Способ определения координат объекта



 


Владельцы патента RU 2617448:

Общество с ограниченной ответственностью "НРТБ-Система" (ООО "НРТБ-С") (RU)

Изобретение относится к технике связи и может использоваться для определения пространственных координат стационарного или подвижного принимающего радиосигналы объекта. Достигаемый технический результат - повышение точности и достоверности измерения пространственных координат функционально связанных объектов. Указанный результат достигается за счет того, что радиосигналы, передаваемые наземными станциями с заданными координатами фазовых центров их антенн, формируют в виде гармонических колебаний с заданной для каждой станции частотой, модулированных функцией в виде произведения, по крайней мере, двух функций, каждая из которых может быть синусоидальной или косинусоидальной, с заданными частотами первой и последующих функций. На объекте осуществляют квадратурный прием с заданной частотой гетеродина, определяют относительные времена задержек приема радиосигналов от станций в системе отсчета времени, связанной с объектом, и по заданным пространственным координатам фазовых центров антенн станций и относительным дальностям от них до объекта, полученным по скорректированным относительным временам задержек приема радиосигналов, однозначно определяют пространственные координаты фазового центра антенны объекта, находящегося в любой точке пространства.

 

Изобретение относится к радионавигации и может быть использовано для определения координат объектов, стационарных или подвижных, и управления их движением в зонах навигации. Радиосигналы передают стационарные наземные станции с заданными координатами фазовых центров антенн, их принимают на объекте и определяют фазовый центр его антенны. Реализация способа позволит, в том числе, упростить соответствующие системы позиционирования, обеспечить точность и достоверность измерения координат объекта.

Известны способы определения координат объектов, основанные на применении угломерных, дальномерных, разностно и суммарно-дальномерных и комбинированных методов определения местоположения объекта с амплитудными, временными, частотными, фазовыми и импульсно-фазовыми методами измерения параметров радиосигнала (Патенты РФ №№2018855, 2096800, 2115137, 2258242, 2264598, 2309420, 2325666, 2363117, 2371737, 2378660, 2430385, 2439617, 2506605, 2507529, 2558640, 2559813, 2561721; Основы испытаний летательных аппаратов./ Е.И. Кринецкий и др. Под ред. Е.И. Кринецкого. - М.: Машиностр., 1979, с. 64-89; Радиотехнические системы./Ю.М. Казаринов и др. Под ред. Ю.М. Казаринова. - М.: ИЦ «Академия», 2008, с. 7, 17-18, пп. 7.1-7.4, гл. 10; Мельников Ю.П., Попов С.В. Радиотехническая разведка. Методы оценки эффективности местоопределения источников излучения. - М.: «Радиотехника», 2008, гл. 5; Кинкулькин И.Е. и др. Фазовый метод определения координат. - М.: Сов. радио, 1979, с. 10-11, 97-100). Известные способы имеют те или иные недостатки, например необходимость механического перемещения антенной системы, невозможность однозначного определения координат объекта, необходимость априорной информации о местоположении объекта, необходимость общей синхронизации передающих и принимающих радиосигналы радиотехнических объектов, недостаточное быстродействие, недостаточную точность.

По критерию минимальной достаточности наиболее близким является способ определения координат объектов по патенту RU №2578750.

Преимуществом заявляемого способа определения координат объектов по сравнению с известными способами является обеспечение точности и достоверности их измерения. Это достигается тем, что радиосигналы передают в виде гармонических колебаний, модулированных функцией в виде произведения, по крайней мере, двух функций, каждая из которых может быть синусоидальной либо косинусоидальной, с заданными частотами первой и последующих функций и начальными временными сдвигами посылки радиосигналов станциями. На объекте осуществляют квадратурный прием с заданной частотой гетеродина, определяют относительные времена задержек приема радиосигналов от станций в системе отсчета времени, связанной с объектом, корректируют их и по заданным пространственным координатам фазовых центров антенн станций и относительным дальностям от них до объекта, полученным по скорректированным временам задержек приема радиосигналов, однозначно определяют пространственные координаты фазового центра антенны объекта, находящегося в любой точке пространства.

