Системы и способы обнаружения границ раздела вода/продукт во время обработки пищевого продукта

Использование: для производства пищевых продуктов. Сущность изобретения заключается в том, что в общем варианте осуществления системы для производства пищевого продукта включают в себя по меньшей мере один теплообменник, по меньшей мере один резервуар для пищевого продукта, по меньшей мере один трубопровод, расположенный ниже по потоку от резервуара для пищевого продукта, для потока пищевого продукта и детектор потока, соединенный с трубопроводом снаружи. Детектор потока включает в себя процессор и машиночитаемый носитель, хранящий команды, выполнение которых заставляет процессор осуществлять анализ расширенного спектра потока пищевого продукта, проходящего по трубопроводу. Также предложены способы производства пищевых продуктов. Технический результат: обеспечение возможности более совершенной процедуры асептической обработки пищевых продуктов, определения местоположения границы раздела вода/пищевой продукт, а также снижение риска упаковки разбавленного пищевого продукта. 2 н. и 27 з.п. ф-лы, 1 ил.

 

Уровень техники

Настоящее изобретение в основном относится к технологии пищевых продуктов. В частности, настоящее изобретение относится к системам и способам для обнаружения границы раздела вода/продукт, которая возникает во время перехода от рециркулирующей воды к пищевому продукту при асептической обработке пищевого продукта.

Способы асептической обработки пищевых продуктов хорошо известны. Однако эти способы не всегда могут обеспечить оптимальные результаты применительно к эффективности производства и/или качеству получаемого продукта. Например, во время асептической обработки пищевой продукт обычно нагревают водой, которая нагревается паром. Однако перед обработкой пищевого продукта систему химически очищают и промывают водой. Затем вода рециркулирует через систему для сохранения стерильности системы. Когда подходит время для введения пищевого продукта в систему, клапан резервуара продукта открывают, и исходная граница раздела вода/пищевой продукт начинает перемещаться по системе. В качестве альтернативы, когда подходит время для прекращения потока пищевого продукта в систему, клапан резервуара продукта закрывают, и вода снова начинает рециркулировать по системе. В любом случае, важно определить местоположение границы вода/продукт или продукт/вода, чтобы избежать неэффективности процесса, такой как, например, ненужные потери продукта, которые происходят, если при упаковке пищевого продукта применяется традиционный подход. При этом предприятия могут руководствоваться традиционным подходом в определении момента появления границы вода/продукт, чтобы гарантировать, что разбавленный продукт не будет упакован для продажи потребителям.

Таким образом, существует необходимость в производственном процессе, который способен точно установить границу раздела вода/пищевой продукт, которая возникает во время асептической обработки пищевого продукта.

Сущность изобретения

В настоящем изобретении предложены системы и способы производства асептичных пищевых продуктов. В варианте осуществления предложены системы для производства пищевого продукта, которые включают в себя по меньшей мере один теплообменник, по меньшей мере один резервуар для пищевого продукта, по меньшей мере один трубопровод, расположенный ниже по потоку от резервуара для пищевого продукта для потока пищевого продукта, и детектор потока, соединенный с трубопроводом снаружи. Детектор потока включает в себя процессор и машиночитаемый носитель, хранящий команды, выполнение которых заставляет процессор осуществлять анализ расширенного спектра потока пищевого продукта, проходящего по трубопроводу.

В варианте осуществления система является системой асептического производства.

В варианте осуществления детектор потока является ультразвуковым детектором потока.

В варианте осуществления трубопровод является трубой. Трубопровод может быть изготовлен из материала, выбранного из группы, состоящей из чугуна, мягкой стали, жесткой пластмассы, нержавеющей стали или их сочетаний. В варианте осуществления трубопровод изготовлен из нержавеющей стали. Трубопровод может соединять резервуар для пищевого продукта с теплообменником.

В варианте осуществления система включает в себя по меньшей мере один дополнительный трубопровод для потока пищевого продукта. По меньшей мере один из дополнительных трубопроводов может иметь детектор потока. В качестве альтернативы, каждый из дополнительных трубопроводов может иметь детектор потока.

В варианте осуществления команды запрограммированы для обеспечения процессором компьютера прохождения ультразвукового луча от детектора потока и через трубопровод, при этом луч (i) преломляется стенкой трубопровода и/или (ii) отражается частицами в пищевом продукте и принимается детектором потока.

В варианте осуществления команды запрограммированы для обеспечения процессором компьютера анализа преломленных и/или отраженных лучей для определения концентрации пищевого продукта.

В варианте осуществления команды запрограммированы для обеспечения процессором компьютера обнаружения изменения от низкой концентрации частиц пищевого продукта к высокой концентрации частиц пищевого продукта.

В другом варианте осуществления предложены системы для производства пищевого продукта, которые включают в себя по меньшей мере один теплообменник, по меньшей мере один резервуар для пищевого продукта, трубу, соединяющую по меньшей мере резервуар для пищевого продукта с теплообменником, компьютер, имеющий процессор компьютера, и машиночитаемый носитель, доступный для компьютера и содержащий программу из системы программного обеспечения, которая запрограммирована для обеспечения процессором компьютера обнаружения изменения от низкой концентрации частиц пищевого продукта к высокой концентрации частиц пищевого продукта, когда пищевой продукт проходит по трубе.

В варианте осуществления компьютер является детектором потока.

В варианте осуществления система является системой асептического производства.

В варианте осуществления компьютер является ультразвуковым детектором потока.

В варианте осуществления компьютер сконструирован и выполнен с возможностью осуществления анализа расширенного спектра.

