Катализатор для парового риформинга нафты и углеводородных газов

Изобретение относится к каталитической химии, в частности к приготовлению катализаторов для парового риформинга углеводородного сырья, и может быть использовано в химической и нефтехимической промышленности. Описан катализатор парового риформинга нафты и углеводородных газов, содержащий оксиды никеля, магния, кальция, калия и алюминия. Состав сырья для получения носителя включает глинозем, структурообразующую добавку и каолин, при следующем соотношении компонентов, мас.%: cтруктурообразующая добавка 6,9-8,5; каолин 1,5-12,0; глинозем остальное до 100. При приготовлении носителя предварительно смешивают глинозем и структурообразующую добавку, после чего смесь измельчают, а полученный помол смешивают с каолином. Полученный катализатор имеет следующий химический состав, мас.%: оксид никеля 5,0-16,0; оксид магния 1,8-5,3; оксид кальция 1,50-5,1; оксид калия 3,4-5,5; оксид алюминия 1,0-3,8; носитель остальное до 100. Заявляемый технический результат - повышение стабильности, степени конверсии, термостойкости (более 20 теплосмен), уменьшение перепада давления и температуры, предотвращение закоксовывания, разрушения катализатора и увеличении срока его службы, сокращение расхода катализатора и материальных затрат получен не аддитивным вкладом каждого компонента, а за счет суммарного синергетического эффекта. 3 з.п. ф-лы, 3 табл., 5 пр.

 

Изобретение относится к каталитической химии, в частности к приготовлению катализаторов для парового риформинга углеводородного сырья, и может быть использовано в химической и нефтехимической промышленности.

Из авторского свидетельства №948008 (СССР B01J 23/78, опубл. 1982) известен катализатор для парового риформинга жидких углеводородов (бензинов прямой гонки) содержащий, мас. %: 8,0-12,0 Al2O3; 0,5-1,5 MgO; 0,5-3,0 La2О3 на носителе, содержащем, мас. %: 1,0 СаО; 10,0 MgO; 89,0 Al2O3.

Недостатком известного катализатора является низкая коксостойкость. Перепад давления по слою катализатора при этом составляет 1,60, а температурный градиент (Тконнач) (стабильность) - 0,77. Кроме того, введение оксида лантана повышает стоимость катализатора.

В патенте №2054963 (RU МПК6 B01J 23/76 С01B 3/38, опубл. 1996.02.27.) описан катализатор для парового риформинга углеводородов, который содержит, мас. %: никель, в пересчете на оксид 6,0-12, 1; магний-алюминиевая шпинель (МАШ) 0,82-2,37; алюминат лантана 0,89-3,11; носитель на основе альфа-оксида алюминия остальное. МАШ имеет ф-лу: Mg1+xAl2O4+1, где х=0,05-0,5, причем молярные отношения МАШ и алюмината лантана равны 1 - 1,43. В качестве носителя катализатор содержит предпочтительно альфа-оксид алюминия с содержанием 2 мас. % лантанового бета-глинозема или 2 СаО MgO. Коксостойкость, характеризующаяся относительным изменением перепада давления в слое катализатора (Ркон.нач), составляет 1,0-1,2. Стабильность, характеризующаяся относительным изменением температурного градиента (Ткон.нач), изменяется в пределах 0,80-1,00.

Недостатками катализатора являются низкая коксостойкость, использование дорогой, сложной в приготовлении и недостаточно активной двойной соли лантана и магния.

В патенте №2432993 (RU МПК B01J 37/02 (2006.01), B01J 37/04 (2006.01), B01J 23/78 (2006.01), B01J 21/04 (2006.01), B01J 23/04 (2006.01), С01B 3/38 (2006.01), опубл. 10.11.2011) описан катализатор риформинга углеводородов на основе оксида алюминия, включающий оксиды калия и никеля.

Недостатками данного катализатора являются его низкая активность, более высокое содержание метана в конвертированном газе.

Из патента №2462306 (RU МПК B01J 21/04, опубл. 27.09.2012.) известен катализатор парового риформинга углеводородов метанового ряда C1-C4, который включает - активную часть, содержащую оксиды никеля, алюминия, лантана и носитель при следующем содержании компонентов, мас. %: оксид никеля (13,0-14,2); оксид алюминия (1,52-1,62); оксид лантана (0,25-0,50); и остальное - носитель при следующем отдельном содержании в нем компонентов, мас. %: оксид алюминия (87,7-91,9); оксид кальция (7,5-10,0); оксид калия (0,6-2,36).