Для достижения указанного технического результата в соответствии с настоящим изобретением в способе определения координат объекта, в том числе подвижного, с каждой станции наземной системы, содержащей совокупность N упорядоченно пронумерованных станций с заданными в трехмерной декартовой системе координатами фазовых центров их антенн, передают радиосигналы в виде гармонических колебаний с заданными и разнесенными между станциями частотами, равными для каждой станции ƒ0+mnƒ1, где mn - заданные целые числа, а индекс n здесь и далее соответствует n-й станции и изменяется от 1 до N, модулированных функцией в виде произведения, по крайней мере, двух функций, каждая из которых может быть синусоидальной либо косинусоидальной, при этом частота первой из указанных функций равна ƒ1, а частоты последующих функций с номером s в заданное натуральное число ks раз больше частоты ƒ1, где индекс s соответствует номеру указанной s-й функции, и все указанные функции имеют одинаковые известные начальные временные сдвиги Δtn в системе отсчета времени, связанной с передающей системой, не превышающие значений, при которых расстояния между фазовыми центрами антенн для любой пары из N станций, i-й и j-й, отнесенные к скорости распространения радиосигналов и увеличенные на абсолютную величину разности соответствующих временных сдвигов Δti и Δtj, не превышают интервала времени Т, равного , причем на объекте известны упомянутые начальные временные сдвиги Δtn, частоты ƒ0, ƒ1, числа mn и ks, а на объекте осуществляют квадратурный прием с заданной частотой гетеродина, равной ƒ0+lƒ1, где l - заданное целое число, совокупности приходящих со станций радиосигналов и по образующимся при этом соответствующим каждой станции группам колебаний с разностными частотами определяют относительные времена задержек приема радиосигналов от станций в системе отсчета времени, связанной с объектом, корректируют их с учетом упомянутых начальных временных сдвигов Δtn радиосигналов и необходимых поправок и по заданным пространственным координатам фазовых центров антенн станций и относительным дальностям до него от указанных фазовых центров антенн станций, получаемым по упомянутым скорректированным временам задержек приема радиосигналов, однозначно определяют пространственные координаты фазового центра антенны объекта, находящегося в любой точке пространства.

Совокупность всех признаков позволяет определить пространственные координаты объекта с достижением указанного технического результата.

В существующем уровне техники не выявлено источников информации, которые содержали бы сведения о способах того же назначения с указанной совокупностью признаков. Ниже изобретение описано более детально.

Сущность способа заключается в следующем.

С каждой станции наземной системы, содержащей совокупность N упорядоченно пронумерованных станций с заданными в трехмерной декартовой системе координатами фазовых центров их антенн, передают радиосигналы в виде гармонических колебаний с заданными и разнесенными между станциями частотами, равными для каждой станции ƒ0+mnƒ1, где mn - заданные целые числа, а индекс n соответствует n-й станции и изменяется от 1 до N. Гармонические колебания модулированы функцией в виде произведения, по крайней мере, двух функций. Каждая из этих двух функций может быть синусоидальной либо косинусоидальной. Частота первой из указанных функций равна ƒ1, а частоты последующих функций с номером s в заданное натуральное число ks раз больше частоты, где индекс s соответствует номеру указанной s-й функции. Все указанные функции имеют одинаковые известные начальные временные сдвиги Δtn в системе отсчета времени, связанной с передающей системой. При этом Δtn не превышают значений, при которых расстояния dij между фазовыми центрами антенн для любой пары из N станций, i-й и j-й, отнесенные к скорости распространения радиосигналов и увеличенные на абсолютную величину разности соответствующих временных сдвигов Δti и Δtj, не превышают интервала времени Т, равного . Начальные временные сдвиги Δtn, частоты ƒ0, ƒ1, числа mn и ks должны быть известны на объекте.

На объекте осуществляют квадратурный прием с заданной частотой гетеродина, равной ƒ0+lƒ1, где l - заданное целое число, совокупности приходящих со станций радиосигналов, при котором образуются соответствующие каждой станции группы из колебаний с разностными частотами.

В качестве примера, иллюстрирующего реализацию способа, рассмотрим случай, когда моделирующая функция представлена в виде произведения двух функций (s=2). Тогда при квадратурном приеме образуются соответствующие каждой станции группы из четырех колебаний с разностными частотами. Для удобства изложения назовем эти колебания базовыми.

При этом для каждой группы колебания, получающиеся на разностных частотах любых двух из четырех базовых колебаний (назовем их вторичными), имеют частоты, кратные частоте ƒ1, и не содержат случайные начальные фазы гармонического колебания с частотой ƒ0 и случайные фазы колебаний гетеродина.

В этом примере (при обеспечении выполнения упомянутых условий, связывающих начальные временные сдвиги Δtn, расстояния между фазовыми центрами антенн станций и интервал времени Т) параметры радиосигналов заданы таким образом, что в каждой группе для каждого колебания этой группы, названного вторичным, количества укладывающихся периодов колебаний на интервале времени Т являются целыми числами, такими как 1, k2-1, k2 и k2+1.

