Двухкаскадный дифференциальный операционный усилитель с повышенным коэффициентом усиления

Изобретение относится к области радиоэлектроники и может быть использовано в качестве прецизионного устройства усиления широкополосных сигналов. Технический результат: повышение коэффициента усиления по напряжению (Ку) при сохранении высокой температурной и радиационной стабильности напряжения смещения нуля. Двухкаскадный дифференциальный операционный усилитель с повышенным коэффициентом усиления содержит входной дифференциальный каскад, первый выходной транзистор, коллектор которого связан со входом токового зеркала, источник питания, второй выходной транзистор, первый вспомогательный транзистор, второй вспомогательный транзистор, третий вспомогательный транзистор, первый дополнительный повторитель напряжения, четвертый вспомогательный транзистор и второй дополнительный повторитель напряжения. 11 ил.

 

Изобретение относится к области радиоэлектроники и может быть использовано в качестве прецизионного устройства усиления широкополосных сигналов.

В современной радиоэлектронной аппаратуре находят применение дифференциальные операционные усилители (ОУ) и трансимпедансные преобразователи, выполненные на базе входного дифференциального каскада (ДК) с активной нагрузкой в виде классических токовых зеркал [1-8], в т.ч. так называемых токовых зеркал Вильсона [9-12]. ОУ с такой архитектурой, в т.ч. с входными полевыми транзисторами, широко применяются в составе микросхем, выпускаемых как отечественными, так и зарубежными фирмами (СА3078, LM13600, LM13700, NE5517, AU5517) [9-12]. В них токовые зеркала обеспечивают высокую стабильность статического режима выходных транзисторов промежуточного каскада (ПК) ОУ, обеспечивающего основное усиление, и фактически преобразуют изменения выходных токов входного ДК в соответствующие приращения выходного тока ПК. Однако в схемах ОУ с данной архитектурой общий коэффициент усиления по напряжению (Kу) получается небольшим. Это связано с тем, что входное сопротивление классических токовых зеркал, на котором выделяются выходные напряжения входного ДК, не велико (десятки Ом) и, как следствие, входной каскад работает только в режиме преобразователя «напряжение-ток» и имеет малый коэффициент усиления по напряжению (KДК<1).

Ближайшим прототипом заявляемого устройства является операционный усилитель по патенту US 3.921.090, fig. 1. Кроме этого, данная архитектура ОУ приведена в других патентах [1-8] и справочниках [9-12].

ОУ-прототип содержит (фиг. 1) входной дифференциальный каскад 1, согласованный по общей эмиттерной цепи 2 с первой 3 шиной источника питания, первый 4 и второй 5 противофазные токовые выходы входного дифференциального каскада 1, первый 6 выходной транзистор, коллектор которого связан со входом токового зеркала 7, согласованного с первой 3 шиной источника питания, второй 8 выходной транзистор, коллектор которого подключен к выходу токового зеркала 7 и токовому выходу устройства 9, первый 10 вспомогательный транзистор, коллектор которого подключен к первому 4 токовому выходу входного дифференциального каскада 1, эмиттер соединен со второй 11 шиной источника питания, а база связана с базой второго 12 вспомогательного транзистора, эмиттер которого соединен со второй 11 шиной источника питания, третий 13 вспомогательный транзистор, коллектор которого подключен ко второму 5 токовому выходу входного дифференциального каскада 1, эмиттер соединен со второй 11 шиной источника питания, а база связана с базой четвертого 14 вспомогательного транзистора, эмиттер которого соединен со второй 11 шиной источника питания.

Существенный недостаток известного ОУ состоит в том, что в нем невозможно получить повышенный коэффициент усиления по напряжению, т.к. его входной каскад не дает усиления по напряжению.

Основная задача предлагаемого изобретения состоит в повышении коэффициента усиления по напряжению (Ку) двухкаскадного разомкнутого ОУ при сохранении высокой температурной и радиационной стабильности напряжения смещения нуля.