Недостатком данного катализатора является применение лантана, цемента и поливинилового спирта, что повышает стоимость катализатора.

Наиболее близким (прототип) по технической сущности и достигаемому результату является описанный в патенте №2048910 (RU МПК6 B01J 23/78 С01B 3/38, опубл. 1995.11.27.) катализатор для парового риформинга нафты и нефтезаводских газов.

Данный катализатор включает следующие активные компоненты: оксиды никеля (0,3-8,0), алюминия (0,65-1,80), магния (0,45-1,65), кальция (0,35-1,40), калия (0,75-3,35) и носитель (остальное). В качестве носителя используют оксид алюминия, содержащий каолин - Al4(Si4O10)(OH)8, при следующем содержании компонентов, масс. %: каолин - 2,0-8,0; оксид алюминия - остальное.

Для приготовления катализатора используют носитель с пористостью 0,25 см3/г, который дважды пропитывают водными растворами никеля азотнокислого шестиводного Ni(NO3)26H2O, алюминия азотнокислого девятиводного Al(NO3)32O, кальция азотнокислого четырехводного Ca(NO3)22O, магния азотнокислого шестиводного Mg(NO3)22O и калия азотнокислого безводного KNO3. После каждой пропитки катализатор сушат и прокаливают при 450°C не менее 4 ч.

Для испытания коксостойкости катализаторов в паровом риформинге жидких углеводородов в качестве сырья используют смесь нормального гексана с бензолом содержащую 15% бензола по коксогенности близкую к нафте. Риформинг проводят при 500°C, мольном отношении Н2O/С=2,5 и атмосферном давлении в установке с проточным микрореактором при контактной нагрузке 4 1/ч по жидкому сырью. Активацию катализатора проводят водородом (0,2 моль/см3 кат.ч) при 550°C в течение 2 ч.

Коксостойкость, характеризующаяся относительным изменением перепада давления в слое катализатора (Ркон.нач), составляет 1,00-1,10.

Стабильность, характеризующаяся относительным изменением температурного градиента (Ткон.нач), составляет 1,28-1,74.

Недостатками катализатора по прототипу являются более низкие технико-экономические характеристики, недостаточная активность и меньший срок службы катализатора.

Задачей настоящего изобретения является расширение ассортимента высоко активных, стабильных и термостойких катализаторов для парового риформинга нафты и углеводородных газов.

Совокупность существенных признаков в заявляемом изобретении позволяет получить следующий технический результат:

- улучшение каталитических свойств;

- повышение коксостойкости;

- повышение стабильности;

- повышение термостойкости;

- предотвращение разрушения катализатора и более длительный срок его службы (до 4 лет);

- сокращение расхода катализатора;

- сокращение материальных затрат.

Заявляемый технический результат от реализации катализатора для парового риформинга нафты и углеводородных газов, содержащего оксиды алюминия, никеля, магния, кальция, калия и носитель на основе оксида алюминия, содержащего каолин, достигают за счет того, что состав сырья для приготовления носителя включает структурообразующую добавку, каолин и глинозем, при следующем соотношении компонентов, мас. %:

Структурообразующая добавка 6,9-8,5
Каолин 1,5-12,0
Глинозем Остальное до 100,

а предлагаемый катализатор имеет следующий химический состав, масс. %:

Оксид никеля 5,0-16,0
Оксид магния 1,8-5,3
Оксид кальция 1,50-5,1
Оксид калия 3,4-5,5
Оксид алюминия 1,0-3,8
Носитель Остальное до 100

При приготовлении раствора для пропитки носителя предлагается использовать кальций магниевый раствор (доломитовая вытяжка) с массовой концентрацией оксида кальция 200-250 г/дм3 и оксида и магния с массовой концентрацией 100-150 г/дм3, а массовую концентрацию оксидов никеля, алюминия, калия, магния, кальция в готовом пропиточном растворе поддерживать в диапазоне, г/дм3: 48-195; 6,2-22,0; 33-67; 17-64,5; 10-62,5 соответственно. При этом плотность пропиточных растворов составляет 1,25-1,47 г/см3.