В варианте осуществления труба изготовлена из материала, выбранного из группы, состоящей из чугуна, мягкой стали, жесткой пластмассы, нержавеющей стали или их сочетаний. В варианте осуществления труба изготовлена из нержавеющей стали.

В варианте осуществления система включает в себя дополнительную трубу для потока пищевого продукта. По меньшей мере некоторые из дополнительных труб могут иметь детектор потока. В качестве альтернативы, все дополнительные трубы могут иметь детектор потока.

В варианте осуществления команды запрограммированы для обеспечения процессором компьютера прохождения ультразвукового луча от детектора потока и через трубу, при этом луч (i) преломляется стенкой трубы и/или (ii) отражается частицами в пищевом продукте и принимается компьютером.

В варианте осуществления команды запрограммированы для обеспечения процессором компьютера анализа преломленных и/или отраженных лучей для определения концентрации пищевого продукта.

В еще одном варианте осуществления предложены способы производства пищевого продукта, которые включают обеспечение системы обработки пищевого продукта, имеющей по меньшей мере один теплообменник, по меньшей мере один резервуар для пищевого продукта, по меньшей мере один трубопровод, расположенный ниже по потоку от резервуара пищевого продукта, для потока пищевого продукта, и детектор потока, соединенный с трубопроводом снаружи. Детектор потока имеет процессор и машиночитаемый носитель, хранящий команды, выполнение которых заставляет процессор осуществлять анализ расширенного спектра потока пищевого продукта, проходящего по трубопроводу. Способы также включают инициирование потока пищевого продукта по трубопроводу.

В варианте осуществления система является системой асептического производства.

В варианте осуществления детектор потока является ультразвуковым детектором потока.

В варианте осуществления трубопровод является трубой. Трубопровод может быть изготовлен из материала, выбранного из группы, состоящей из чугуна, мягкой стали, жесткой пластмассы, нержавеющей стали или их сочетаний. В варианте осуществления трубопровод изготовлен из нержавеющей стали.

В варианте осуществления трубопровод соединяет резервуар для пищевого продукта с теплообменником.

В варианте осуществления система включает в себя по меньшей мере один дополнительный трубопровод для потока пищевого продукта. По меньшей мере один из дополнительных трубопроводов может иметь детектор потока. В качестве альтернативы, каждый из дополнительных трубопроводов может иметь детектор потока.

В варианте осуществления команды запрограммированы для обеспечения процессором компьютера прохождения ультразвукового луча от детектора потока и через трубопровод, при этом луч (i) преломляется стенкой трубопровода и/или (ii) отражается частицами в пищевом продукте и принимается детектором потока.

В варианте осуществления команды запрограммированы для обеспечения процессором компьютера анализа преломленных и/или отраженных лучей для определения концентрации пищевого продукта.

В варианте осуществления команды запрограммированы для обеспечения процессором компьютера обнаружения изменения от низкой концентрации частиц пищевого продукта к высокой концентрации частиц пищевого продукта.

В еще одном варианте осуществления предложены способы производства пищевого продукта, которые включают обеспечение системы обработки пищевого продукта, имеющей по меньшей мере один теплообменник, по меньшей мере один резервуар для пищевого продукта, трубу, соединяющую по меньшей мере резервуар для пищевого продукта с теплообменником, компьютер, имеющий процессор компьютера, и машиночитаемый носитель, доступный для компьютера и содержащий программу из системы программного обеспечения, которая запрограммирована для обеспечения процессором компьютера обнаружения изменения от низкой концентрации частиц пищевого продукта к высокой концентрации частиц пищевого продукта, когда пищевой продукт проходит по трубе. Способы также включают инициирование потока пищевого продукта по трубе.

В варианте осуществления компьютер является детектором потока.

В варианте осуществления система является системой асептического производства.

В варианте осуществления компьютер является ультразвуковым детектором потока. Ультразвуковой детектор потока сконструирован и выполнен с возможностью осуществления анализа расширенного спектра.

В варианте осуществления труба изготовлена из материала, выбранного из группы, состоящей из чугуна, мягкой стали, жесткой пластмассы, нержавеющей стали или их сочетаний. В варианте осуществления труба изготовлена из нержавеющей стали.

В варианте осуществления система также включает в себя дополнительную трубу, соединяющую теплообменник с другими устройствами в системе асептического производства. Другие устройства выбирают из группы, состоящей из резервуаров, клапанов, теплообменников или их сочетаний. Дополнительная труба может иметь по меньшей мере один компьютер.

В варианте осуществления команды запрограммированы для обеспечения процессором компьютера прохождения ультразвукового луча от компьютера и через трубу, при этом луч (i) преломляется стенкой трубы и/или (ii) отражается частицами в пищевом продукте и принимается компьютером.

В варианте осуществления команды запрограммированы для обеспечения процессором компьютера анализа преломленных и/или отраженных лучей для определения концентрации пищевого продукта.

В другом варианте осуществления предложены способы обнаружения границы раздела вода/пищевой продукт. Способы включают обеспечение системы обработки пищевого продукта, имеющей по меньшей мере один теплообменник, по меньшей мере один резервуар для пищевого продукта, трубу, соединяющую по меньшей мере резервуар для пищевого продукта с теплообменником, компьютер, имеющий процессор компьютера, и машиночитаемый носитель, доступный для компьютера и содержащий программу из системы программного обеспечения, которая запрограммирована для обеспечения процессором компьютера обнаружения изменения от низкой концентрации частиц пищевого продукта к высокой концентрации частиц пищевого продукта, когда пищевой продукт проходит по трубе. Способы также включают инициирование потока пищевого продукта по трубе и выполнение программы из системы программного обеспечения.