Поставленная задача достигается тем, что в дифференциальном операционном усилителе (фиг. 1), содержащем входной дифференциальный каскад 1, согласованный по общей эмиттерной цепи 2 с первой 3 шиной источника питания, первый 4 и второй 5 противофазные токовые выходы входного дифференциального каскада 1, первый 6 выходной транзистор, коллектор которого связан со входом токового зеркала 7, согласованного с первой 3 шиной источника питания, второй 8 выходной транзистор, коллектор которого подключен к выходу токового зеркала 7 и токовому выходу устройства 9, первый 10 вспомогательный транзистор, коллектор которого подключен к первому 4 токовому выходу входного дифференциального каскада 1, эмиттер соединен со второй 11 шиной источника питания, а база связана с базой второго 12 вспомогательного транзистора, эмиттер которого соединен со второй 11 шиной источника питания, третий 13 вспомогательный транзистор, коллектор которого подключен ко второму 5 токовому выходу входного дифференциального каскада 1, эмиттер соединен со второй 11 шиной источника питания, а база связана с базой четвертого 14 вспомогательного транзистора, эмиттер которого соединен со второй 11 шиной источника питания, предусмотрены новые элементы и связи - первый 4 токовый выход входного дифференциального каскада 1 связан с базой первого 10 вспомогательного, а также базами первого 6 выходного и второго 12 вспомогательного транзисторов через первый 15 дополнительный повторитель напряжения, второй 5 токовый выход входного дифференциального каскада 1 связан с базой третьего 13 вспомогательного, а также базами второго 8 выходного и четвертого 14 вспомогательного транзисторов через второй 16 дополнительный повторитель напряжения, коллектор четвертого 14 вспомогательного транзистора соединен с первым 4 токовым выходом входного дифференциального каскада 1, коллектор второго 12 вспомогательного транзистора подключен ко второму 5 токовому выходу входного дифференциального каскада 1, причем эмиттеры первого 6 и второго 8 выходных транзисторов соединены со второй 11 шиной источника питания.

На фиг. 1 показана схема ОУ-прототипа для случая, когда токовые зеркала Вильсона, являющиеся нагрузкой входного ДК1, реализованы на n-p-n-транзисторах 6, 10, 12 и 8, 13, 14, а на чертеже фиг. 2 - схема заявляемого устройства в соответствии с формулой изобретения.

На фиг. 3 приведена схема фиг.2 с конкретным выполнением первого 15 и второго 16 дополнительных повторителей напряжения.

В схеме фиг. 4 первый 6 выходной транзистор, первый 10 и второй 12 вспомогательные транзисторы, второй 8 выходной транзистор, третий 13 и четвертый 14 вспомогательные транзисторы выполнены в виде активных элементов с несколькими коллекторами и объединены в единую интегральную структуру. Для расширения вариантов установления статического режима транзисторов здесь могут использоваться вспомогательные источники опорного тока 26 и 27. Кроме этого, в данной схеме предусмотрен классический буферный усилитель 28, обеспечивающий низкоомный выход устройства 29.

В схеме фиг. 5 входной дифференциальный каскад 1 имеет 4 входа, что позволяет реализовать на базе данной структуры так называемый мультидифференциальный операционный усилитель, имеющий ряд неоспоримых преимуществ в сравнении с классическими ОУ [13].

На фиг. 6 приведена схема ОУ фиг. 4 в среде PSpice на моделях интегральных транзисторов АБМК_1_4 ОАО «Интеграл» (г. Минск).

На фиг. 7 показана амплитудно-частотная характеристика коэффициента усиления по напряжению ОУ фиг. 6 без отрицательной обратной связи (верхний график) и с отрицательной обратной связью (нижний график).

На фиг. 8 приведена зависимость систематической составляющей напряжения смещения нуля (Uсм) ОУ фиг. 6 от температуры в диапазоне минус 60÷+80°С (а) и потока нейтронов (б) для случая, когда транзисторы ОУ не имеют разброса параметров, а токовое зеркало 7 и буферный усилитель 28 идеальны. Это позволяет оценить предельные возможности архитектуры предлагаемого устройства, к которым можно стремиться.

На фиг. 9 приведена схема ОУ фиг. 5 в среде PSpice на моделях интегральных транзисторов АБМК_1_4 ОАО «Интеграл» (г. Минск).

На фиг. 10 показана амплитудно-частотная характеристика коэффициента усиления по напряжению ОУ фиг. 9 без отрицательной обратной связи и со 100% отрицательной обратной связью.

На фиг. 11 приведена зависимость систематической составляющей напряжения смещения нуля (Uсм) схемы фиг.9 от температуры (а) и потока нейтронов (б) без учета разброса параметров элементов, а также идеальном токовом зеркале 7 и буферном усилителе 28.