При приготовлении носителя и катализатора носитель предлагается сушить при температуре 30-50°C в течение 48 часов и прокаливать при температуре 1350-1450°C в течение 1-3 часов, а термообработку катализатора осуществлять следующим образом: в начале сушки температуру поддерживать не более 200°C, затем поднимать со скоростью 20-50°C в час до значения 250°C и при этой температуре выдерживать в течение 18-28 часов, после чего катализатор прокаливать при температуре 600-700°C.

Сопоставительный анализ прототипа и заявляемого катализатора показывает, что оба катализатора содержат оксиды никеля, алюминия, магния, кальция, калия и носитель на основе оксида алюминия, содержащего каолин.

Отличительной особенностью заявляемого катализатора является то, что состав сырья для получения носителя включает глинозем, структурообразующую добавку и каолин, при следующем соотношении компонентов, мас. %:

Структурообразующая добавка 6,9-8,5
Каолин 1,5-12,0
Глинозем Остальное до 100,

а предлагаемый катализатор имеет следующий химический состав, масс. %:

Оксид никеля 5,0-16,0
Оксид магния 1,8-5,3
Оксид кальция 1,50-5,1
Оксид калия 3,4-5,5
Оксид алюминия 1,0-3,8
Носитель Остальное до 100

При приготовлении раствора для пропитки носителя предлагается использовать кальций магниевый раствор (доломитовая вытяжка) с массовой концентрацией оксида кальция 200-250 г/дм3 и оксида и магния с массовой концентрацией 100-150 г/дм3, а массовую концентрацию оксидов никеля, алюминия, калия, магния, кальция в готовом пропиточном растворе поддерживать в диапазоне, г/дм3: 48-195; 6,2-22,0; 33-67; 17-64,5; 10-62,5 соответственно. При этом плотность пропиточных растворов составляет 1,25-1,47 г/см3.

При приготовлении носителя и катализатора носитель предлагается сушить при температуре 30-50°C в течение 48 часов и прокаливать при температуре 1350-1450°C в течение 1-3 часов, а термообработку катализатора осуществлять следующим образом: в начале сушки температуру поддерживать не более 200°C, затем поднимать со скоростью 20-50°C в час до значения 250°C и при этой температуре выдерживать в течение 18-28 часов, после чего катализатор прокаливать при температуре 600-700°C.

Производство катализатора для парового риформинга нафты и углеводородных газов включает следующие стадии:

- Размол сырья для приготовления носителя;

- Приготовление раствора пептизатора;

- Производство носителя;

- Сушка и прокалка носителя;

- Приготовление раствора для пропитки катализатора;

- Производство катализатора;

- Сушка и прокалка катализатора.

Реализацию изобретения иллюстрируют следующие примеры.

Пример 1. Предварительно осуществляют подготовку смеси, состоящей из глинозема и структурообразующей добавки (древесной муки) путем их размола в шаровой мельнице. Для этого в шаровую мельницу загружают 315 кг глинозема и 24 кг древесной муки в расчете на сухое вещество. Измельчение ведут не менее 10 часов до тонины помола - остаток на сите 0,05 мм не более 5 мас. %.

Предварительно готовят раствор пептизатора. Для этого с помощью насоса в приемную емкость-сборник подают 30-50 дм3 азотной кислоты. Из сборника азотную кислоту насосом подают в мерник, где разбавляют водой до концентрации 210-230 г/дм3.

Приготовление носителя осуществляют следующим образом.

В смесительную машину загружают 130 кг полученного выше описанным способом помола, включающего глинозем и древесную муку, и добавляют 4 кг каолина. Затем пульпу перемешивают в течение 15-20 минут. Из мерника постепенно добавляют 30-50 дм3 азотной кислоты с концентрацией 210-230 г/дм3, массу тщательно перемешивают в течение 60-80 минут. Готовый замес формуют экструзией в виде гранул на формовочных машинах.