В варианте осуществления компьютер является детектором потока.

В варианте осуществления система является системой асептического производства.

В варианте осуществления компьютер является ультразвуковым детектором потока. Компьютер может быть сконструирован и выполнен с возможностью осуществления анализа расширенного спектра.

В варианте осуществления труба изготовлена из материала, выбранного из группы, состоящей из чугуна, мягкой стали, жесткой пластмассы, нержавеющей стали или их сочетаний. В варианте осуществления труба изготовлена из нержавеющей стали.

В варианте осуществления система включает в себя дополнительную трубу, соединяющую теплообменник с другими устройствами в системе асептического производства. Другие устройства выбирают из группы, состоящей из резервуаров, клапанов, теплообменников или их сочетаний. Дополнительная труба может иметь по меньшей мере один детектор потока.

В варианте осуществления команды запрограммированы для обеспечения процессором компьютера прохождения ультразвукового луча от компьютера и через трубу, при этом луч (i) преломляется стенкой трубы и/или (ii) отражается частицами в пищевом продукте и принимается компьютером.

В варианте осуществления команды запрограммированы для обеспечения процессором компьютера анализа преломленных и/или отраженных лучей для определения концентрации пищевого продукта.

Преимущество настоящего изобретения заключается в том, что оно предлагает усовершенствованные способы производства пищевых продуктов.

Другое преимущество настоящего изобретения состоит в обеспечении усовершенствованных процедур асептической обработки пищевых продуктов.

Еще одно преимущество настоящего изобретения состоит в обеспечении способов производства пищевого продукта, которые позволяют определить местоположение границы раздела вода/пищевой продукт.

Еще одно другое преимущество настоящего изобретения состоит в обеспечении способов производства пищевого продукта, которые снижают риск упаковки разбавленного пищевого продукта.

Еще одно преимущество настоящего изобретения состоит в обеспечении способов контроля линии по производству асептичного пищевого продукта.

Дополнительные признаки и преимущества описываются здесь далее и будут понятны из последующего подробного описания и чертежей.

На фиг. 1 показано схематическое изображение способа производства пищевого продукта в соответствии с вариантом осуществления настоящего изобретения.

Подробное описание

В соответствии с использованием в данном описании изобретения и прилагаемой формуле изобретения формы слов единственного числа включают соответствия во множественном числе, если только контекст не будет однозначно диктовать обратное.

Употребляемый в данном документе термин «примерно» понимается как относящийся к числам в некотором числовом диапазоне. Кроме того, следует понимать, что все указанные здесь числовые диапазоны включают в себя все числа, целые или дробные, в пределах данного диапазона.

Под употребляемым в настоящем документе выражением «рециркулирующая вода» следует понимать воду, которая рециркулирует в части теплообменника, который будет содержать пищевой продукт во время обработки пищевого продукта. Специалисту в данной области будет понятно, что перед обработкой пищевого продукта систему химически очищают и промывают водой, и вода после этого рециркулирует через систему для поддержания системы стерильной. Когда подходит время для введения пищевого продукта в систему, клапан резервуара продукта открывают, и исходная граница раздела рециркулирующая вода/пищевой продукт начинает перемещаться через систему, при этом вытесняя рециркулирующую воду.

Употребляемое в настоящем документе выражение «анализ расширенного спектра» означает метод, который может применяться при мониторинге потока и включает в себя использование широкого ультразвукового луча, который преломляется стенкой трубопровода и также отражается частицами, суспендированными в текучей среде (например, пищевом продукте). В частности, широкий ультразвуковой луч распространяется от тангенциально установленного керамического выхода измерителя потока и через стенку трубопровода под углом примерно 90° к потоку в трубопроводе. Луч затем преломляется под углами поперек оси потока и после этого отражается от любых частиц, пузырьков и т.д. в текучей среде во всех направлениях и при широком диапазоне частот. Многочисленные отражения принимаются вторым керамическим приемником, присутствующим в измерителе потока. Отраженные сигналы могут анализироваться с помощью специального комплекса цифровой обработки сигналов (например, программного обеспечения) для получения желаемой информации о потоке.

Способы асептической обработки пищевых продуктов хорошо известны. Однако эти способы не всегда могут обеспечить оптимальные результаты применительно к эффективности производства и/или качеству получаемого продукта. Например, во время асептической обработки пищевой продукт обычно нагревают водой, которая нагревается паром. Однако перед обработкой пищевого продукта систему химически очищают и промывают водой. Затем вода рециркулирует через систему для сохранения системы стерильной. Когда подходит время для введения пищевого продукта в систему, клапан резервуара продукта открывают, и исходная граница раздела вода/пищевой продукт начинает перемещаться по системе. В качестве альтернативы, когда подходит время для прекращения потока пищевого продукта в систему, клапан резервуара продукта закрывают, и вода снова начинает рециркулировать по системе. В любом случае, важно определить местоположение границы вода/продукт или продукт/вода, чтобы избежать неэффективности процесса, такой как, например, ненужные потери продукта и/или энергии, которые происходят, если при упаковке пищевого продукта применяется традиционный подход. При этом предприятия могут руководствоваться традиционным подходом в определении момента появления границы вода/продукт, чтобы гарантировать, что разбавленный продукт не будет упакован для продажи потребителям.

