Устройство управления тиратроном с холодным катодом



Устройство управления тиратроном с холодным катодом
Устройство управления тиратроном с холодным катодом
Устройство управления тиратроном с холодным катодом

 

H03K3/543 - Импульсная техника (измерение импульсных характеристик G01R; механические счетчики с электрическим входом G06M; устройства для накопления /хранения/ информации вообще G11; устройства хранения и выборки информации в электрических аналоговых запоминающих устройствах G11C 27/02; конструкция переключателей для генерации импульсов путем замыкания и размыкания контактов, например с использованием подвижных магнитов, H01H; статическое преобразование электрической энергии H02M;генерирование колебаний с помощью схем, содержащих активные элементы, работающие в некоммутационном режиме, H03B; импульсная модуляция колебаний синусоидальной формы H03C;H04L ; схемы дискриминаторов с подсчетом импульсов H03D;

Владельцы патента RU 2619779:

Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский политехнический университет" (RU)

Изобретение относится к высоковольтной импульсной технике и предназначено для управления тиратроном с холодным катодом серии ТДИ путем формирования импульсов поджига с нормированной крутизной фронта и следующих с высокой частотой следования импульсов. Устройство управления включает повышающий импульсный трансформатор напряжения (9), емкостной накопитель энергии (5), импульсный водородный тиратрон (15) и блок формирования импульса его запуска, содержащий тиристор (8), включенный в цепь первичной обмотки трансформатора (9), шунтирующий конденсатор (18), соединенный с управляющим электродом тиристора (8), дроссель насыщения (6) и второй шунтирующий конденсатор (7), уменьшающий скорость изменения напряжения на тиристоре (8). Для задержки подачи напряжения на сетку импульсного водородного тиратрона (15) относительно импульса запуска тиристора (8) к управляющему электроду тиристора (8) и к сетке водородного тиратрона (15) подключен генератор тактовых импульсов (19). Емкостной накопитель энергии (5) может быть подключен к сети переменного напряжения через повышающий импульсный трансформатор напряжения (9) и сетевой однотактный выпрямитель (1). Технический результат заключается в возможности использования устройства в схемах генераторов как с импульсной зарядкой накопительного конденсатора, так и с зарядкой постоянным током, в повышении надежности за счет уменьшения количества элементов и эффективности работы, обеспечении параллельной работы двух тиратронов серии ТДИ. 1 з.п. ф-лы, 3 ил.

 

Изобретение относится к высоковольтной импульсной технике и предназначено для управления тиратроном с холодным катодом серии ТДИ посредством формирования импульсов поджига с нормированной крутизной фронта и следующих с высокой частотой следования импульсов, а также может быть использовано для запуска управляемых разрядников.

Для управления тиратроном требуются импульсы поджига амплитудой 5±0,5 кВ, с крутизной фронта 5±0,5 кВ/мкс и величиной тока 100±50 А. Для обеспечения указанной крутизны фронта блок управления должен находиться в непосредственной близости от тиратрона ТДИ, в этом случае индуктивность соединительного кабеля будет минимальной. Устройство управления тиратроном должно иметь надежную защиту от мощной электромагнитной помехи, которая возникает при включении тиратрона ТДИ и, воздействуя на блок управления, нарушает его работу.

Известно устройство блока управления ПБ-3Д тиратрона серии ТДИ (Bochkov V.D., Bochkov D.D., Gnedin I.N., Bak P.A., Pihl C.J., Andreason S.P., Slough J. Research and development of pseudospark switch drivers // 2012 IEEE International Power Modulator and High Voltage Conference, IPMHVC 2012, San Diego, CA, 03-07 июня 2012, P. 552-554), содержащее повышающий импульсный трансформатор напряжения, твердотельный коммутатор, емкостной накопитель. Основной недостаток устройства в том, что блок ПБ-3Д имеет низкий диапазон частоты следования импульсов поджига 20 имп/с, который ограничен коммутационными характеристиками используемого искрового разрядника. Кроме того, ПБ-3Д формирует импульс поджига только для одного тиратрона.