Сформованный носитель направляют в камеру провяливания, сушки и прокалки. Сушку носителя осуществляют при температуре 30-50°C в течение 48 часов и прокаливают при температуре 1350°C в течение 1-3 часов. Прокаленный носитель выгружают и охлаждают

Раствор для пропитки носителя готовят следующим образом. В растворитель (специальная емкость) помещают 20 дм кальций магниевого раствора (доломитовая вытяжка) с массовой концентрацией оксида кальция 200-250 г/дм3 и оксида и магния с массовой концентрацией 100-150 г/дм3 и 4,1 кг оксида магния, добавляют 46% азотную кислоту для растворения оксида магния. Растворение ведут при постоянном перемешивании при температуре окружающей среды в течение 1-1,5 часов. После полного растворения оксида магния добавляют 7,8 кг нитрата калия; 11,5 нитрата никеля (водный); 2,3 нитрата алюминия (водный). Растворение ведут при постоянном тщательном перемешивании при температуре 50°C в течение 0,5-1,0 часа. Полученный пропиточный раствор анализируют на содержание активных компонентов. В готовом пропиточном растворе массовая концентрация оксида никеля составляет 48-195 г/дм3, оксида алюминия 6,2-22,0 г/дм3, оксида калия 33-67 г/дм3, оксида магния 17-64,5 г/дм3 и оксида кальция 10-62,5 г/дм3. Плотность пропиточных растворов составляет 1,25-1,47 г/см3.

Производство катализатора осуществляют следующим образом. Готовый раствор из растворителя подают в мерник. В аппарат (пропитыватель) загружают 200 кг носителя и в зависимости от его водопоглощения и веса носителя расчетное количество пропиточного раствора из мерника подают в пропитыватель. Пропитку осуществляют при вращении пропитывателя в течение 20-40 минут. По окончании пропитки пропитанные гранулы выгружают в бункер, из которого направляют в аппарат сушки-прокалки.

Сушку и прокалку катализатора осуществляют в аппарате в токе горячего воздуха. Температуру в начале сушки поддерживают не более 200°C. Затем температуру поднимают со скоростью 20-50°C в час до значения 250°C. При этой температуре катализатор выдерживают в течение 18-28 часов, после чего прокалку катализатора осуществляют при температуре 600°C. Процесс пропитки и последующей поэтапной прокалки повторяют дважды. Прокаленный катализатор охлаждают до температуры не выше 50°C, отсеивают от пыли и мелочи.

Полученный катализатор имеет следующий химический состав, масс. %:

Оксид никеля 5,0
Оксид магния 1,8
Оксид кальция 1,50
Оксид калия 3,4
Оксид алюминия 1,0
Носитель Остальное до 100

и следующие физико-химические свойства:

Пористость (носителя), см3 3,2
Механическая прочность
- разрушающее усилие
при раздавливании на торец, Мпа 18
Термостойкость: число теплосмен от 1200°C
до потемнения (через 40 с) на воздухе
без разрушения гранул 20

Пример 2. По примеру 1. с тем отличием, что:

- В шаровую мельницу загружают 330 кг глинозема 35 кг древесной муки.

- Для приготовления носителя смешивают 140 кг помола и 6 кг каолина.

- В зоне прокалки носителя поддерживают температуру 1450°C.

- Для получения пропиточного раствора в растворитель заливают 28 дм3 кальций магниевого раствора (доломитовая вытяжка) добавляют 20,67 кг оксида магния; 21,45 кг нитрата калия; 62,4 нитрата никеля (водный); 14,82 нитрата алюминия (водный).

- В пропитыватель загружают 250 кг сформованного носителя.

- В аппарате прокалки катализатора поддерживают температуру 700°C.

Полученный катализатор имеет следующий химический состав, масс. %:

Оксид никеля 16,0
Оксид магния 5,3
Оксид кальция 5,1
Оксид калия 5,5
Оксид алюминия 3,8
Носитель Остальное до 100

и следующие физико-химические свойства:

Пористость (носителя), см3 3,9
Механическая прочность
- разрушающее усилие
при раздавливании на торец, Мпа 28
Термостойкость: число теплосмен от 1200°C
до потемнения (через 40 с) на воздухе
без разрушения гранул 22

Пример 3. По примеру 1. с тем отличием, что:

- В шаровую мельницу загружают 322 кг глинозема 27 кг древесной муки.

- Для приготовления носителя смешивают 135 кг помола и 5 кг каолина.

- В зоне прокалки носителя поддерживают температуру 1400°C.

- Для получения пропиточного раствора в растворитель заливают 24 дм3 кальций магниевого раствора (доломитовая вытяжка) добавляют 9,7 кг оксида магния; 13,2 кг нитрата калия; 29,34 нитрата никеля (водный); 6,74 нитрата алюминия (водный).