Существующие способы обнаружения границы раздела вода/продукт используют известный инструментарий, такой как оптические, плотностные измерения или измерения вязкости, при которых необходимо, чтобы детекторы находились в непосредственном контакте с продуктом. Это представляет проблемы не только для конструкции системы, но также и для стерильности системы асептической обработки.

Другая возможность обнаружения границы раздела вода/продукт включает ультразвуковые детекторы, такие как ультразвуковые измерители потока. Однако традиционная ультразвуковая аппаратура не работает надежно с гигиенической трубой из нержавеющей стали, которая обычно используется при асептической обработке. При этом труба из нержавеющей стали может вибрировать во время использования, что создает значительные помехи сигналам традиционного ультразвукового измерителя потока/детектора.

Соответственно в системах и способах настоящего изобретения применяются детекторы потока, которые специально выполнены с возможностью работы в условиях асептического производства. В частности, детекторы потока настоящего изобретения используют новый алгоритм обработки сигнала, который способен преодолеть описанные выше проблемы установки. Алгоритм обработки представляет собой анализ расширенного спектра, который работает путем определения размера и концентрации твердых частиц в жидкости. Соответственно детектор потока, запрограммированный командами для выполнения анализа расширенного спектра, способен использовать изменение в качестве сигнала от воды (с чрезвычайно низкой концентрацией частиц) к продукту (с относительной высокой концентрацией частиц) для обнаружения прохождения границы раздела вода/продукт.

На фиг. 1 проиллюстрировано схематическое изображение процесса 10 асептического производства пищевого продукта, который включает в себя, без ограничения перечисленным, резервуар 12 для воды, резервуар 14 для пищевого продукта, клапан 16, теплообменник 18 и трубопроводы 20, соединяющие элементы процесса. Трубопроводы 20 могут быть трубопроводами из нержавеющей стали. Однако специалисту будет понятно, что трубопроводы также могут быть изготовлены из такого материала, как, например, чугун, мягкая сталь, жесткая пластмасса и т.д. Специалисту также понятно, что производственная линия не должна быть ограничена показанными устройствами и может включать в себя, например, другие резервуары, клапаны, трубопроводы, теплообменники, насосы, резервуары для выдержки, охладители, уравнительные резервуары, дренажи, упаковочное оборудование и т.д. Например, и как показано на фиг. 1, процесс 10 также может включать в себя насос 24, резервуар 26 для выдержки, охладитель 28, асептический уравнительный резервуар 30, дренаж 32, упаковочное оборудование 34 и дополнительные клапаны 36, 38.

Как также показано на фиг. 1, детекторы потока 22 могут быть расположены на внешней части любой трубы 20, присутствующей в производственной линии. В связи с этим, одна производственная линия может иметь один детектор потока или множество детекторов потока, расположенных вдоль любого участка трубопровода в процессе. Обеспечение множества детекторов позволяет оператору производства определить местоположение границы раздела вода/продукт или продукт/вода в любом месте вдоль производственной линии. Это расширение возможностей обнаружения в значительной степени снизит количество теряемой энергии или продукта, которые в настоящее время отмечаются на производственных линиях асептического процесса. Специалисту будет ясно, что детекторы потока 22 необязательно должны быть расположены в показанных местах процесса и могут быть расположены вдоль любого участка трубопровода 20 в процессе.

Соответственно процессы и способы настоящего изобретения предпочтительно снижают количество теряемого пищевого продукта и/или энергии, которые отмечаются в известных процессах асептического производства. Кроме того, системы и способы настоящего изобретения обеспечивают преимущества снижения риска загрязнения за счет использования установленного снаружи детектора потока и удобство конструкции производственной линии.

Хотя настоящее изобретение обсуждается как используемое при производстве, например, асептичного пищевого продукта через теплообменник, который нагревается с помощью нагревательной среды, специалисту будет понятно, что описанные здесь способы и процессы не ограничиваются производством асептичных пищевых продуктов. Кроме того, хотя настоящее изобретение содержит описания обработки пищевых продуктов, специалисту будет понятно, что любые продукты, которые имеют концентрацию частиц, которая больше, чем у воды, могут быть обработаны в соответствии с системами и способами, описанными в настоящем документе.

Кроме того, хотя выражения «измеритель потока» и «детектор потока» используются в различных местах в данном описании, специалисту в данной области будет понятно, что эти устройства также могут называться компьютерами, которые специально запрограммированы для определения расходов потока. Соответственно, выражения «измеритель потока», «детектор потока» и «компьютер» могут быть использованы взаимозаменяемо в настоящем описании.

В варианте осуществления настоящего изобретения предложены способы производства пищевого продукта, которые включают обеспечение системы обработки пищевого продукта, имеющей по меньшей мере один теплообменник, по меньшей мере один резервуар для пищевого продукта, по меньшей мере один трубопровод, расположенный ниже по потоку от резервуара для пищевого продукта, для потока пищевого продукта и детектор потока, соединенный с трубопроводом снаружи. Детектор потока имеет процессор и машиночитаемый носитель, хранящий команды, выполнение которых заставляет процессор осуществлять анализ расширенного спектра потока пищевого продукта, проходящего по трубопроводу. Способы также включают инициирование потока пищевого продукта по трубопроводу.

