Спиральная мельница

Изобретение относится к технике измельчения твердых материалов и может найти применение в строительной, химической и металлургической промышленности, а также в сельскохозяйственном производстве. Спиральная мельница содержит установленный на платформе пустотелый корпус с вибратором, смонтированным горизонтально под платформой. Корпус выполнен спиральным из пустотелого тоннеля с многозаходной винтовой поверхностью по периметру свернутого по спиральной оси 01-01 вокруг центральной прямолинейной оси 02-02 спирального корпуса, снабженного винтовыми канавками внутри под углом к его спиральной оси в виде карманов криволинейной формы с центрами кривизны, расположенными внутри поперечного сечения пустотелого тоннеля. При этом корпус собран из секций в виде одинаковых по форме и размерам колец, свернутых из одинаковых полос ромбовидной формы, на которых размещены трапеции, боковые стороны которых расположены на боковых сторонах ромбовидной полосы, а верхние и нижние основания трапеции расположены под острым углом к оси симметрии ромбовидной полосы 03-03 и являются линиями сгиба, находящимися друг от друга на расстояниях, равных длине карманов криволинейной формы по внутренней поверхности пустотелого тоннеля спирального корпуса. Секции в виде колец соединены друг с другом боковыми сторонами трапеций. Конструктивное выполнение корпуса обеспечивает расширение технологических возможностей мельницы, а также повышает ее производительность. 7 ил.

 

Изобретение относится к технике измельчения твердых материалов и может найти применение в строительной, химической и металлургической промышленности, а также в сельскохозяйственном производстве.

Известна вибрационная мельница, содержащая упруго установленный корпус с вибратором («Оборудование заводов лакокрасочной промышленности», Издательство «Химия», Ленинградское отделение, 1986 г., стр. 371).

Недостатком известного устройства является малая интенсивность измельчения и ограниченные технологические возможности ввиду небольшой интенсивности смешивания.

Наиболее близким к предлагаемому изобретению является вибрационная мельница (патент РФ №2350391, МКИ, В02С 17/02, опубл. 27.03.2009, бюл. №9), содержащая упруго установленный на основании корпус с вибратором, смонтированный вертикально.

Недостатком известного устройства являются ограниченные технологические возможности, обусловленные круговой формой траектории колебаний корпуса и небольшой производительностью измельчения.

Техническим результатом является расширение технологических возможностей, повышение производительности спиральной мельницы.

Технический результат достигается тем, что в спиральной мельнице, содержащей упруго установленный на платформе пустотелый корпус с вибратором, загрузочное и разгрузочное приспособления, корпус жестко установлен на платформе с вибратором, смонтированным горизонтально под платформой, и выполнен спиральным из пустотелого тоннеля с многозаходной винтовой поверхностью по периметру, свернутого по спиральной оси 01-01 вокруг центральной прямолинейной оси 02-02 спирального корпуса, снабженного винтовыми канавками внутри под углом к его спиральной оси в виде карманов криволинейной формы, с центрами кривизны, расположенными внутри поперечного сечения пустотелого тоннеля и собран из секций в виде одинаковых по форме и размерам колец, свернутых из одинаковых полос ромбовидной формы, на которых размещены трапеции, боковые стороны которых расположены на боковых сторонах ромбовидной полосы, а верхние и нижние основания трапеции расположены под острым углом к оси симметрии ромбовидной полосы 03-03 и являются линиями сгиба, находящихся друг от друга на расстояниях, равных длине карманов криволинейной формы по внутренней поверхности пустотелого тоннеля спирального корпуса, при этом секции в виде колец соединены друг с другом боковыми сторонами трапеций.

По данным патентно-технической литературы не обнаружено техническое решение, аналогичное заявляемому, что позволяет судить об изобретательском уровне предлагаемой спиральной мельницы.

Новизна усматривается в том, что корпус выполнен спиральным с многозаходной винтовой поверхностью по периметру, что повышает производительность измельчения и расширяет технологические возможности.

Новизна обусловлена тем, что за счет монтажа вибратора горизонтально под платформой с корпусом изменена форма траектории колебаний корпуса с круговой на вертикальный эллипс, что обеспечивает увеличение удельной плотности полной кинетической энергии (Еп) в 1,3-1,5 раза и повышает производительность.

Новизна заключается в том, что спиральный корпус с многозаходной винтовой поверхностью по периметру снабжен винтовыми канавками внутри и снаружи под углом к оси спирали центра оси симметрии 01-01 пустотелого тоннеля спиральной формы с центральной прямолинейной осью 02-02, что повышает производительность и расширяет технологические возможности.

Новизна состоит в том, что винтовые канавки спирального корпуса выполнены в виде карманов криволинейной формы, расположенных внутри поперечного сечения пустотелого тоннеля, что расширяет технологические возможности и повышает производительность.