Двухкаскадный дифференциальный операционный усилитель с повышенным коэффициентом усиления (фиг. 2) содержит входной дифференциальный каскад 1, согласованный по общей эмиттерной цепи 2 с первой 3 шиной источника питания, первый 4 и второй 5 противофазные токовые выходы входного дифференциального каскада 1, первый 6 выходной транзистор, коллектор которого связан со входом токового зеркала 7, согласованного с первой 3 шиной источника питания, второй 8 выходной транзистор, коллектор которого подключен к выходу токового зеркала 7 и токовому выходу устройства 9, первый 10 вспомогательный транзистор, коллектор которого подключен к первому 4 токовому выходу входного дифференциального каскада 1, эмиттер соединен со второй 11 шиной источника питания, а база связана с базой второго 12 вспомогательного транзистора, эмиттер которого соединен со второй 11 шиной источника питания, третий 13 вспомогательный транзистор, коллектор которого подключен ко второму 5 токовому выходу входного дифференциального каскада 1, эмиттер соединен со второй 11 шиной источника питания, а база связана с базой четвертого 14 вспомогательного транзистора, эмиттер которого соединен со второй 11 шиной источника питания. В схему введены: первый 4 токовый выход входного дифференциального каскада 1 связан с базой первого 10 вспомогательного, а также базами первого 6 выходного и второго 12 вспомогательного транзисторов через первый 15 дополнительный повторитель напряжения, второй 5 токовый выход входного дифференциального каскада 1 связан с базой третьего 13 вспомогательного, а также базами второго 8 выходного и четвертого 14 вспомогательного транзисторов через второй 16 дополнительный повторитель напряжения, коллектор четвертого 14 вспомогательного транзистора соединен с первым 4 токовым выходом входного дифференциального каскада 1, коллектор второго 12 вспомогательного транзистора подключен ко второму 5 токовому выходу входного дифференциального каскада 1, причем эмиттеры первого 6 и второго 8 выходных транзисторов соединены со второй 11 шиной источника питания.

Кроме этого, в схеме фиг. 2 входной дифференциальный каскад 1 имеет противофазные входы 17 и 18, причем его схема включает входные полевые транзисторы 19, 20, статический режим которых устанавливается источником опорного тока 21.

В схеме фиг. 3 первый 15 и второй 16 дополнительные повторители напряжения выполнены соответственно на транзисторе 22 и резисторе 23, а также транзисторе 24 и резисторе 25.

На фиг. 4, который соответствует фиг. 3, используются вспомогательные источники опорного тока 26 и 27, а также выходной буферный усилитель 28, вход которого соединен с токовым выходом устройства 9, а выход 29 обеспечивает низкоомный потенциальный выход устройства.

В схеме фиг. 5, которая соответствует схеме фиг. 2, входной дифференциальный каскад 1 реализован на дополнительных входных транзисторах 30, 31, 32, 33, причем база дополнительного транзистора 30 соединена с первым неинвертирующим входом 34 ОУ, затвор дополнительного транзистора 31 подключен к инвертирующему входу 35 ОУ, база транзистора 32 соединена с инвертирующим входом 36 ОУ, а затвор транзистора 33 связан с четвертым неинвертирующим входом устройства.

Для уменьшения влияния напряжения Эрли первого 6 и второго 8 выходных транзисторов на напряжение смещения нуля ОУ в схеме фиг. 5 предусмотрена цепь смещения 38, реализуемая в виде источника опорного напряжения, вспомогательного резистора и т.п.

Рассмотрим работу ОУ фиг. 2.

Статический режим по току транзисторов ОУ фиг. 2 устанавливается источником опорного тока 21, входящим в структуру входного дифференциального каскада 1. При этом токи коллекторов транзисторов схемы (Iкi), токи первого 4 и второго 5 выходов ДК принимают значения: I21=4I0, I4=2I0, Iк10=Iк14=I0, I5=2I0, Iк12=I0, Iк13=I0, Iк6=I0, Iк8=I0, где I4=I5 - статические токи первого 4 и второго 5 выходов входного дифференциального каскада 1.

Если принять I20=4I0, то коллекторные токи всех транзисторов схемы будут равны некоторому опорному току I0, который выбирается разработчиком, например I0=1 мА.