В еще одном варианте осуществления предложены способы производства пищевого продукта, которые включают обеспечение системы обработки пищевого продукта, имеющей по меньшей мере один теплообменник, по меньшей мере один резервуар для пищевого продукта, трубу, соединяющую по меньшей мере резервуар для пищевого продукта с теплообменником, компьютер, имеющий процессор компьютера, и машиночитаемый носитель, доступный для компьютера и содержащий программу из системы программного обеспечения, которая запрограммирована для обеспечения процессором компьютера обнаружения изменения от низкой концентрации частиц пищевого продукта к высокой концентрации частиц пищевого продукта, когда пищевой продукт проходит по трубе. Способы также включают инициирование потока пищевого продукта по трубе.

В другом варианте осуществления предложены способы обнаружения границы раздела вода/пищевой продукт. Способы включают обеспечение системы обработки пищевого продукта, имеющей по меньшей мере один теплообменник, по меньшей мере один резервуар для пищевого продукта, трубу, соединяющую по меньшей мере резервуар для пищевого продукта с теплообменником, компьютер, имеющий процессор компьютера, и машиночитаемый носитель, доступный для компьютера и содержащий программу из системы программного обеспечения, которая запрограммирована для обеспечения процессором компьютера обнаружения изменения от низкой концентрации частиц пищевого продукта к высокой концентрации частиц пищевого продукта, когда пищевой продукт проходит по трубе. Способы также включают инициирование потока пищевого продукта по трубе и выполнение программы из системы программного обеспечения.

Следует понимать, что различные изменения и модификации, вносимые в предпочтительные в настоящее время варианты осуществления, описанные в данном документе, будут очевидны специалистам. Такие изменения и модификации могут быть осуществлены без отклонения от сущности и объема настоящего предмета изобретения и без уменьшения его предполагаемых преимуществ. Таким образом, предполагается, что такие изменения и модификации охватываются прилагаемой формулой изобретения.

1. Система для производства пищевого продукта, при этом система содержит:

по меньшей мере один теплообменник;

по меньшей мере один резервуар для пищевого продукта;

по меньшей мере один трубопровод, расположенный ниже по потоку от резервуара пищевого продукта, для потока пищевого продукта, причем трубопровод соединяет резервуар для пищевого продукта с теплообменником; и

детектор потока, соединенный с трубопроводом снаружи, причем детектор потока содержит процессор и машиночитаемый носитель, хранящий команды, выполнение которых заставляет процессор осуществлять анализ расширенного спектра потока пищевого продукта, проходящего по трубопроводу.

2. Система по п. 1, где система является системой асептического производства.

3. Система по п. 1, в которой детектор потока является ультразвуковым детектором потока.

4. Система по п. 1, дополнительно содержащая по меньшей мере один дополнительный трубопровод для потока пищевого продукта, в которой по меньшей мере один из дополнительных трубопроводов содержит детектор потока.

5. Система по п. 1, в которой команды запрограммированы для обеспечения процессором прохождения ультразвукового луча от детектора потока и через трубопровод, при этом луч (i) преломляется стенкой трубопровода и/или (ii) отражается частицами в пищевом продукте и принимается детектором потока.

6. Система по п. 5, в которой команды запрограммированы для обеспечения процессором анализа преломленных и/или отраженных лучей для определения концентрации пищевого продукта.

7. Система по п. 1, в которой команды запрограммированы для обеспечения процессором компьютера обнаружения изменения от низкой концентрации частиц пищевого продукта к высокой концентрации частиц пищевого продукта.

8. Система по п. 1, дополнительно содержащая:

компьютер, имеющий процессор компьютера; и

машиночитаемый носитель, доступный для компьютера и содержащий программу из системы программного обеспечения, которая запрограммирована для обеспечения процессором компьютера обнаружения изменения от низкой концентрации частиц пищевого продукта к высокой концентрации частиц пищевого продукта, когда пищевой продукт проходит по пути потока.

9. Система по п. 1, дополнительно содержащая дополнительные пути потока, соединяющие другие устройства в системе асептического производства, при этом другие устройства выбраны из группы, состоящей из резервуаров, клапанов, теплообменников и их сочетаний.

10. Система по п. 1, в которой команды запрограммированы для обеспечения инициирования потока пищевого продукта по трубопроводу.

11. Способ обнаружения границы раздела вода/пищевой продукт, при этом способ включает в себя:

обеспечение системы производства пищевых продуктов, содержащей

по меньшей мере один теплообменник,

по меньшей мере один резервуар для пищевого продукта,

трубу, соединяющую по меньшей мере резервуар для пищевого продукта с теплообменником;

компьютер, имеющий процессор компьютера, и

машиночитаемый носитель, доступный для компьютера и содержащий программу из системы программного обеспечения, которая запрограммирована для обеспечения процессором компьютера обнаружения изменения от низкой концентрации частиц пищевого продукта к высокой концентрации частиц пищевого продукта, когда пищевой продукт проходит по трубе.

12. Способ по п. 11, дополнительно включающий стадию инициирования потока пищевого продукта по трубе.

13. Способ по п. 11, дополнительно включающий стадию выполнения программы из системы программного обеспечения.

14. Способ по п. 11, в котором имеется программа из системы программного обеспечения, которая запрограммирована для обеспечения процессором компьютера прохождения ультразвукового луча от детектора потока и через трубу, при этом луч (i) преломляется стенкой трубы и/или (ii) отражается частицами в пищевом продукте и принимается детектором потока.

15. Способ по п. 14, в котором программа из системы программного обеспечения запрограммирована для обеспечения процессором компьютера анализа преломленных и/или отраженных лучей для определения концентрации пищевого продукта.

16. Способ по п. 14, в котором ультразвуковой детектор потока сконструирован и выполнен с возможностью осуществления анализа расширенного спектра.