- В пропитыватель загружают 225 кг сформованного носителя.

- В аппарате прокалки катализатора поддерживают температуру 650°C.

Полученный катализатор имеет следующий химический состав, масс. %:

Оксид никеля 10,0
Оксид магния 3,3
Оксид кальция 3,1
Оксид калия 4,5
Оксид алюминия 2,3
Носитель Остальное до 100

и следующие физико-химические свойства:

Пористость (носителя), см3 3,5
Механическая прочность
- разрушающее усилие
при раздавливании на торец, Мпа 23
Термостойкость: число теплосмен от 1200°C
до потемнения (через 40 с) на воздухе
без разрушения гранул 21

Сравнительные технико-экономические характеристики катализаторов приведены в таблице 1. Показано, что патентуемый катализатор по сравнению с прототипом обладает лучшими эксплуатационными свойствами.

Пример 4. Катализатор по прототипу (пример 3) и заявляемый катализатор испытывают в аналогичных с прототипом условиях, описанных выше.

Результаты сравнительных испытаний представлены в таблице 2. В отличие от катализатора по прототипу при паровом риформинге коксогенного углеводородного сырья на патентуемом катализаторе получена более высокая степень превращения сырья при одновременном сохранении высокой стабильности и коксостойкости (накопление углерода отсутствует).

Пример 5. Катализатор по прототипу (пример 3) и заявляемый катализатор используют для переработки углеводородных газов с целью получения водорода. Испытания осуществляют на опытно-промышленной установке парового риформинга при следующих технологических параметрах:

Расход газовой смеси 582 нм3/час
Температура процесса 800°C
Мольное соотношение пар/сырье 2,7:1
Продолжительность испытаний 30 дней

Перед проведением процесса риформинга углеводородных газов катализаторы активируют водородом при 500°C в течение 4 ч. Результаты сравнительных испытаний представлены в таблице 3. Из табличных данных видно, что использование предлагаемого изобретения обеспечивает по сравнению с прототипом повышение степени превращения сырья. В отличие от катализатора по прототипу при паровом риформинге углеводородных газов на патентуемом катализаторе в промышленных условиях получены лучшие результаты по всем параметрам. Показано, что при длительном испытании катализатора снижения каталитических и эксплуатационных свойств катализатора не происходит.

Реализация патентуемого изобретения позволяет получить заявляемый технический результат, а именно: повысить селективность, коксостойкость, стабильности, термостойкость (более 20 теплосмен), предотвратить разрушение катализатора, увеличить срок его службы (до 4 лет), сократить расход катализатора и материальные затрат. При этом заявляемый технический результат получен не аддитивным вкладом каждого компонента, а за счет суммарного синергетического эффекта.

1. Катализатор для парового риформинга нафты и углеводородных газов, содержащий оксиды никеля, магния, кальция, калия, алюминия и носитель на основе оксида алюминия, содержащий каолин, отличающийся тем, что состав сырья для приготовления носителя включает глинозем, структурообразующую добавку и каолин, при следующем соотношении компонентов, мас.%:

Структурообразующая добавка 6,9-8,5
Каолин 1,5-12,0
Глинозем Остальное до 100,

предлагаемый катализатор имеет следующий химический состав, мас.%:

Оксид никеля 5,0-16,0
Оксид магния 1,8-5,3
Оксид кальция 1,50-5,1
Оксид калия 3,4-5,5
Оксид алюминия 1,0-3,8
Носитель Остальное до 100

2. Катализатор для парового риформинга нафты и углеводородных газов по п. 1, отличающийся тем, что предварительно осуществляют совместное измельчение глинозема и структурообразующей добавки, которое ведут не менее 10 часов до тонины помола - остаток на сите 0,05 мм не более 5 мас.%, с последующим смешиванием с каолином.

3. Катализатор для парового риформинга нафты и углеводородных газов по п. 1, отличающийся тем, что носитель прокаливают при температуре 1350-1450°C, а катализатор в начале сушат при температуре не более 200°C, после чего температуру поднимают со скоростью 20-50°C в час до значения 250°C и при этой температуре выдерживают в течение 18-28 часов, после чего катализатор прокаливают при температуре 600-700°C.