Таким образом, в заявляемой схеме, также как и в ОУ-прототипе, обеспечивается высокая стабильность статического режима транзисторов промежуточного каскада (первый 6 и второй 8 выходные транзисторы), которая определяется единственным в схеме ОУ источником опорного тока 21.

За счет применения в схеме фиг. 2 первого 15 и второго 16 дополнительных повторителей напряжения и цепей взаимной компенсации эквивалентных сопротивлений (Ri4, Ri5) в цепи токовых выходов 4 и 5 входного ДК, которая обеспечивается четвертым 14 и вторым 12 вспомогательными транзисторами, эквивалентные сопротивления в цепи токовых выходов 4 (Ri4) и 5 (Ri5) существенно возрастают. Это приводит к существенному увеличению коэффициентов усиления по напряжению входного дифференциального каскада 1

где u4-5 - напряжение между первым 4 и вторым 5 токовыми выходами;

uвх - входное напряжение ОУ (напряжение между узлами 17, 18);

SДК - крутизна преобразования входного напряжения ДК (uвх) в приращения выходных токов первого 4 и второго 5 токовых выходов ДК в режиме их короткого замыкания.

В ОУ-прототипе этот коэффициент усиления (KДК) не превышает единицы, т.к. здесь Ri4≈Ri5=25÷50 Ом, а крутизна SДК в схемах с полевыми транзисторами всегда мала.

Результаты компьютерного моделирования (фиг. 7, фиг. 10) показывают, что предлагаемая схема ОУ имеет усиление по напряжению порядка 100 дБ (100000 раз) без введения каких-либо дополнительных каскадов усиления. Это повышает общее усиление разомкнутого ОУ.

При 100% отрицательной обратной связи на вход 36 и введении входного сигнала на вход 35 схемы фиг. 5 ОУ фиг. 5 является инвертирующим повторителем входного напряжения с Kу≈-1. Следует заметить, что на базе известного ОУ-прототипа такой режим без резисторов отрицательной обратной связи не реализуется [13].

Предлагаемые схемотехнические решения ОУ имеют малые значения систематической составляющей напряжения смещения нуля (Uсм) при температурных и радиационных воздействиях (фиг. 8, фиг. 9). Это свидетельствует о высокой стабильности статического режима транзисторов схемы ОУ.

Таким образом, предлагаемое двухкаскадное устройство имеет существенные преимущества в сравнении с известными, обеспечивает разомкнутое усиление по напряжению порядка Kу≈100000 и может найти широкое применение в системах преобразования радиотехнических сигналов.

ИСТОЧНИКИ ИНФОРМАЦИИ

1. Патент US 5.371.476, fig. 1.

2. Патент US 4.348.602, fig. 2.

3. Патент US 6.657.465.

4. Патент US 7.786.799, fig. 3.

5. Патент Японии JP 61-140210, fig. 1.

6. Патент US 7.411.451, fig. 2.

7. Патент US 4.607.232.

8. Патент US 5.936.468.

9. Справочник: операционные усилители и компараторы (Авербух В.Д. и др.). - М.: Изд-во «Додэка-ХХ1», 2001, С. 106 (микросхема СА3078).

10. Микросхема LM13600

http://www.komponenten.es.aau.dk/fileadmin/komponenten/Data_Sheet/Linear/LM13600.pdf

11. Микросхема LM13700 http://pdf1.alldatasheet.com/datasheet-pdf/view/549473/TI1/LM13700MX.html

12. Микросхема NF5517 http://pdf1.alldatasheet.com/datasheet-pdf/view/175236/ONSEMI/NE5517.html

13. Основные свойства, параметры и базовые схемы включения мультидифференциальных операционных усилителей с высокоимпедансным узлом / Н.Н. Прокопенко, О.В. Дворников, П.С. Будяков // Электронная техника. Серия 2. Полупроводниковые приборы. Выпуск 2 (233), Москва, ОАО «Пульсар», 2014 г. С. 53-64.