Наиболее близким к предложенному решению является блок управления тиратроном ТДИ (I.S. Egorov, V.S. Esipov, Ε.I. Lukonin and Α.V. Poloskov A Self-Triggering System for a Cold-Cathode Thyratron in a Pulse Voltage Generator // Instruments and Experimental Techniques, 2015, Vol. 58, № 1, pp. 64-66). Данный блок генерирует высоковольтные импульсы поджига отрицательной полярности относительно земли. Блок управления содержит емкостной накопитель, который заряжается через повышающий импульсный трансформатор напряжения, включенный в цепь зарядки накопительного конденсатора генератора, импульсный водородный тиратрон ТГИ 500/16, включенный в цепь емкостного накопителя. Коммутация емкостного накопителя блока управления осуществляется импульсным водородным тиратроном ТГИ 500/16, который срабатывает при приложении к нему импульса напряжения с блока формирования импульса запуска, выполненного в виде пик-трансформатора. Пик-трансформатор также включен в цепь накопительного конденсатора генератора, в момент окончания зарядки которого пик-трансформатор формирует импульс запуска ТГИ 500/16. При срабатывании водородного тиратрона ТГИ 500/16 формируется импульс поджига тиратрона ТДИ.

Основным недостатком данного блока управления является то, что его возможно использовать только в схемах генераторов с импульсной зарядкой коммутируемого накопительного конденсатора. Часть энергии запасаемой в коммутируемом накопительном конденсаторе расходуется на зарядку емкостного накопителя блока управления и на перемагничивание сердечников пик-трансформатора и импульсного высоковольтного трансформатора напряжения, что существенно снижает эффективность работы генератора. Недостатком данного блока является также и то, что амплитуда импульса поджига зависит от напряжения зарядки накопительного конденсатора генератора, т.е. при напряжении на накопительном конденсаторе генератора ниже 30 кВ, амплитуда импульса поджига составит менее 5 кВ, и его энергии будет не достаточно для срабатывания тиратрона ТДИ. Необходимо отметить и то, что данный блок управления обеспечивает работу одного тиратрона и исключает параллельную работу нескольких тиратронов серии ТДИ.

Технический результат предложенного изобретения заключается в возможности использования его в схемах генераторов как с импульсной зарядкой накопительного конденсатора, так и с зарядкой постоянным током, повышении надежности за счет уменьшения количества элементов и эффективности работы, обеспечении параллельной работы двух тиратронов серии ТДИ.

Указанный технический результат достигается тем, что в устройстве управления тиратроном с холодным катодом, содержащим, как и прототип, повышающий импульсный трансформатор напряжения, емкостной накопитель энергии, импульсный водородный тиратрон и блок формирования импульса его запуска, в отличие от прототипа блок формирования импульса запуска водородного тиратрона содержит тиристор, включенный в цепь первичной обмотки повышающего импульсного трансформатора напряжения, шунтирующий конденсатор, соединенный с управляющим электродом тиристора, дроссель насыщения и второй шунтирующий конденсатор, который уменьшает скорость изменения напряжения на тиристоре, а для задержки подачи напряжения на сетку импульсного водородного тиратрона относительно импульса запуска тиристора к управляющему электроду тиристора и к сетке водородного тиратрона подключен генератор тактовых импульсов.

Целесообразно, чтобы емкостной накопитель был подключен к сети переменного напряжения через повышающий импульсный трансформатор напряжения и сетевой однотактный выпрямитель.

Сущность изобретения поясняется на фиг. 1-3, где на фиг. 1 приведена принципиальная электрическая схема предложенного устройства управления, на фиг. 2 - осциллограммы тока зарядки первичного емкостного накопителя и напряжения на тиристоре, на фиг. 3 осциллограмма напряжения импульса поджига.

Устройство управления тиратроном с холодным катодом состоит из сетевого однотактного выпрямителя 1, диода 2, линейного зарядного дросселя 3, балластной индуктивности 4, первичного емкостного накопителя 5, дросселя насыщения 6, второго шунтирующего конденсатора 7, который уменьшает скорость изменения напряжения на тиристоре 8, повышающего импульсного трансформатора напряжения 9, разделительного (отсекающего) диода 10, токоограничивающего резистора 11, вторичного емкостного накопителя 12, токоограничивающих резисторов 13 и 14, импульсного водородного тиратрона 15 (ТГИ 500/16), накального трансформатора 16 (ТН58-127/220-50), экрана 17, первого шунтирующего конденсатора 18. Для задержки подачи напряжения на сетку импульсного водородного тиратрона 15 относительно импульса запуска тиристора 8 к управляющему электроду тиристора 8 и к сетке водородного тиратрона 15 подключен генератор тактовых импульсов 19. Повышающий импульсный трансформатор напряжения 9 сухого исполнения с секционированной вторичной обмоткой. Высоковольтная часть устройства управления закрыта перфорированным стальным экраном 17 и имеет собственную земляную шину. Устройство управления смонтировано в стандартном корпусе и расположено в непосредственной близости от коммутаторов ТДИ.