Новизна усматривается в том, что спиральный корпус смонтирован из секций в форме одинаковых колец, свернутых из одинаковых полос ромбовидной формы, на которых размещены трапеции на боковых сторонах ромбовидных полос, а верхние и нижние основания трапеций расположены под острым углом к оси симметрии полосы ромбовидной формы 03-03 и являются линиями сгиба, находящихся друг от друга на расстояниях, равных длине карманов криволинейной формы, при этом секции соединены друг с другом боковыми сторонами трапеций, что повышает производительность.

Новизна предложения заключается также в том, что по всему периметру спирального корпуса проходное сечение изменяется не только по форме, но и по площади, что обеспечивает попеременное сжатие и расширение измельчаемых материалов в каждом сечении спирального корпуса, а значит повышение производительности и расширение технологических возможностей.

Новизна предлагаемого изобретения заключается в том, что трапеции ромбовидных полос, из которых смонтированы секции, разнонаклонены не только друг к другу, но и к оси симметрии спирального корпуса, поэтому степень сжатия частиц измельчаемых материалов возрастает, процесс измельчения материалов интенсифицируется.

Новизна заключается также в том, что спиральный корпус изготовлен из секций, стенки которых разнонаклонны не только друг к другу, но и к направлению вращательного движения частиц измельчаемых материалов, движущихся под воздействием вибрации в плоскостях, перпендикулярных проходному сечению спирального корпуса, что усложняет траектории их движения, увеличивает интенсивность измельчения материалов и расширяет технологические возможности.

Новизна обусловлена тем, что секции, из которых собран спиральный корпус по периметру смонтированы из ромбовидных полос с размеченными на них трапециями разных по площади и размерам, поэтому интенсивность и эффективность измельчения материалов возрастает, расширяются технологические возможности.

Новизна заключается также в том, что спиральный корпус изготовлен из секций, стенки которых разнонаклонны не только друг к другу, но и к направлению вращательного движения частиц измельчаемого материала, движущихся под воздействием вибрации в плоскостях, перпендикулярных проходному сечению спирального корпуса, что усложняет траектории их движения, увеличивает интенсивность измельчения и расширяет технологические возможности.

Сущность изобретения поясняется чертежами, где: на фиг. 1 изображена спиральная мельница, общий вид; на фиг. 2 - разрез А-А на фиг. 1; на фиг. 3 - наглядное изображение спирального барабана с карманами криволинейной формы; на фиг.4 - наглядное изображение взаимного положения спирали 01-01, по которой свернут пустотелый тоннель с многозаходной винтовой поверхностью вокруг центральной прямолинейной оси 02-02; на фиг. 5 - одна из полос ромбовидной формы, на которой размещены трапеции, верхние и нижние основания которых расположены под острым углом к оси симметрии полосы 03-03 в виде линии сгиба; на фиг. 6 - полоса ромбовидной формы, согнутая по линиям сгиба верхнего и нижнего оснований трапеций; на фиг. 7 - наглядное изображение ромбовидной полосы, свернутой в кольцо при соединении верхнего основания трапеции N N1, трапеции N М М1 N1 с верхним основанием R R1 трапеции G R R1 G1.

Спиральная мельница (фиг. 1) содержит корпус 1, жестко закрепленный на платформе 2, упруго установленных на основании 4 с помощью четырех резинокордных баллонов 3. На платформе 2 жестко закреплено загрузочное устройство 5 и снизу к платформе 2 также жестко прикреплен вибратор 6 с горизонтальной осью вращения. Спиральная мельница также снабжена разгрузочным устройством 7 для приема готовой продукции в виде измельченного материала.

Вибратор 6 смонтирован под платформой 2 горизонтально и поэтому обеспечивает движение частиц сыпучих материалов внутри корпуса 1 под воздействием вибратора 6 по эллиптическим траекториям. Корпус 1 (фиг. 1, фиг. 2, фиг. 3) выполнен спиральным. На фиг. 4 показано наглядное изображение взаимного расположения оси спирали - центра оси симметрии 01-01 пустотелого тоннеля, спирального корпуса 1 (на фиг. 4 спиральный корпус изображен поперечными сечениями 13 пустотелого тоннеля с многозаходной винтовой поверхностью) и центральной прямолинейной осью 02-02 спирального корпуса 1.

Таким образом, по периметру спиральный корпус 1 выполнен в виде тоннеля спиральной формы с многозаходной винтовой поверхностью по периметру и снабжен винтовыми канавками, внутри расположенными под углом α к оси симметрии спирали 01-01 центра оси симметрии (фиг. 3) тоннеля спирального, свернутого по спирали 01-01 вокруг центральной оси 02-02 спирального корпуса 1.

Винтовые канавки спирального корпуса 1 (фиг. 7) выполнены в виде карманов 14, 15, 16, 17, 18, 19 по внутренней поверхности и карманов по наружной поверхности 20, 21, 22, 23, 24, 25 тоннеля спиральной формы (фиг. 7) в виде карманов криволинейной формы с центрами кривизны, расположенными внутри поперечного сечения пустотелого тоннеля, и собран из секции в виде одинаковых по форме и размерам колец 26, соединенных друг с другом боковыми сторонами 27 и 28 (фиг. 7).