Двухкаскадный дифференциальный операционный усилитель с повышенным коэффициентом усиления, содержащий входной дифференциальный каскад, согласованный по общей эмиттерной цепи с первой шиной источника питания, первый и второй противофазные токовые выходы входного дифференциального каскада, первый выходной транзистор, коллектор которого связан со входом токового зеркала, согласованного с первой шиной источника питания, второй выходной транзистор, коллектор которого подключен к выходу токового зеркала и токовому выходу устройства, первый вспомогательный транзистор, коллектор которого подключен к первому токовому выходу входного дифференциального каскада, эмиттер соединен со второй шиной источника питания, а база связана с базой второго вспомогательного транзистора, эмиттер которого соединен со второй шиной источника питания, третий вспомогательный транзистор, коллектор которого подключен ко второму токовому выходу входного дифференциального каскада, эмиттер соединен со второй шиной источника питания, а база связана с базой четвертого вспомогательного транзистора, эмиттер которого соединен со второй шиной источника питания, отличающийся тем, что первый токовый выход входного дифференциального каскада связан с базой первого вспомогательного транзистора, а также базами первого выходного и второго вспомогательного транзисторов через первый дополнительный повторитель напряжения, второй токовый выход входного дифференциального каскада связан с базой третьего вспомогательного транзистора, а также с базами второго выходного и четвертого вспомогательного транзисторов через второй дополнительный повторитель напряжения, коллектор четвертого вспомогательного транзистора соединен с первым токовым выходом входного дифференциального каскада, коллектор второго вспомогательного транзистора подключен ко второму токовому выходу входного дифференциального каскада, причем эмиттеры первого и второго выходных транзисторов соединены со второй шиной источника питания.



 

Похожие патенты:

Изобретение относится к области радиоэлектроники и может быть использовано в качестве прецизионного устройства усиления сигналов. Технический результат - уменьшение напряжения смещения нуля, повышение стабильности при низких температурах и воздействии радиации.

Изобретение относится к области электроники. Технический результат - повышение коэффициента ослабления входного синфазного сигнала.

Изобретение относится к области радиоэлектроники. Технический результат: повышение коэффициента усиления по напряжению в разомкнутом дифференциальном операционном усилителе при высокой температурной и радиационной стабильности статического режима транзисторов его промежуточного каскада.

Изобретение относится к области измерительной техники и может быть использовано в качестве прецизионного устройства усиления сигналов различных датчиков. Технический результат заключается в повышении коэффициента ослабления входных синфазных сигналов инструментального усилителя.

Изобретение относится к области радиоэлектроники. Технический результат: повышение коэффициента усиления по напряжению разомкнутого мультидифференциального операционного усилителя при сохранении высокой стабильности нулевого уровня.

Изобретение относится к области радиоэлектроники и может быть использовано в качестве прецизионного устройства усиления сигналов. Технический результат заключается в повышении коэффициента усиления дифференциального сигнала в разомкнутом состоянии двухкаскадного ОУ до уровня 90÷400 дБ.

Изобретение относится к области радиотехники. Технический результат: повышение разомкнутого коэффициента усиления по напряжению операционного усилителя (ОУ) при сохранении высоких показателей по стабильности напряжения смещения нуля.

Изобретение относится к области радиоэлектроники и может быть использовано в качестве прецизионного устройства усиления широкополосных сигналов. Техническим результатом является расширение диапазона изменения выходного напряжения устройства до уровней, близких к напряжениям на положительной и отрицательной шинах питания.

Изобретение относится к области радиоэлектроники и может быть использовано в качестве прецизионного устройства усиления сигналов. Технический результат - уменьшение напряжения смещения нуля.

Изобретение относится к области радиотехники. Технический результат: создание энергоэкономичного устройства для усиления разности двух входных токов и подавления их синфазной составляющей.

Изобретение относится к области аналоговой усилительной техники. Технический результат: повышение значения коэффициента передачи по напряжению. Для этого предложен дифференциальный инструментальный усилитель с парафазным выходом, который содержит неинвертирующий вход (1) устройства и синфазный ему неинвертирующий выход (2) устройства, инвертирующий вход (3) устройства и синфазный ему инвертирующий выход (4) устройства, первый (5) входной дифференциальный каскад, второй (8) входной дифференциальный каскад, выходной дифференциальный каскад (14), при этом в схему введен дополнительный дифференциальный каскад (20), неинвертирующий вход (21) которого соединен с неинвертирующим (1) входом устройства, инвертирующий вход (22) дополнительного дифференциального каскада (20) подключен к инвертирующему (3) входу устройства, первый (23) токовый выход дополнительного дифференциального каскада (20) связан с первым (12) токовым выходом второго (8) входного дифференциального каскада, а второй (24) токовый выход дополнительного дифференциального каскада (20) связан со вторым (16) токовым выходом второго (8) входного дифференциального каскада. 5 ил.