17. Способ по п. 11, дополнительно включающий в себя дополнительную трубу, соединяющую теплообменник с другими устройствами в системе асептического производства, в котором другие устройства выбраны из группы, состоящей из

резервуаров, клапанов, теплообменников и их сочетаний, и в котором программа из системы программного обеспечения запрограммирована для обеспечения процессором компьютера прохождения ультразвукового луча от детектора потока через по меньшей мере одну дополнительную трубу, при этом луч (i) преломляется стенкой трубопровода и/или (ii) отражается частицами в пищевом продукте и принимается детектором потока.

18. Способ по п. 17, в котором программа из системы программного обеспечения запрограммирована для обеспечения процессором компьютера анализа преломленных и/или отраженных лучей для определения концентрации пищевого продукта.

19. Способ по п. 17, в котором ультразвуковой детектор потока сконструирован и выполнен с возможностью осуществления анализа расширенного спектра.

20. Способ по п. 11, в котором система для производства пищевого продукта, содержит:

по меньшей мере один теплообменник;

по меньшей мере один резервуар для пищевого продукта;

по меньшей мере один трубопровод, расположенный ниже по потоку от резервуара пищевого продукта, для потока пищевого продукта, причем трубопровод соединяет резервуар для пищевого продукта с теплообменником; и

детектор потока, соединенный с трубопроводом снаружи, причем детектор потока содержит процессор и машиночитаемый носитель, хранящий команды, выполнение которых заставляет процессор осуществлять анализ расширенного спектра потока пищевого продукта, проходящего по трубопроводу.

21. Способ по п. 11, в котором система для производства пищевого продукта является системой асептического производства.

22. Способ по п. 20, в котором детектор потока является ультразвуковым детектором потока.

23. Способ по п. 20, дополнительно содержащий по меньшей мере один дополнительный трубопровод для потока пищевого продукта, в котором по меньшей мере один из дополнительных трубопроводов содержит детектор потока.

24. Способ по п. 20, в котором команды запрограммированы для обеспечения процессором прохождения ультразвукового луча от детектора потока и через трубопровод, при этом луч (i) преломляется стенкой трубопровода и/или (ii) отражается частицами в пищевом продукте и принимается детектором потока.

25. Способ по п. 20, в котором команды запрограммированы для обеспечения процессором анализа преломленных и/или отраженных лучей для определения концентрации пищевого продукта.

26. Способ по п. 20, в котором команды запрограммированы для обеспечения процессором компьютера обнаружения изменения от низкой концентрации частиц пищевого продукта к высокой концентрации частиц пищевого продукта.

27. Способ по п. 20, дополнительно содержащий:

компьютер, имеющий процессор компьютера; и

машиночитаемый носитель, доступный для компьютера и содержащий программу из системы программного обеспечения, которая запрограммирована для обеспечения процессором компьютера обнаружения изменения от низкой концентрации частиц пищевого продукта к высокой концентрации частиц пищевого продукта, когда пищевой продукт проходит по пути потока.

28. Способ по п. 20, дополнительно содержащий дополнительные пути потока, соединяющие другие устройства в системе асептического производства, при этом другие устройства выбраны из группы, состоящей из резервуаров, клапанов, теплообменников и их сочетаний.

29. Способ по п. 20, в котором команды запрограммированы для обеспечения инициирования потока пищевого продукта по трубопроводу.



 

Похожие патенты:

Раскрыты способ и устройство для определения саморасцепа железнодорожного состава, когда один или более железнодорожных вагонов/пассажирских вагонов (401) случайно расцепляются от остальной части железнодорожного состава.

Изобретение относится к геофизическим, а в частности к сейсмоакустическим, методам исследований и может быть использовано для калибровки сейсмоакустических преобразователей, применяющихся при мониторинге различных технических объектов.

Использование: для диагностики изделий сложной геометрии. Сущность изобретения заключается в том, что в изделии возбуждают вынужденные колебания электромагнитным способом, измеряют параметры колебаний и разность фаз между опорным сигналом и колебаниями изделия в нескольких различных точках, возбуждают бигармонические колебания, выделяют сигнал отклик на комбинационных частотах, а по изменению параметров этого сигнала в сравнении с эталонными параметрами изделия без дефекта судят о наличии или отсутствии значимых дефектов в проверяемом изделии.

Способ относится к области измерительной техники и может быть использован для оперативного контроля уровня и плотности жидкости в баках резервуарного парка, что актуально для предприятий нефтедобывающей, нефтеперерабатывающей, авиационной, медицинской, пищевой промышленности.

Использование: для измерения параметров ультразвуковых волн (УЗВ) при исследованиях физико-механических характеристик материалов и дефектоскопии. Сущность изобретения заключается в том, что перед проведением основного измерения получают информацию о помехе, для чего в исследуемой среде располагают излучающий и приемный преобразователи, возбуждают и принимают ультразвуковые импульсы, нормируют амплитуду первого вступления, соответствующего волне помехи, запоминают полученный импульс, после чего проводят основное измерение, нормируют амплитуду первого вступления импульса, совмещают его с первым вступлением импульса, полученного при предварительном измерении, и производят вычитание импульсов.
Изобретение относится к геофизическим, в частности сейсмоакустическим, методам исследований, и может быть использовано для калибровки характеристик сейсмоакустических преобразователей.

Группа изобретений относится к средствам диагностики целостности корпуса оборудования. Технический результат – повышение точности определения потерь целостности корпуса оборудования.

Изобретение относится к области медицины, в частности к области онкологии и урологии, и касается способа выбора отделов предстательной железы для пункции при диагностике рака предстательной железы.

