителями, которые являются одинаковыми или отличаются и выбраны из "атома галогена, С1-6алкоксигруппы"); R3 представляет собой атом водорода или С1-6алкильную группу; R4 представляет собой атом водорода, С1-6алкильную группу, С3-8циклоалкильную группу(которые могут быть замещены заместителями, которые указаны в формуле изобретения), гетероциклическую группу, выбранную из пиридина; А1 представляет собой двухвалентную арильную группу, двухвалентную гетероциклическую группу, выбранную из пиридила, пиразинила, тиофенила, или С3-8циклоалкиленовую группу (двухвалентная арильная группа может быть замещена 1-4 заместителями, которые являются одинаковыми или отличаются и выбраны из следующей группы заместителей Ra, которые указаны в формуле изобретения); L представляет собой -С≡С-, -С≡С-С≡С-, -С≡С-(CH2)m-O-, СН=СН-, -СН=CH-С≡C-, -С≡С-СН=СН-, -O-, -(СН2)m-O-, -O-(CH2)m-, C1-4алкиленовую группу или связь; m обозначает 1, 2 или 3; А2 представляет собой двухвалентную арильную группу, двухвалентную гетероциклическую группу (приведенную в формуле изобретения), С3-8циклоалкиленовую группу, С3-8циклоалкениленовую группу, С1-4алкиленовую группу или С2-4алкениленовую группу (которые могут быть замещены 1-4 заместителями, которые являются одинаковыми или отличаются и выбраны из группы заместителей Rb, которая приведена в формуле изобретения); W представляет собой R6-X1-, R6-X2-Y1-X1-, R6-X4-Y1-X2-Y3-X3-, Q-X1-Y2-X3- или Q-X1-Y1-X2-Y3-X3-; Y2, Y1, Y3, n, X1, X3, X2, X4, Q, R6, R7, R8 и R9 приведены в формуле изобретения.

Изобретение относится к способу получения соединения формулы (I). Способ включает реакцию соединения формулы (II) с соединением формулы (III) в щелочных условиях и в присутствии сульфита.

Изобретение относится к соединению, представленному формулой , или его фармацевтически приемлемой соли, или сольвату. Значения радикалов следующие: Rt - Н, C1-C8 алкильная группа, ион аммония, ион щелочного или щелочноземельного металла; R84 - незамещенный C1-8 алкил; R - С1-8 гидроксиалкил, C1-8 алкоксиалкил, C1-8 аминоалкил, (CH2)8(NHC(S)NH)Ph(SO2NH2), (CH2)dPh(SO2NH2), (CH2)5C(O)NH-(1-ацетилпирролидин-2-ил)борная кислота, (1-ацетилпирролидин-2-ил)борная кислота, (CH2)4CH(NH2)CO2H, (CH2)3CH(NH2)CO2H, (CH2)2CH(NH2)CO2H, -(CH2)d-R80, -C(O)(CH2)d-R80, или аминокислотный радикал; R80 - карбоксилат, С6-10 арил, 3-6 членный гетероциклил, аминокислота; d представляет собой целое число в интервале от 0 до 12 включительно; и R82, R83, R85 и R86 - водород, или замещенный или незамещенный алкил, простой эфир, сложный эфир, СН2СН2ОСН2СН3, СН2СН(ОСН3)2, -(CH2)d-R80, или (CH2)dR87; где R87 представляет собой фосфонат или фосфинат.

Изобретение относится к соединениям формулы I, II или IV где значения радикалов W, V, Ra, Rb, X, L, Rt, A представлены в формуле изобретения. Заявленные соединения распознают и связывают CA-IX протеин, могут включать радиоактивный элемент для радионуклидной визуализации или терапевтического применения.

Изобретение относится к новым аминопроизводным структурной формулы (А), обладающим свойствами ингибитора изомеразной активности ретиноидного цикла. В формуле (А) Z представляет собой -С(R9)(R10)-С(R1)(R2)- или -X-C(R31)(R32); Х представляет собой -O-, -S-, -S(=O)-, -S(=O)2- или -N(R30)-; G выбран из -C(R41)2-C(R41)2-R40, -C(R42)2-S-R40, -C(R42)2-SO-R40, -C(R42)2-SO2-R40 или -C(R42)2-O-R40; R40 выбран из -C(R16)(R17)(R18), С6-10арила; каждый R6, R19, R34, R42 независимо выбран из водорода или С1-С5алкила; каждый R1 и R2 независимо друг от друга выбран из водорода, галогена, С1-С5алкила или -OR6; или R1 и R2 вместе образуют оксо; каждый R3, R4, R30, R31, R32, R41 представляет собой водород; каждый R9 и R10 независимо друг от друга выбран из водорода, галогена, С1-С5алкила или -OR19; или R9 и R10 образуют оксо; или возможно R9 и R1 вместе образуют прямую связь для обеспечения двойной связи; или возможно R9 и R1 вместе образуют прямую связь и R10 и R2 вместе образуют прямую связь для обеспечения тройной связи; n равно 0 или 1; значения радикалов R11, R12, R16-R18, R23, R33 приведены в формуле изобретения.