4. Катализатор для парового риформинга нафты и углеводородных газов по п. 1, отличающийся тем, что для приготовлении пропиточного раствора используют кальций магниевый раствор (доломитовая вытяжка) с массовой концентрацией оксида кальция 200-250 г/дм3 и оксида магния с массовой концентрацией 100-150 г/дм3, а массовую концентрацию оксидов никеля, алюминия, калия, магния, кальция в готовом пропиточном растворе поддерживают в диапазоне, г/дм3: 48-195; 6,2-22,0; 33-67; 17-64,5; 10-62,5 соответственно, при этом плотность пропиточных растворов составляет 1,25-1,47 г/см3.



 

Похожие патенты:

Изобретение может быть использовано в электронике при получении прозрачных электродов, дисплеев, беспроводных электронных устройств, элементов памяти, микропроцессоров, электронных паспортов, карточек, сенсоров, биосовместимых электронных имплантов.

Изобретение относится к двухстадийному способу получения пропионового альдегида, который является ценным полупродуктом органического синтеза. Способ включает стадию гидроформилирования этилена монооксидом углерода при повышенных температуре и давлении в присутствии катализатора - металлического родия на носителе.

Изобретение относится к способу приготовления катализатора для получения синтез-газа из газообразного углеводородного сырья, например природного газа или попутных нефтяных газов.
Изобретение относится к нанотехнологии и может быть использовано при изготовлении нанокомпозитов. Углеродный наноматериал - нанотрубки или графен, частицы которых содержат на поверхности кислородсодержащие группы, обрабатывают раствором водорастворимого резольного фенолформальдегидного полимера при воздействии механической энергии.

Изобретение относится к материаловедению и может быть использовано при изготовлении наполнителей для порошковой металлургии, красок, пластмасс, металлокерамики, клеевых и композиционных материалов.

Изобретение относится к трубчатым установкам риформинга для превращения углеводородсодержащих исходных веществ, предпочтительно природного газа и легких жидких углеводородов, в продукт - синтез-газ.

Изобретение относится к способу модернизации существующих установок для получения аммиака, использующих природный газ. Способ заключается в том, что в установку, содержащую головную секцию для конверсии природного газа в подпиточный газ для синтеза аммиака, состоящую из первичного и вторичного риформеров, при этом первичный риформер включает радиационную секцию и конвективную секцию, при этом в радиационной секции выполняется каталитическая конверсия технологического газа и передача этому газу тепловой энергии, называемой тепловой нагрузкой риформера, а во вторичный риформер подается воздух, поддерживающий горение, и частично конвертированный технологический газ, выходящий из первичного риформера, причем общее количество подводимого к установке природного газа разделается на технологическую часть, используемую для каталитической конверсии метана в водород и топливную часть, вводят следующие изменения: уменьшают тепловую нагрузку первичного риформера относительно количества вырабатываемого аммиака и, как следствие, снижают выходную температуру частично конвертированного газа, выходящего из первичного риформера, добавляют подающую линию по существу чистого кислорода, направляемого ко вторичному риформеру по меньшей мере частично заменяющего воздух, поддерживающий горение, добавляют линию нагнетания азота в количестве, необходимом для получения подпиточного газа, пригодного для синтеза аммиака, и уменьшают топливную часть и, как следствие, увеличивают технологическую часть, при данном общем количестве подводимого природного газа.

Изобретение относится к риформингу углеводородов. Способ получения синтез-газа для синтеза аммиака включает конверсию источника углеводородов в сырой синтез-газ, которую проводят с использованием каталитического автотермического парового риформинга или с использованием некаталитического частичного окисления паром без стадии первичного риформинга в присутствии окислителя, такого как кислород или обогащенный кислородом воздух, обработку сырого синтез-газа методом конверсии водяного газа, которая включает среднетемпературную конверсию при температуре 200-300°C, при этом получают конвертированный синтез-газ, очистку конвертированного синтез-газа, которая включает стадию адсорбции со сдвигом давления для удаления остаточных оксидов углерода и метана из синтез-газа, при этом получают очищенный синтез-газ, необязательное добавление азота в очищенный синтез-газ, при этом получают синтез-газ для синтеза аммиака с требуемым соотношением водорода и азота, и конверсию источника углеводородов в сырой синтез-газ, которую проводят в реакторе для автотермического парового риформинга или в реакторе для частичного окисления, при этом соотношение пар/углерод в питающем потоке реактора составляет менее 2.

