Осесимметричная носовая часть фюзеляжа летательного аппарата

Изобретение относится к области авиационной техники. Осесимметричная носовая часть фюзеляжа затуплена по торцу и ее боковая поверхность имеет образующую, которая составлена из двух дуг окружностей и элемента, задаваемого степенной зависимостью радиуса от продольной координаты. Изобретение направлено на уменьшение аэродинамического сопротивления в диапазоне больших дозвуковых скоростей полета. 6 ил.

 

Изобретение относится к области авиационной техники, а более конкретно к элементам дозвуковых летательных аппаратов, и может быть использовано при разработке и создании осесимметричных носовых частей фюзеляжей.

В качестве основных областей повышения эффективности дозвуковых летательных аппаратов выделяются направления увеличения скорости полета и уменьшения аэродинамического сопротивления. Для условий крейсерского полета наибольший вклад в аэродинамическое сопротивление вносят сопротивление поверхностного трения, связанное с внутренним объемом волновое сопротивление и индуктивное сопротивление, обусловленное созданием подъемной силы. Аэродинамическое сопротивление, на уменьшение которого направлено представленное техническое решение, связано с объемом фюзеляжа и зависит от формы его носовой части. Изменение этой составляющей волнового сопротивления по числу Маха непосредственным образом влияет на скоростные характеристики летательного аппарата.

Известно, что аэродинамические характеристики фюзеляжа зависят от распределения площади поперечного сечения в продольном направлении. В рамках допущений теории тонкого тела наименьшее волновое сопротивление среди носовых частей одинакового удлинения (L, D - длина и диаметр носовой части) имеет оживало Кармана. Испытания в аэродинамических трубах установили превосходство носовых частей со степенной образующей в сверхзвуковом диапазоне скоростей (Аэромеханика сверхзвукового обтекания тел вращения степенной формы / Под ред. Г.Л. Гродзовского. М.: Машиностроение, 1975. 183 с.). Дальнейшее уменьшение волнового сопротивления достигается затуплением носовой части по торцу (Иванюшкин Д.С., Таковицкий С.А. Носовые части минимального волнового сопротивления с передним торцом и степенной образующей // Ученые записки ЦАГИ. 2009. Т. XL. №5).

Наиболее близкой из известных технических решений, принятой за прототип является носовая часть с образующей Рябушинского, которая специальным образом спрофилирована с целью обеспечения постоянства газодинамических функций на поверхности (Вышинский В.В., Кузнецов Е.Н. Исследование обтекания носовых частей тел вращения с образующей Рябушинского // Труды ЦАГИ. 1995. Вып. 2571.), (Баринов В.А., Болсуновский А.Л., Бузоверя Н.П., Кузнецов Е.Н., Скоморохов С.И., Чернышев И.Л. Исследование обтекания околозвуковым потоком газа модели самолета с носовой частью фюзеляжа в виде полукаверны Рябушинского // Доклады Академии наук. Механика. 2007. Т. 416. №4). Существенные признаки прототипа, совпадающие с существенными признаками предлагаемого технического решения, заключаются в том, что носовая часть имеет осесимметричную форму, выполнена с плоским передним торцом, ее боковая поверхность гладко состыкована с передним торцом и с центральной частью фюзеляжа и применяется в дозвуковом диапазоне скоростей.

Условие постоянства коэффициента давления на поверхности носовой части соответствует требованию увеличения критического числа Маха. При использовании носовых частей фюзеляжа в виде полукаверны Рябушинского образование волнового сопротивления смещается в диапазон больших скоростей полета. Однако данный эффект имеет ограниченный характер. Критическое число Маха уменьшается с ростом относительной толщины тела или с уменьшением удлинения носовой части. Техническое решение базируется на результатах теории несжимаемой жидкости и не учитывает возрастание аэродинамического сопротивления при числах Маха, больших критического значения.

Задачей и техническим результатом предлагаемого изобретения является разработка осесимметричной носовой части фюзеляжа летательного аппарата с уменьшенным аэродинамическим сопротивлением в диапазоне больших дозвуковых скоростей полета.