Нетрудно видеть, что в общем случае (при s>2) при квадратурном приеме образуются соответствующие каждой станции группы из большего числа базовых и, соответственно, вторичных колебаний. При этом для каждого вторичного колебания количества укладывающихся периодов колебаний на интервале времени Т являются также целыми числами.

Все это дает возможность для каждой группы, по крайней мере, по любым двум из вторичных колебаний, у которых упомянутые количества периодов являются взаимно простыми числами, однозначно определить времена задержки радиосигналов на интервале времени T, а значит, и относительные времена задержек принятых от станций радиосигналов в системе отсчета времени, связанной с объектом.

Эти относительные времена задержек приема радиосигналов корректируют с учетом начальных временных сдвигов Δtn радиосигналов и необходимых поправок, например, связанных с эффектом Доплера. По скорректированным относительным временам задержек приема радиосигналов определяют относительные дальности до объекта от указанных фазовых центров антенн. Пространственные координаты фазового центра антенны объекта, находящегося в любой точке пространства, определяют однозначно по заданным пространственным координатам фазовых центров антенн станций и относительным дальностям до него от указанных фазовых центров антенн станций.

В качестве метода определения пространственных координат объекта по относительным дальностям до него можно использовать, например, подходящий метод из защищенных патентами RU (№№2484604, 2530231, 2530232, 2530239, 2530240, 2530241, 2542659) или из международных заявок в системе РСТ (WO/2015/012733, WO/2015/012734, WO/2015/012735, WO/2015/012736, WO/2015/012737, WO/2015/012738).

Способ может найти применение для построения универсальной навигационно-посадочной системы.

Перечислим основные достоинства способа:

- обеспечивает однозначное определение пространственных координат объекта, находящегося в любой точке пространства, с высокой точностью,

- требуется синхронизация только совокупности передающих станций, а объект, принимающий радиосигналы, использует свою систему отсчета времени,

- в случае использования всеми станциями радиосигналов с одинаковыми частотами и одного общего генератора опорной частоты система синхронизации существенно упрощается,

- сигналы, заданные в аналитическом виде, относительно просто формировать, смещать и пр., благодаря, в том числе, этому повышается точность измерений,

- обеспечивает возможность производить измерения с использованием существующей элементной базы и микропроцессорной техники,

- реализация способа проще и дешевле, чем у известных аналогов,

- позволяет осуществлять одновременные измерения на большом количестве объектов.

Результативность и эффективность использования заявляемого способа состоит в том, что он может быть применен на практике для развития и совершенствования радиотехнических систем определения координат объектов, а также в других приложениях. Способ позволяет однозначно определять координаты с большой точностью и более просто по сравнению с известными способами.

Таким образом, заявляемый способ обеспечивает появление новых свойств, не достигаемых в аналогах. Проведенный анализ позволил установить: аналоги с совокупностью признаков, тождественных всем признакам заявленного технического решения, отсутствуют, что указывает на соответствие заявленного способа условию «новизны».

Также не выявлена известность влияния предусматриваемых существенными признаками заявленного изобретения действий на достижение указанного результата. Следовательно, заявленное изобретение соответствует условию патентоспособности «изобретательский уровень».

Таким образом, заявленное изобретение соответствует критериям «новизна» и «изобретательский уровень», а также критерию «промышленная применимость».

Способ определения координат объекта, в том числе подвижного, при котором с каждой станции наземной системы, содержащей совокупность N упорядоченно пронумерованных станций с заданными в трехмерной декартовой системе координатами фазовых центров их антенн, передают радиосигналы в виде гармонических колебаний с заданными и разнесенными между станциями частотами, равными для каждой станции , где mn - заданные целые числа, а индекс n здесь и далее соответствует n-й станции и изменяется от 1 до N, модулированных функцией в виде произведения, по крайней мере, двух функций, каждая из которых может быть синусоидальной либо косинусоидальной, при этом частота первой из указанных функций равна , а частоты последующих функций с номером s в заданное натуральное число ks раз больше частоты , где индекс s соответствует номеру указанной s-й функции, и все указанные функции имеют одинаковые известные начальные временные сдвиги Δtn в системе отсчета времени, связанной с передающей системой, не превышающие значений, при которых расстояния между фазовыми центрами антенн для любой пары из N станций, i-й и j-й, отнесенные к скорости распространения радиосигналов и увеличенные на абсолютную величину разности соответствующих временных сдвигов Δti и Δtj, не превышают интервала времени Т, равного , причем на объекте известны упомянутые начальные временные сдвиги Δtn, частоты , числа mn и ks, а на объекте осуществляют квадратурный прием с заданной частотой гетеродина, равной , где l - заданное целое число, совокупности приходящих со станций радиосигналов и по образующимся при этом соответствующим каждой станции группам колебаний с разностными частотами определяют относительные времена задержек приема радиосигналов от станций в системе отсчета времени, связанной с объектом, корректируют их с учетом упомянутых начальных временных сдвигов Δtn радиосигналов и необходимых поправок и по заданным пространственным координатам фазовых центров антенн станций и относительным дальностям до него от указанных фазовых центров антенн станций, получаемым по упомянутым скорректированным относительным временам задержек приема радиосигналов, однозначно определяют пространственные координаты фазового центра антенны объекта, находящегося в любой точке пространства.