Изобретение относится к области радиоэлектроники и вычислительной техники. Технический результат заключается в обеспечении дополнительно к режиму последовательного во времени преобразования входных потенциальных сигналов в выходное напряжение, алгебраического суммирования входных дифференциальных и недифференциальных напряжений, а также изменения их фазы в процессе мультиплексирования. Мультиплексор содержит N входных дифференциальных каскадов, имеющих инвертирующий и неинвертирующий входы, логический потенциальный вход для включения/выключения дифференциального каскада, и токовый выход, связанный с входом выходного буферного усилителя. Причем каждый из N входных дифференциальных каскадов имеет диапазон линейной работы по дифференциальному входу, превышающий максимальную амплитуду его входного дифференциального напряжения, потенциальный выход выходного буферного усилителя соединен с инвертирующим входом первого входного дифференциального каскада, неинвертирующий вход которого связан с общей шиной источника питания, причем каждый логический потенциальный вход включения/выключения каждого входного дифференциального каскада связан с выходом соответствующих из N триггеров, входы управления состоянием которых соединены с выходами цифрового управляющего устройства. 17 ил.

Изобретение относится к области измерительной техники и может быть использовано в качестве прецизионного устройства усиления сигналов различных датчиков. Технический результат заключается в повышении коэффициента ослабления входного синфазного сигнала при работе в диапазоне низких температур. Указанный результат достигается посредством инструментального усилителя для работы при низких температурах, который содержит первый входной полевой транзистор первого дифференциального каскада, затвор которого соединен с первым входом устройства, исток подключен к стоку первого вспомогательного транзистора первого дифференциального каскада, а сток через первый двухполюсник нагрузки связан с первой шиной источника питания и соединен с первым выходом, второй входной полевой транзистор первого дифференциального каскада. Между второй шиной источника питания и истоком второго выходного транзистора включен второй токостабилизирующий двухполюсник, причем второй и первый выходы соединены с соответствующими входами выходного каскада, выход которого, являющийся потенциальным выходом устройства, связан с четвертым входом устройства через цепь общей отрицательной обратной, а третий вход устройства соединен с общей шиной источников питания. 2 з.п. ф-лы, 7 ил.

Изобретение относится к области радиоэлектроники и может быть использовано в качестве прецизионного устройства усиления электрических сигналов различных датчиков. Технический результат заключается в повышении точности за счет уменьшения систематической составляющей напряжения смещения нуля низкотемпературного радиационно-стойкого мультидифференциального операционного усилителя (МОУ). Он содержит дифференциальные каскады на основе транзисторов, связанных друг с другом. Токовый выход первого (1) дифференциального каскада соединен с первой (15) шиной источника питания через первый (18) токостабилизирующий двухполюсник и подключен к эмиттеру первого (19) согласующего транзистора, второй (12) токовый выход второго (8) дифференциального каскада соединен с эмиттером второго (20) согласующего транзистора и через второй (21) токостабилизирующий двухполюсник соединен с первой (15) шиной источника питания. Причем первый (11) токовый выход второго (8) дифференциального каскада соединен с эмиттером второго (26) выходного транзистора и подключен к коллектору первого (19) согласующего транзистора, коллектор второго (26) выходного транзистора связан со вторым (28) входом выходного дифференциального каскада (25), выход которого соединен с выходом устройства (17). 3 з.п. ф-лы, 15 ил.

Изобретение относится к области аналоговой микроэлектроники. Технический результат: повышение быстродействия ОУ в режиме большого сигнала до уровня 20000 В/мкс. Это обеспечивается за счет исключения динамической перегрузки промежуточного каскада ОУ, выполненного в виде комплементарных «перегнутых» каскодов. Таким образом, предложен многоканальный быстродействующий операционный усилитель, который содержит входной дифференциальный каскад с первым и вторым входами и четырьмя токовыми выходами, первый-четвертый выходные транзисторы, буферный усилитель и корректирующий конденсатор, два токовых зеркала, причем в качестве входного дифференциального каскада используются каскады с широким диапазоном активной работы, а каждый первый, второй, третий и четвертый токостабилизирующие двухполюсники выполнены в виде соответствующих резисторов. 4 з.п. ф-лы, 5 ил.