Изобретение относится к установке для получения водорода методом паровой конверсии углеводородного сырья и может быть использовано в различных отраслях промышленности.

Настоящее изобретение относится к способу получения парафинового продукта из углеродсодержащего сырья. Способ включает частичное окисление углеродсодержащего сырья для получения смеси, содержащей водород и монооксид углерода, осуществление синтеза Фишера-Тропша с использованием полученной смеси и извлечение парафинового продукта и отходящего газа, гидрогенизацию по меньшей мере части отходящего газа из синтеза Фишера-Тропша, необязательно после удаления углеводородов, используя молярное отношение пар/отходящий газ в диапазоне от 0,5 до 1,5, и катализатор, содержащий медь и цинк, или катализатор, содержащий медь, цинк и марганец, превращение по меньшей мере части образовавшегося газа, используя катализатор на основе никеля, который содержит не более 0,2 масс.

Изобретение относится к способу получения железо-калиевых катализаторов для дегидрирования метилбутенов в изопрен. Способ получения железо-калиевого катализатора для дегидрирования метилбутенов осуществляют следующим образом: проводят смешение компонентов катализатора в следующем соотношении, мас.

Изобретение относится к способу получения катализатора окисления метанола до формальдегида и может быть использовано в производстве формальдегида и карбамидо-формальдегидных смол.

Изобретение относится к способу гидрокрекинга со взвешенным слоем катализатора. Способ включает подачу одного или нескольких углеводородных соединений, имеющих температуру начала кипения, составляющую по меньшей мере 340°С, и суспензионного катализатора в зону гидрокрекинга со взвешенным слоем катализатора.
Изобретение относится к катализатору для разложения углеводородов, способу его получения и к батарее топливных элементов. Катализатор содержит соединение, содержащее по меньшей мере никель и алюминий, и металлический никель, имеющий диаметр частиц от 1 до 25 нм, в котором энергии связи между металлическим никелем и соединением, содержащим по меньшей мере никель и алюминий, в катализаторе составляют от 874,5 до 871,5 эВ (Ni 2p1/2), от 857 до 853 эВ (Ni 2p3/2) и от 73,5 до 70 эВ (Al 2p), и энергия активации катализатора составляет от 4×104 до 5×104 Дж/моль.

Изобретение относится к парофазному способу селективного удаления по меньшей мере 80 мол.% ацетиленовых примесей из входящего газового потока. Указанный входящий поток включает С2-С9 ненасыщенные углеводородные моноолефины, диолефины и ацетиленовые примеси.

Изобретение относится к способу получения корочкового катализатора, включающему стадии: (i) пропитка обожженной подложки, содержащей алюминат металла, раствором, содержащим ацетат никеля, при температуре ≥40°C и сушка пропитанной подложки, (ii) обжиг сухой пропитанной подложки, чтобы образовать оксид никеля на поверхности подложки, и (iii), необязательно, повторение этапов (i) и (ii) на подложке, покрытой оксидом никеля.

Изобретение относится к способу получения ацетилена окислительным пиролизом метана в присутствии кислородсодержащего газа и катализатора, нагреваемого до температуры 750-1200°C путем пропускания через него электрического тока.

Изобретение относится к нефтяной и газовой промышленности, в частности к переработке попутных нефтяных газов (ПНГ). Описан катализатор для обогащения метаном смесей углеводородных газов, который содержит в основном никель в количестве 25-60 мас.

Изобретение относится к катализатору получения синтез-газа каталитической паро-углекислотной конверсией углеводородов, содержащему оксид никеля и оксид магния, нанесенные на пористый никель при следующем содержании компонентов, мас.%: оксид никеля - 3,5-5,1, оксид магния - 8,6-10,4, металлический пористый никель - остальное.
Изобретение относится к способу гидрирования ненасыщенных жирных кислот для получения насыщенных жирных кислот, который включает гидрирование ненасыщенных жирных кислот в присутствии водорода и никелевого катализатора на подложке, содержащего оксидную подложку, от 5 до 80% масс.

Изобретение относится к способу очистки вредных техногенных газовых выбросов в атмосферу от различных загрязнителей и может быть использовано для нейтрализации токсичных вредных продуктов при очистке промышленных выбросов, продуктов сжигания промышленных и бытовых отходов, а также выхлопных газов бензиновых и дизельных двигателей.
Наверх