Решение задачи и технический результат достигаются тем, что в носовой части, затупленной по торцу и ограниченной плоскостями переднего плоского торца и стыковки с центральной частью фюзеляжа, выпуклая боковая поверхность выполнена из трех гладко состыкованных элементов. Первый и третий элементы имеют образующие в виде дуг окружностей с радиусами R1 и R3, соответственно, причем первый элемент гладко состыкован с передним торцом, а третий - с центральной частью фюзеляжа. Образующая второго элемента боковой поверхности математически выражена в виде зависимости радиуса r - расстояния до оси симметрии, от продольной координаты х - расстояния до переднего торца

где n - показатель степени, хC и rC - координаты, определяющие точку стыковки второго и третьего элементов, А - параметр, определяющий относительный размер переднего торца. Значения геометрических параметров выбраны из условия минимизации лобового сопротивления в диапазоне больших дозвуковых скоростей полета. Установлены следующие диапазоны изменения геометрических параметров носовой части фюзеляжа в зависимости от удлинения λ носовой части фюзеляжа 0.2≤А≤0.8, 0.12≤n≤0.25, . Здесь радиусы окружностей пронормированы на длину L носовой части фюзеляжа. Координаты хC и rC связаны простыми геометрическими соотношениями с L, λ и R3.

Изобретение поясняется чертежами.

На фиг. 1 показана носовая часть фюзеляжа в виде полукаверны Рябушинского, состыкованная центральной частью фюзеляжа, и оси системы координат.

Фиг. 2 представляет носовую часть с боковой поверхностью, состоящей из трех элементов.

На фиг. 3 показаны носовая часть и основные геометрические параметры в продольном сечении.

На фиг. 4 сопоставлены образующие носовых частей.

На фиг. 5 представлено изменение коэффициента лобового сопротивления по числу Маха для двух носовых частей

На фиг. 6 показано распределение коэффициента давления по поверхности в поперечном сечении носовой части.

Основными конструктивными элементами носовой части 1 фюзеляжа являются боковая поверхность 3, передний торец 4 и плоскость стыковки 5 с центральной частью 2 фюзеляжа (фиг. 1 и 2). Геометрические параметры образующей носовой части 1 задаются в цилиндрической системе координат (фиг. 3). Начало координат находится в плоскости переднего торца 4, ось X направлена вдоль оси симметрии 9 вниз по потоку.

Предлагаемая носовая часть фюзеляжа имеет боковую поверхность, составленную из трех элементов (фиг. 2). Первый элемент 6 носовой части фюзеляжа с образующей в виде дуги окружности радиусом R1 гладко примыкает к переднему торцу 4. Третий элемент носовой части фюзеляжа 8 имеет образующую в виде дуги окружности с радиусом R3 и гладко примыкает к центральной части 2 фюзеляжа. Второй элемент носовой части фюзеляжа 7 гладко состыкован с первым элементом носовой части фюзеляжа 6 и третьим элементом носовой части фюзеляжа 8. Образующая второго элемента 7 боковой поверхности носовой части фюзеляжа математически выражена в виде зависимости радиуса r - расстояния до оси симметрии, от продольной координаты х - расстояния до переднего торца

где n - показатель степени, хC и rC - координаты, определяющие точку стыковки второго и третьего элементов, А - геометрический параметр, определяющий относительный размер переднего торца, при этом геометрические параметры носовой части фюзеляжа изменяются в зависимости от удлинения λ носовой части фюзеляжа в диапазонах 0.2≤А≤0.8, 0.12≤n≤0.25, 0.01≤λR1≤0.1, , которые для параметров, имеющих размерность длины, пронормированы на длину носовой части фюзеляжа.

В результате улучшено распределение аэродинамической нагрузки по поверхности носовой части фюзеляжа. Уменьшение сопротивления, связанного с объемом фюзеляжа, достигнуто увеличением давления в окрестности переднего торца и его уменьшением на значительной по площади части поверхности, составляющей до 50% от длины носовой части (фиг. 6). При этом объем носовой части увеличен по сравнению с прототипом (фиг. 4).

Работоспособность технического решения подтверждена расчетными исследованиями. Обтекание и аэродинамические характеристики фюзеляжей исследованы в рамках системы уравнений Навье-Стокса. Численное моделирование выполнено при следующих значениях определяющих параметров: число Маха набегающего потока М=0.7÷0.95, число Рейнольдса, посчитанное на длину носовой части, Re=3⋅106÷3⋅107, удлинение носовой части λ=0.8÷3.