Изобретение относится к области радиоэлектроники и может быть использовано в качестве прецизионного устройства усиления широкополосных сигналов. Технический результат: уменьшение систематической составляющей напряжения смещения нуля, а также создание условий для применения в схеме заявляемого устройства КМОП транзисторов. Низкотемпературный радиационно-стойкий мультидифференциальный операционный усилитель содержит первый (1) дифференциальный каскад на основе первого (2) и второго (3) входных транзисторов, связанных друг с другом инжектирующими выводами. Первый (4) токовый выход первого (1) дифференциального каскада и первый (11) токовый выход второго (8) дифференциального каскада подключены ко входу первого (15) токового зеркала, второй (12) токовый выход второго (8) дифференциального каскада подключен к выходу второго (18) токового зеркала и соединен со входом дополнительного инвертирующего усилителя (20), согласованного со второй (19) шиной источника питания, токовый выход которого соединен с токовым выходом устройства (17). 8 з.п. ф-лы, 10 ил.

Изобретение относится к области радиоэлектроники и может быть использовано в качестве прецизионного устройства усиления широкополосных сигналов. Технический результат заключается в уменьшении систематической составляющей напряжения смещения нуля. Радиационно-стойкий мультидифференциальный операционный усилитель для работы при низких температурах содержит первый и второй входные биполярные транзисторы, первый и второй входные полевые транзисторы, первое и второе токовые зеркала, первую и вторую шины источника питания, при этом в схему введены первый и второй дополнительные полевые транзисторы. 3 з.п. ф-лы, 16 ил.

Изобретение относится к области электроники и радиотехники. Технический результат: уменьшение коэффициента передачи входного синфазного сигнала. Технический результат достигается за счет новых элементов и связей, введенных в дифференциальный усилитель с повышенным ослаблением синфазного сигнала: второй (3) токовой выход входного дифференциального каскада (1) связан со входом второго (9) токового зеркала через первую (10) цепь согласования потенциалов, а четвертый (5) токовый выход входного дифференциального каскада (1) связан со входом первого (7) токового зеркала через вторую (11) цепь согласования потенциалов. 5 ил.

Изобретение относится к области радиоэлектроники. Технический результат заключается в повышении верхней граничной частоты коэффициента усиления по напряжению без увеличения тока потребления. Усилитель содержит: первый входной дифференциальный каскад с первым и вторым токовыми выходами, общая эмиттерная цепь которого связана с первой шиной источника питания, первый вспомогательный транзистор, эмиттер которого соединен с первым токовым выходом входного дифференциального каскада, база подключена к вспомогательному источнику напряжения смещения, а коллектор соединен с эмиттером первого выходного транзистора и через первый токостабилизирующий двухполюсник соединен со второй шиной источника питания, второй вспомогательный транзистор, эмиттер которого соединен со вторым токовым выходом входного дифференциального каскада, база подключена к вспомогательному источнику напряжения смещения, а коллектор соединен с эмиттером второго выходного транзистора и через второй токостабилизирующий двухполюсник подключен ко второй шине источника питания, цепь нагрузки, первый выход устройства, связанный с первым входом цепи нагрузки и коллектором первого выходного транзистора, второй выход устройства, связанный со вторым входом цепи нагрузки и коллектором второго выходного транзистора, а база первого выходного транзистора соединена с эмиттером первого вспомогательного транзистора, база второго выходного транзистора подключена к эмиттеру второго вспомогательного транзистора. 7 ил.

Изобретение относится к области радиоэлектроники и может быть использовано в качестве прецизионного устройства усиления сигналов. Технический результат заключается в расширении диапазона изменения отрицательного выходного напряжения ОУ до уровня, близкого к напряжению на второй (12) шине источника питания, и повышении коэффициента ослабления входных синфазных сигналов (Кос.сф) ОУ. Биполярно-полевой операционный усилитель содержит входной дифференциальный каскад (1), шину источника питания, полевой транзистор, резистивную цепь установления статического режима (17), связанную с шиной источника питания, выходной биполярный транзистор. 6 ил.
Наверх