Заявляемое устройство обеспечивает управление тиратроном с холодным катодом, посредством формирования напряжения поджига Uп с нормированной крутизной фронта, импульса тока поджига Iп. Параметры импульсов полностью соответствуют паспортным значениям выбранного типа тиратрона и, при необходимости, легко корректируются. Устройство питается от трехфазной сети переменного напряжения - 3×380 В. Активные элементы блока управления - тиристор 8 и маломощный импульсный водородный тиратрон 15 (ТГИ 500/16).

Работу устройства (фиг. 1) рассмотрим на примере конкретного выполнения. Энергия от сети переменного напряжения запасается в первичном емкостном накопителе 5 (40 мкФ) через однотактный выпрямитель 1, линейный дроссель 3 (247 мГн) и первичную обмотку (например, 17 витков) повышающего импульсного трансформатора напряжения 9 (ШП32×50×50) до напряжения UC1, равного 310 В (фиг. 1). Током зарядки 20 (фиг. 2) первичного емкостного накопителя 5 размагничивается сердечник повышающего импульсного трансформатора напряжения 9, поскольку трансформатор 9 работает в режиме формирования однополярных импульсов. При достижении зарядного напряжения UC1 на первичном емкостном накопителе 5 генератором тактовых импульсов 19 открывается тиристор 8 (ТБ251-80-11) и энергия из первичного емкостного накопителя 5 передается во вторичный емкостной накопитель 12 (95 нФ), за время, определяемое величинами емкостей накопителей 5 и 12, индуктивностью рассеяния трансформатора 9 и балластной индуктивностью 4. Коэффициент трансформации импульсного трансформатора напряжения 9 выбирают исходя из амплитудного значения напряжения импульса поджига Uп, рекомендованного изготовителем тиратронов. Как правило, величина напряжения Uп лежит в пределах 3÷6 кВ, запасаемая во вторичном емкостном накопителе 12 энергия - 0,9÷1,4 Дж. После зарядки накопителя 12, высоковольтная часть схемы устройства управления отсекается от зарядной разделительным диодом 10.

Тиристор 8 остается открытым до полного вывода энергии, запасенной в индуктивности намагничивания сердечника трансформатора 9 и балластной индуктивности 4, введенной для растягивания процесса зарядки емкостного накопителя 5 и уменьшения импульсной нагрузки на сеть переменного напряжения. Первичный емкостной накопитель 5 перезаряжается до напряжения (0,1÷0,2)UC1 и к тиристору 8 прикладывается отрицательное напряжение 21 (фиг. 2). Спустя время, необходимое для восстановления вентильных свойств (около 50 мкс), тиристор 8 запирается.

Затем с задержкой 1÷2 мс относительно первоначального импульса запуска тиристора 8 в момент, когда анодное напряжение на тиристоре 8 отрицательно (фиг. 2), генератор тактовых импульсов 19 подает напряжение на сетку импульсного водородного тиратрона 15. Импульсный водородный тиратрон 15 включается, и формируются два импульса поджига (фиг. 3) тиратронов ТДИ. В дальнейшем первичный емкостной накопитель 5 перезаряжается до первоначального уровня UC1.

При первых включениях тиратронов серии ТДИ устройство управления подвергается воздействию мощной электромагнитной помехе. Введение задержки 1÷2 мс относительно импульса запуска тиристора 8 позволяет исключить закорачивание устройства управления в результате повторного включения тиристора 8 и нормализовать его работу. Диод 2 препятствует раскачке зарядного контура, исключая колебательную зарядку первичного емкостного накопителя 5. Потери энергии при этом незначительны и составляют 0,25/2 от запасаемой во вторичном емкостном накопителе 12. Величина задержки выбирается произвольно. При фиксированных значениях зарядной 3 и балластной 4 индуктивностях, задержка выбирается в пределах 2 мс. Поскольку спустя 2 мс, относительно импульса запуска тиристора 8, первичный емкостной накопитель 5 начинает повторно заряжаться от сети переменного напряжения.

Дополнительно в цепь управляющего электрода тиристора 8 введены первый шунтирующий конденсатор 18 (440 нФ), дроссель насыщения 6, и второй шунтирующий конденсатор 7 (470 нФ), уменьшающий скорость изменения напряжения на тиристоре 8. Эти меры позволяют дополнительно обеспечить помехозащищенность устройства управления. Длина кабеля соединения устройства управления и тиратронов не превышает 1,5 м. Максимальная крутизна импульсов поджига около 18 кВ/мкс (фиг. 3), что намного превышает рекомендованную величину 5±0,5 кВ/мкс.