Исследуемая интегральная характеристика носовой части фюзеляжа - лобовое сопротивление, состоящее из сопротивления поверхностного трения и волнового сопротивления, связанного с объемом носовой части фюзеляжа. Изменение коэффициента лобового сопротивления Сх носовой части фюзеляжа с удлинением Х=0.% в зависимости от числа Маха показывает, что резкое увеличение сопротивления носовой части фюзеляжа с образующей Рябушинского начинается при М=0.86 (фиг. 5). Для носовой части фюзеляжа с боковой поверхностью, составленной из трех элементов, рост сопротивления смещается в сторону больших значений числа Маха. В диапазоне умеренных скоростей полета (М≤0.8) носовые части фюзеляжа имеют практически одинаковые характеристики по аэродинамическому сопротивлению. При больших дозвуковых скоростях (М≥0.9) носовая часть фюзеляжа с боковой поверхностью, составленной из трех элементов, имеет меньшее сопротивление. По сравнению с прототипом относительный выигрыш достигает 40%.

Таким образом, технический результат уменьшение аэродинамического сопротивления в диапазоне больших дозвуковых скоростей полета достигается благодаря наличию отличительных признаков предлагаемого технического решения, которые заключаются в том, что боковая поверхность носовой части фюзеляжа состоит из трех специальным образом спрофилированных элементов.

Предложенное техническое решение может найти применение при создании и модернизации носовых частей фюзеляжей дозвуковых летательных аппаратов, преимущественно осесимметричных фюзеляжей.

Осесимметричная носовая часть фюзеляжа летательного аппарата, имеющая передний плоский торец и выпуклую боковую поверхность, которая ограничена плоскостями переднего плоского торца и стыковки с центральной частью фюзеляжа, отличающаяся тем, что боковая поверхность состоит из трех гладко состыкованных элементов, первый и третий из которых имеют образующие в виде дуг окружностей с радиусами R1 и R3 соответственно, причем первый элемент гладко состыкован с передним торцом, третий - с центральной частью фюзеляжа, а образующая второго элемента боковой поверхности математически выражена в виде зависимости радиуса r - расстояния до оси симметрии, от продольной координаты х - расстояния до переднего торца

где n - показатель степени, хС и rC - координаты, определяющие точку стыковки второго и третьего элементов, А - геометрический параметр, определяющий относительный размер переднего торца, при этом геометрические параметры носовой части фюзеляжа изменяются в зависимости от удлинения λ носовой части фюзеляжа в диапазонах 0.2≤А≤0.8, 0.12≤n≤0.25, 0.01≤λR1≤0.1, , которые для параметров, имеющих размерность длины, пронормированы на длину носовой части фюзеляжа.



 

Похожие патенты:

Изобретение относится к летательным аппаратам. Пилон (30) имеет обтекаемый профиль, определяемый двумя противоположными боковыми поверхностями и продольно между передней кромкой (31) и задней кромкой (33).

Носовая часть для сверхзвукового летательного объекта имеет конусообразную форму тела с низким сопротивлением, симметричную относительно центральной оси, и элемент деформации, имеющий волнообразную форму.

Группа изобретений относится к области аэрогидродинамики. Группа изобретений включает обтекаемое текучей средой тело, проточный канал, реактивный двигатель, приводное устройство, пленку для такого тела и применение обтекаемой текучей средой структуры.

Изобретение относится к области авиации. Крыло выполнено в виде лотка переменного сечения и сужающегося от носа самолета к хвосту.

Изобретение относится к области авиации. Крыло самолета выполнено в виде тонкой пластины, равномерной толщины по профилю, заостренной спереди, в плане представляющей ветвь гиперболы, установленной действительной осью параллельно оси фюзеляжа, и включает внутренний несущий каркас, верхнюю и нижнюю обшивки, закрылки и элероны.

Изобретение относится к области летательных аппаратов. Крыло летательного аппарата содержит детали крепления к фюзеляжу, верхнюю и нижнюю аэродинамические поверхности, торцевую часть, элементы отклонения стекающих воздушных потоков в виде закрылков/элеронов с прямым краем.

Транспортное судно содержит металлическое изделие, поверхность которого имеет ребристый рельеф, включающий множество соседних, непрерывно прокатанных продольных ребер, проходящих вдоль поверхности.

Группа изобретений относится к аэродинамическим конструкциям. Выступ для изменения структуры скачка уплотнения содержит расширяющийся нос и сужающийся хвост.

Аэродинамическая конструкция по первому варианту содержит выступ для изменения структуры скачка уплотнения, отходящий от поверхности указанной аэродинамической конструкции.

Аэродинамическая конструкция содержит группу выступов для отклонения скачка уплотнения, отходящих от ее поверхности. Выступы для отклонения скачка уплотнения распределены по указанной конструкции с неравномерным шагом между центрами и/или кромками соседних выступов.