Изобретение относится к пиридилдиамидному комплексу переходного металла. Комплекс описывается общей формулой (IV) в которой М обозначает Ti, Zr или Hf; R6, R7, R8 и R9 означают водород; R1 и R11 независимо выбраны из группы, включающей алкилы и фенильные группы, которые содержат от 0 до 5 различных заместителей, которые включают F, Cl, Br, I, CF3, NO2, алкоксигруппу, диалкиламиногруппу, гидрокарбил (такой как алкил и арил) и замещенные гидрокарбилы (такие как гетероарил), содержащие от 0 до 10 атомов углерода; R2 и R10 все независимо обозначают -E(R12)(R13)-, где Е обозначает углерод, и каждый R12 и R13 независимо выбран из группы, включающей водород и фенильные группы; R3, R4 и R5 означают водород; L обозначает анионную отщепляющуюся группу, причем группы L могут быть одинаковыми или разными и любые две группы L могут быть связаны с образованием дианионной отщепляющейся группы; n равно 0, 1, 2, 3 или 4; L' выбран из группы, включающей простые эфиры, простые тиоэфиры, амины, нитрилы, имины, пиридины и фосфины; и w равно 0, 1, 2, 3 или 4.

Изобретение относится к соединению формулы (I) где А означает кольцо, выбираемое из фенильной группы или гетероарильной группы, Q означает атом кислорода или связующее звено -СН2-, X, Y и Z означают атомы углерода; R1 и R2, одинаковые или различные, выбирают из следующих атомов и групп: водород, галоген, -CF3, (С1-С6)алкил, Alk, (С1-С6)алкокси, (С1-С6)алкил-О-(С1-С6)алкил, -(СН2)m-SO2-(С1-С6)алкил с m, равным 0, 1 или 2, бензил, пиразолил, -СН2-триазолил и -L-R12, где L представляет собой связь или мостик -СН2 - и/или -СО- и/или -SO2-, и R12 означает (С3-С8)циклоалкил или группу формулы (b), (с), (с ), (a) или (е): где: n=0 или 1, R13 означает одну-три группы, одинаковые или различные, выбираемые из атомов водорода и гидроксила, (С1-С4)алкила, оксо и фенила, R14 означает атом водорода или выбирается из групп - NR18R19, -NR18-COOR19, -NR18-Alk-R20 и -R21, где R18, R19, R20, R21 и Alk имеют значения, как определено ниже, R14 означает -СО-(С1-С6)алкил, R15 выбирают из групп -Alk, -R20, -Alk-R20, -Alk-R21, -CO-Alk, -CO-R20, -CO-R21, -Alk-CO-NR18R19, (С3-С8)циклоалкил и -СО-(С3-С8)циклоалкил, где R18, R19, R20, R21 и Alk имеют значения, как определено ниже, R16 означает атом водорода или группу Alk, где Alk имеет значение, как определено ниже, R17 означает группу -Alk, -Alk-R20 или -Alk-R21, где Alk, R20 и R21 имеют значения, как определено ниже, -СО-(С1-С6)алкил, -СО-(С3-С8)циклоалкил, R18 и R19, одинаковые или различные, означают атом водорода или (С1-С6)алкил, R20 означает фенильную или гетероарильную группу (такую как пиридинил, пиразолил, пиримидинил или бензимидазолил), которая необязательно замещена одним (С1-С6)алкилом, R21 означает гетероциклоалкильную группу, необязательно замещенную одним или более атомами галогена или (С1-С6)алкильными, гидроксильными или (С1-С4)алкоксигруппами, и Alk означает (С1-С6)алкил, который является линейным или разветвленным и который необязательно замещен одной или двумя группами, одинаковыми или различными, выбираемыми из гидроксила, фенила, (С1-С4)алкокси и -NR18R19, где R18 и R19 имеют значения, как определено выше, R3 означает линейный (С1-С10)алкил, который необязательно замещен одной-тремя группами, одинаковыми или различными, выбираемыми из атомов галогена и (С1-С4)алкоксигрупп, R4 означает атом водорода, R5 и R6 означают, независимо один от другого, атом водорода или (С1-С5)алкил, R7 и R8 означают, независимо один от другого, атом водорода или (С1-С5)алкил, R9 и R10 означают, независимо один от другого, атом водорода, или R9 и R10 вместе образуют линейную (С2-С3)алкиленовую цепь, таким образом образуя 6-членное кольцо с атомами азота, к которым они присоединены, причем указанная алкиленовая цепь необязательно замещена одной-тремя группами, выбираемыми из (С1-С4)алкила, оксо, R11 означает атом водорода или (С1-С8)алкил, который необязательно замещен одной-тремя группами, выбираемыми из атомов галогена, гидроксила, (С1-С6)алкокси, -NR18R19, или пиридинила, где R18 и R19 имеют значения, как определено выше; где «гетероциклоалкильная группа» означает насыщенное 5- или 6-членное кольцо, содержащее один или два гетероатома, выбираемых из атомов кислорода, азота и серы; «гетероарильная группа» означает ароматическую циклическую группу, содержащую 5-11 кольцевых атомов, выбираемых из атомов углерода, азота, кислорода и серы, причем гетероарильные группы могут быть моноциклическими или бициклическими, в случае которых, по меньшей мере, один из двух циклических фрагментов является ароматическим; в виде свободного основания или аддитивной соли кислоты или основания.

Изобретение относится к соединениям формулы IIIA. Технический результат: получены новые соединения формулы IIIА, а также композиции на их основе для ингибирования NAMPT, описано применение соединений для получения лекарственного средства для лечения рака. 7 н. и 14 з.п. ф-лы, 3 табл., 3 сх., 20 пр.
Наверх