Изобретение относится к области исследования материалов с помощью ультразвуковых волн акустическими контрольно-измерительными приборами и может быть использовано при неразрушающем контроле материалов и изделий в различных областях промышленности.

Изобретение может быть использовано для измерения уровня границы жидкостей с разными плотностями и электропроводностями, диэлектрическими проницаемостями от 1,5 единиц, границы жидкость - осадок на предприятиях нефтегазовой отрасли в атомной энергетике.

Использование: для определения механических напряжений в рельсах. Сущность изобретения заключается в том, что на рельсовые нити устанавливают преобразователи, подключают их к приемному устройству, производят начальные (эталонные) измерения, величину механических напряжений определяют по результатам измерения временных задержек прихода ультразвукового сигнала к приемникам от начальных измерений, при этом измерение начального напряжения осуществляют подключенным к приемному устройству преобразователем, установленным на отрезке рельса, размещенном на перемещающейся по рельсовому пути тележке, дополнительно измеряют временные задержки прихода ультразвукового сигнала к приемному устройству в зависимости от высоты рельса, подключенными к нему преобразователями продольной волны, установленными на отрезке рельса, и поверхности рельсовых нитей и механические напряжения определяют по заданной математической формуле. Технический результат: повышение точности определения механических напряжений в рельсах в динамике. 1 з.п. ф-лы, 2 табл., 1 ил.

Изобретение относится к метрологии, в частности к способам контроля материалов и изделий. Способ уменьшения мертвой зоны при контроле изделий ультразвуковым эхо-импульсным методом заключается в том, что на контролируемое изделие устанавливают преобразователь через линию акустической задержки, вводят в контролируемое изделие ультразвуковой импульс и компенсируют импульс, отраженный от границы раздела изделия и линии акустической задержки, аналогичным по форме и амплитуде импульсом. Перед проведением контроля устанавливают преобразователь через линию акустической задержки на настроечный образец, возбуждают ультразвуковые колебания, фиксируют импульс, отраженный от границы раздела настроечного образца и линии акустической задержки, и используют этот импульс для компенсации. При этом толщина настроечного образца выбирается из условия, чтобы акустическая задержка в настроечном образце была больше или равна акустической задержке в контролируемом слое изделия. Линия задержки представляет собой волновод, а в качестве компенсирующего импульса используют импульс, дважды отраженный от границы линии акустической задержки и контролируемого изделия. Технический результат – повышение точности. 4 з.п. ф-лы, 4 ил.

Использование: для определения твердости по Шору полимера. Сущность изобретения заключается в том, что испытуемый образец размещают между излучателем и приемником ультразвуковых колебаний, подают с генератора электрический сигнал определенной частоты и длительности на упомянутый излучатель ультразвуковых колебаний с последующим приемом импульсов ультразвуковых колебаний, прошедших образец, при помощи приемника, с измерением скорости их распространения и коэффициента затухания, зависящего от расстояния между поверхностями излучателя и приемника, для каждого конкретного испытуемого образца, с дальнейшим их преобразованием в электрический сигнал с амплитудой, зависящей от свойств образца. Одновременно с подачей и приемом ультразвуковых колебаний электронным штангенциркулем измеряют толщину образца, затем определяют константы, индивидуальные для полимера одной марки при заданной частоте измерения и толщине испытуемого образца, после чего определяют твердость полимера по Шору по заданной математической формуле. Технический результат: обеспечение возможности ультразвукового определения твердости полимеров по Шору. 2 ил., 1 табл.

Изобретение относится к измерительной технике, в частности к способам акустического качества образцов звукопоглощающих конструкций. Способ измерения коэффициента отражения звукопоглощающей конструкции включает прием зондирующего и отраженного сигналов при помощи однонаправленного приемника из двух приемных элементов, изменение направления чувствительности которого осуществляется переключением последовательности приемных элементов, расположенных в гидроакустическом бассейне на оси перпендикулярной поверхности образца звукопоглощающей конструкции, и определение отношения уровней принятых сигналов. Одновременно с однонаправленным приемом сигналов дополнительно осуществляют прием сигналов при помощи дискретной антенны, установленной параллельно звукопоглощающей конструкции, причем центральный приемный элемент антенны является приемным элементом однонаправленного приемника, после чего принятые сигналы детектируют, перемножают и используют для определения коэффициента отражения звукопоглощающей конструкции. Управление параметрами направленного приема осуществляется путем задержки отраженных сигналов. Устройство содержит двухканальный однонаправленный приемник, блок управления, плоскую дискретную антенну, детекторы, перемножитель, вычислительное устройство. Технический результат - повышение помехоустойчивости измерений. 6 ил.

Использование: для проверки работоспособности внутритрубных инспекционных приборов на испытательном трубопроводном полигоне. Сущность изобретения заключается в том, что используют катушки трубных секций с естественными дефектами с действующих трубопроводов и катушки трубных секций с нанесенными на них искусственными дефектами. Технический результат: обеспечение возможности создания способа изготовления фланцевой вставки для проверки работоспособности внутритрубных инспекционных приборов на испытательном трубопроводном полигоне. 2 ил., 1 табл.

Изобретение используется для неразрушающего контроля изделий из ферромагнитного материала. Сущность заключается в том, что электромагнитно-акустический преобразователь содержит магнитную систему в виде постоянного магнита и три плоские катушки, электрически изолированные друг от друга и расположенные под магнитом одна под другой, при этом постоянный магнит выполнен в виде сплошного цилиндра при отношении его диаметра к высоте один к трем, а витки одной плоской катушки направлены под углом сто двадцать градусов к виткам двух других катушек, а диаметр окружности, описывающей витки каждой катушки, равен диаметру постоянного магнита. Технический результат - обеспечение возможности возбуждения горизонтально поляризованных ультразвуковых волн с направлением поляризации под углом 120° друг к другу. 1 ил.