Изобретение относится к летательному аппарату (ЛА), содержащему двигатели, и касается защиты двигателей от риска ударного воздействия части, отделившейся от противоположного двигателя в случае неисправности.

Изобретение относится к авиационной технике, а более конкретно к установочному устройству (1) для позиционирования конструктивного элемента, например, горизонтального оперения.

Изобретение относится к конструкционному материалу для изготовления элементов конструкции на основе пластика, армированного углеводородным волокном, топливного бака, основного крыла и летательного аппарата.

Изобретение относится к авиации и касается созданий конструкций для летательных аппаратов (ЛА). При изготовлении отсека ЛА в виде оболочки вращения на оправку укладывают разделительный слой из резиноподобного материала со спиральными обоих направлений канавками одинаковой ширины, слоями из высокомодульных нитей вматывают в эти канавки спиральные ребра, затем наматывают обжимающую облицовку из термоусаживающего материала, термообрабатывают, удаляют облицовку, снимают с оправки и удаляют разделительный слой.

Изобретение относится к авиации и касается изготовления конструкций отсеков летательных аппаратов (ЛА). При изготовлении отсека в виде оболочки вращения ячеистой структуры на оправку укладывают разделительный слой из резиноподобного материала с кольцевыми и спиральными канавками, затем слоями из высокомодульных нитей вматывают в эти канавки кольцевые и спиральные ребра, с натяжением наматывают наружную оболочку, термообрабатывают, снимают с оправки и удаляют разделительный слой.

Изобретение относится к композитным структурам, в частности к технологиям усиления композиционных элементов жесткости, и может применяться в области авиастроения и космической техники.

Изобретение относится к крепежным элементам для защиты от электромагнитных воздействий. Во время вставки крепежных элементов в стопу элементов и заделывания, или законцовывания, крепежных элементов деталями, имеющими сухое диэлектрическое покрытие и/или внутреннее сухое диэлектрическое уплотнение в выбранных участках для защиты от электромагнитных воздействий, некоторые из деталей имеют расточенное отверстие.

Настоящее изобретение относится к крепежному узлу, в частности, для применений в летательных аппаратах. Крепежный узел содержит трубчатый первый элемент и второй элемент, вводимый соосно в первый, крепежные средства, а также уплотнение.

Изобретение относится к установке для обработки конструктивных элементов воздушного судна при помощи станции для обработки. Установка содержит позиционирующее устройство для установки и перемещения конструктивного элемента, манипулятор с инструментальным средством, погрузочно-разгрузочную зону, которая расположена на расстоянии от рабочей зоны, и транспортировочное устройство, выполненное с возможностью перемещения полностью конструктивного элемента, установленного на позиционирующем устройстве, между рабочей зоной и погрузочно-разгрузочной зоной.

Изобретение относится к авиации и касается винтомоторных монопланов, предназначенных для первоначальной подготовки летного состава и тренировки пилотов. Учебный самолет содержит тянущий воздушно-винтовой движитель, шасси, механизированное крыло и фюзеляж, включающий кабину экипажа, снабженную фонарем, сопряженным с гаргротом, и хвостовую часть, несущую горизонтальное и вертикальное оперение с рулями высоты и направления, а также органы управления.

Изобретение относится к трехмерным композитным конструкциям и касается способа изготовления трехмерного объекта из композиционного материала. Объект выполняют из композитного материала, при этом указанный объект является относительно прочным и легким и имеет сложную трехмерную конфигурацию. Способ включает соединение ряда формованных секций из материала, каждая из которых имеет ламинированную лицевую поверхность, для образования объекта, которые после ламинирования скрепляют внутренний и внешний ламинирующие слои вместе для образования группы конструктивных элементов. Способ обеспечивает дополнительное преимущество, заключающееся в том, что объект может быть образован без применения формы. Изобретение обеспечивает создание легких и прочных трехмерных объектов, выполненных из композитного материала. 10 н. и 8 з.п. ф-лы, 6 ил., 1 табл., 3 пр.

Изобретение относится к области авиационной техники. Осесимметричная носовая часть фюзеляжа затуплена по торцу и ее боковая поверхность имеет образующую, которая составлена из двух дуг окружностей и элемента, задаваемого степенной зависимостью радиуса от продольной координаты. Изобретение направлено на уменьшение аэродинамического сопротивления в диапазоне больших дозвуковых скоростей полета. 6 ил.

Наверх