 

Похожие патенты:

Изобретение относится к разнесенной радиолокации и может быть использовано для обнаружения и измерения координат малозаметных маловысотных целей в воздушном пространстве.

Изобретение относится к устройствам обработки траекторной радиолокационной информации и может быть использовано для распознавания воздушных объектов (ВО) и определения точек пуска и падения в радиолокационных станциях (РЛС) обзорного типа.

Изобретение относится к радиолокации, а также к устройству стратегических боеголовок, в частности к системе преодоления ПРО противника. Система преодоления ПРО противника содержит боеголовки, синхронизирующий радиопередатчик, несколько действующих и несколько запасных активных радиолокаторов, нужное число настоящих боеголовок и нужное число ложных боеголовок.

Изобретение относится к радиолокации и может быть использовано для измерения угловой координаты объектов. Достигаемый технический результат - повышение быстродействия оценки угловой координаты и сокращение объема необходимой памяти.

Изобретение относится к разнесенной радиолокации. Достигаемый технический результат - усиление подсвечивающего сигнала стандарта GSM в направлениях и эшелонах со слабым или отсутствующим покрытием сетей сотовой связи до требуемого уровня мощности.

Изобретение раскрывает сканирующее устройство для формирования трехмерного голографического изображения в миллиметровом диапазоне волн. Техническим результатом является повышение скорости и точности сканирования.

Изобретение относится к области радиолокации и может быть использовано для измерения угловых координат целей в процессе обзора пространства радиолокационной станцией (РЛС) при независимо флюктуирующих отраженных сигналах.

Изобретение относится к радиолокационным пеленгаторам, размещаемым на подвижных объектах воздушного, морского и наземного базирования. Достигаемый технический результат - пеленгация цели по угловой координате с учетом навигационных характеристик объекта визирования, упрощение и миниатюризация радиолокатора и повышение точности пеленгования объекта визирования.

Изобретение относится к радиолокационным системам (РЛС) в составе комплексов активной защиты Земли от приближающихся к ней объектов естественного и искусственного происхождения.

Предлагаемое изобретение относится к радиолокации и может быть использовано в радиолокационной технике для обнаружения траектории маневрирующего объекта. Достигаемый технический результат изобретения - повышение вероятности обнаружения траектории маневрирующего объекта.

Изобретение относится к импульсной радиолокационной технике, преимущественно ближнего радиуса действия, и может быть использовано для снижения уровня фазового шума на выходе фазового детектора подобных систем. Достигаемый технический результат – улучшение характеристик обнаружения и измерения лоцируемых объектов. Импульсная радиолокационная система содержит формирователь коротких импульсов, радиопередающий модуль, включающий последовательно соединенные СВЧ-генератор зондирующих импульсов и передающую антенну, и радиоприемный модуль, включающий последовательно соединенные приемную антенну и фазовый детектор приемного радиосигнала, а также СВЧ-генератор опорных импульсов, при этом один из выходов формирователя коротких импульсов соединен с входом СВЧ-генератора зондирующих импульсов, а другой - с входом СВЧ-генератора опорных импульсов, выход которого соединен с входом фазового детектора приемного радиосигнала, выход которого связан с блоком управления и обработки информации, система снабжена также генератором референсного СВЧ-сигнала и делителем референсного СВЧ-сигнала, при этом вход генератора референсного СВЧ-сигнала соединен с выходом формирователя коротких импульсов, а его выход - с входом делителя референсного СВЧ-сигнала, выходы которого соединены с входом СВЧ-генератора зондирующих импульсов радиопередающего модуля и с входом СВЧ-генератора опорных импульсов. 2 н.п. ф-лы, 4 ил.
Наверх