Группа изобретений относится к медицине и предназначена для неинвазивного мониторинга свойств биологической ткани. Последовательно проводят следующие этапы: сбора данных импеданса и вспомогательных данных от участка тела пользователя; предварительной обработки полученных данных, причем предварительная обработка заключается в фильтрации полученных данных и удалении артефактов из полученных данных импеданса путем обнаружения не относящихся к пище физиологических факторов на основе вспомогательных данных; восстановления динамики кривой глюкозы путем применения обученного алгоритма машинного обучения, оценивания гликемического индекса из динамики кривой глюкозы, предоставления пользователю результатов оценки и автоматического мониторинга привычек питания на основе упомянутых результатов оценки для определенного периода времени. Группа изобретений позволяет повысить эффективность неинвазивного мониторинга гликемических показателей и скорректировать привычки питания. 2 н. и 40 з.п. ф-лы, 5 ил.

Использование: для неразрушающего контроля деталей и конструкций из полимерных композиционных материалов (ПКМ), а именно клеевых соединений монолитных листов из ПКМ. Сущность изобретения заключается в том, что осуществляют ввод ультразвуковых колебаний в материал одного из соединяемых листов и регистрацию сигналов, отраженных от дефектов, поверхностей раздела «лист-клеевой слой», «клеевой слой-лист» с помощью ультразвукового дефектоскопа, снабженного прямым совмещенным пьезоэлектрическим широкополосным преобразователем, при этом наличие дефектов в клеевом слое определяется по величине амплитуды ультразвукового сигнала, отраженного от клеевого слоя в месте расположения дефекта, относительно положения строба на экране дефектоскопа, устанавливаемого при настройке дефектоскопа на образце, имеющем искусственные дефекты клеевого слоя, причем положение и длительность строба выбираются таким образом, чтобы сигнал, отраженный от клеевого слоя, попадал в диапазон этого строба, а амплитуду сигнала от клеевого слоя объекта контроля устанавливают равной средней амплитуде сигнала от клеевого слоя образца в бездефектной зоне. Технический результат: повышение достоверности контроля в части определения границ и размеров дефектов клеевого слоя, снижение вероятности пропуска дефектов или перебраковки объекта контроля, а также возможность контроля соединения листов из ПКМ с малой толщиной клеевого слоя (менее 0,7 мм). 1 з.п. ф-лы, 6 ил.

Изобретение относится к области измерительной техники и может быть использовано для автоматического обнаружения концентрации технологического материала. Предложено устройство и способ для того, чтобы автоматически переключать матрицы в измерителе для определения концентрации продукта неизвестного материала, который может представлять собой очищающий материал или применяемый материал. Настоящее изобретение использует измеряемую линейную плотность и линейную температуру материала наряду с эталонной температурой для того, чтобы вычислять эталонную плотность. Используя эталонную температуру и эталонную плотность, можно определять концентрацию материала в процентных долях. Технический результат – повышение точности и автоматичности определения изменения технологического материала и концентрации каждого материала. 3 н. и 9 з.п.ф-лы, 11 ил.

Использование: для определения толщины слоя бетона, пропитанного жидкостью в бетонных и железобетонных конструкциях сооружений при одностороннем доступе к контролируемой конструкции. Сущность изобретения заключается в том, что устанавливают неподвижно на поверхности бетона излучатель и перемещают последовательно приемник ультразвуковых сигналов с постоянным шагом по линии, проходящей через точку установки излучателя, фиксируют отсчет времени распространения волн при каждой установке приемника, выполняют построение годографа времени распространения волн, определяют перелом линии годографа на границе сухого и пропитанного жидкостью слоев бетона, в качестве информационного параметра используют характер распространения поперечных волн, после чего рассчитывают толщину пропитанного жидкостью слоя бетона по формуле: где h - толщина пропитанного жидкостью слоя бетона, мм, L - расстояние от излучателя до точки перелома годографа, мм, Ct1 и Ct2 - скорости поперечных волн в пропитанном жидкостью и в сухом бетонах, соответственно, м/с. Технический результат: обеспечение возможности определения толщины слоя бетона, пропитанного жидкостью, в бетонных и железобетонных конструкциях сооружений при одностороннем доступе к контролируемой конструкции.

Использование: для производства пищевых продуктов. Сущность изобретения заключается в том, что в общем варианте осуществления системы для производства пищевого продукта включают в себя по меньшей мере один теплообменник, по меньшей мере один резервуар для пищевого продукта, по меньшей мере один трубопровод, расположенный ниже по потоку от резервуара для пищевого продукта, для потока пищевого продукта и детектор потока, соединенный с трубопроводом снаружи. Детектор потока включает в себя процессор и машиночитаемый носитель, хранящий команды, выполнение которых заставляет процессор осуществлять анализ расширенного спектра потока пищевого продукта, проходящего по трубопроводу. Также предложены способы производства пищевых продуктов. Технический результат: обеспечение возможности более совершенной процедуры асептической обработки пищевых продуктов, определения местоположения границы раздела водапищевой продукт, а также снижение риска упаковки разбавленного пищевого продукта. 2 н. и 27 з.п. ф-лы, 1 ил.

Наверх