Величины емкостного накопителя 12 и токоограничивающих резисторов 13 и 14, позволяют осуществить поджиг одновременно двух тиратронов серии ТДИ. Измеренный разброс амплитуд токов тиратронов ТДИ, включенных параллельно, без дополнительных цепей деления тока, не превышает 1%. Эффективность работы устройства управления составляет 85%. Максимально допустимая частота повторения поджигающих импульсов, около 150 имп/с.

1. Устройство управления тиратроном с холодным катодом, содержащее повышающий импульсный трансформатор напряжения, емкостной накопитель энергии, импульсный водородный тиратрон и блок формирования импульса его запуска, отличающееся тем, что блок формирования импульса запуска водородного тиратрона содержит тиристор, включенный в цепь первичной обмотки повышающего импульсного трансформатора напряжения, шунтирующий конденсатор, соединенный с управляющим электродом тиристора, дроссель насыщения и второй шунтирующий конденсатор, который уменьшает скорость изменения напряжения на тиристоре, при этом к управляющему электроду тиристора и к сетке водородного тиратрона подключен генератор тактовых импульсов.

2. Устройство управления по п. 1, отличающееся тем, что емкостной накопитель подключен к сети переменного напряжения через повышающий импульсный трансформатор напряжения и сетевой однотактный выпрямитель.



 

Похожие патенты:

Изобретение относится к области электротехники и может найти применение в различных отраслях техники в качестве электрического генератора. Магнитный усилитель содержит замкнутый магнитопровод с рабочей обмоткой и источник н.с.

Изобретение относится к области электротехники и может быть использовано в контактном электрошоковом оружии (ЭШО) и дистанционном электрошоковом оружии (ДЭШО), а именно в нелетальном электрошоковом оружии дистанционного действия, для правоохранительных служб и граждан.

Изобретение относится к области приборостроения и может быть использовано при разработке средств формирования эталонных сигналов частоты. Технический результат – расширение функциональных возможностей - обеспечен на основе использования эффекта постоянства скорости распространения света в определенной светопроводящей среде, обеспечивающего возможность формирования стабильных по частоте импульсов за счет уменьшения факторов внутренней нестабильности.

Изобретение относится к импульсной технике и может быть использовано для формирования мощных СВЧ-импульсов заданной формы в составе передатчиков радиолокационных станций, использующих СВЧ-приборы с сеточным управлением.

Изобретение относится к области автоматики и вычислительной техники. Технический результат - повышение надежности гистерезисного триггера, используемого в самосинхронных схемах для построения индикатора окончания в них переходных процессов за счет реализации отказо- и сбоеустойчивости; относительно отказов и сбоев транзисторов; относительно обрывов проводов входов-выходов; относительно отказов источника питания, а также за счет интегрированной отказо- и сбоеустойчивость относительно отказов и сбоев транзисторов, обрывов проводов входов-выходов и отказов источника питания.

Изобретение относится к области микроэлектроники. Технический результат заключается в расширении диапазона допустимых значений напряжений питания, повышении быстродействия и снижении энергопотребления синхронных триггеров.

Изобретение относится к генераторам импульсов. Достигаемый технический результат – осуществление управления количеством энергии, отводимой от накопителя энергии для формирования на выходной нагрузке серий производительных электрических импульсов с переменной амплитудой.

Rs-триггер // 2604682
Изобретение относится к области вычислительной техники, автоматики, связи и может использоваться в специализированных цифровых структурах, системах автоматического управления и передачи цифровой информации.

Изобретение относится к радиотехнике и может быть использовано для решения задач преобразования частоты в напряжение. Техническим результатом изобретения является повышение точности преобразования частоты в напряжение за счет формирования характеристики преобразования частоты в напряжение, близкой к линейной при больших значениях крутизны наклона.

Предлагаемое изобретение относится к области измерительной техники и предназначено для преобразования напряжения в частоту импульсов. Достигаемый технический результат - уменьшение неравномерности расстановки выходных импульсов во времени и расширение диапазона входных напряжений, в котором отсутствует эффект слипания выходных импульсов.

Изобретение относится к высокочастотной технике и может быть использовано при создании генераторов высокочастотного (ВЧ) излучения. .
Наверх