В результате образуется пустотелый тоннель спирального корпуса 1 (фиг. 1, фиг. 2, фиг. 3) с осью спирали - центра оси симметрии 01-01 спирального корпуса 1, скрученного вокруг центральной прямолинейной оси 02-02 спирального корпуса 1 по диаметру Dcp, с образованием спирального корпуса 1 с наружным диаметром Dmax и внутренним диаметром Dmin (фиг. 4).

При этом пустотелый спиральный корпус 1 с многозаходной винтовой поверхностью снабжен винтовыми канавками в виде карманов 14, 15, 16, 17, 18, 19 и карманами 20, 21, 22, 23, 24, 25 по наружной поверхности спирального корпуса 1 (фиг. 4, фиг. 7).

Таким образом, пустотелый тоннель с собственной спиральной осью симметрии 01-01 свернут по этой спирали 01-01 вокруг центральной прямолинейной оси 02-02 и образует спиральный корпус 1 (фиг. 4, фиг. 3).

Секция 26 изготовлена в виде кольца (фиг. 7) и смонтирована из ромбовидной перфорированной полосы 29.

На ромбовидной полосе 29 размещены трапеции 30, 31, 32, 33, 34, 35 боковые стороны которых расположены по боковых сторонам ромбовидной полосы 29, а верхние и нижние основания этих трапеций (фиг. 5) расположены под острым углом β к оси симметрии ромбовидной полосы 03-03 и являются линиями сгиба (фиг. 5, фиг. 6), расположенны друг от друга на расстояниях, равных длине развертки периметра криволинейных карманов (фиг. 7) спирального корпуса 1, выполненного в виде пустотелого тоннеля.

На фиг. 5 показаны трапеции:

N М М1 N1 - первая трапеция;

М F F1 М1 - вторая трапеция;

F Е Е1 F1 - третья трапеция.

При этом N N1 является наименьшим из всех верхних оснований трапеций, расположенных на ромбовидной полосе 29 ниже линии сгиба Е Е1 и вышеперечисленных трех трапеции (первой, второй, третьей).

На фиг. 5 показаны также трапеции:

Е S S1 Е1 - четвертая трапеция;

S G G1 S1 - пятая трапеция;

G R R1 G1 - шестая трапеция.

При этом R R1 является наименьшим основанием из всех верхних оснований трапеций, расположенных на ромбовидной полосе 29 выше линии сгиба Е Е1, которая для всех трапеций, в свою очередь, является наибольшей из всех нижних оснований с четвертой трапеций по шестую трапецию.

Таким образом, линия сгиба Е Е1 является не только нижним основанием трапеции E S S1 Е1, но и одновременно самым длинным основанием трапеции F E E1 F1 и самой длинной из всех нижних линий сгиба ромбовидной полосы 29 и кольца 26 (фиг. 7).

При этом линии сгиба N N1 и R R1 являются самыми короткими из всех линий сгиба ромбовидной полосы 29 и кольца 26 и NN1≡RR1.

Соотношение длины линии сгиба ЕЕ1 и NN1(RR1) определяет величину шага S1 спирали 01-01, а значит и шаг навивки пустотелого тоннеля вокруг прямолинейной оси 02-02 спирального корпуса 1.

Например, на фиг. 5 линии сгиба L6<L5<L4<L3 и L0<L1<L2<L3.

Ромбовидная полоса 29 сгибается по прямым линиям сгиба, которые и являются основанием всех шести трапеций и параллельным друг другу (фиг. 5).

Затем ромбовидная полоса 29 сгибается по линиям сгиба с образованием полуокружностей 36 (фиг. 6) и затем сворачивается в кольцо (фиг. 7) с карманами криволинейной формы 14, 15, 16, 17, 18, 19 с центрами кривизны, расположенными внутри поперечного сечения кольца 26.

Секции в виде одинаковых колец 26 затем соединяют друг с другом последовательно боковыми сторонами 27 и 28 так, чтобы все линии сгиба являлись продолжением одноименных линий сгиба предыдущего кольца.

В результате такой сборки по периметру пустотелого спирального корпуса 1 образуются винтовые линии, показанные на фиг. 3, например утолщенными линиями 37-38, 39-40.

Таким образом, спиральный корпус 1 (фиг. 1, фиг. 2, фиг. 3) выполнен по периметру в виде многозаходной винтовой спиральной поверхности с винтовыми линиями по периметру спирального корпуса 1 (две из винтовых линий показаны на фиг. 3 утолщенными линиями 37, 38, 39, 40) и винтовыми канавками внутри и снаружи спирального корпуса 1 в виде карманов криволинейной формы 14, 15, 16, 17, 18, 19 по внутренней поверхности и винтовых канавок по наружной поверхности 21, 22, 23, 24, 25, 26 под углом α к спиральной оси пустотелого тоннеля спиральной формы спирального корпуса 1.

Спиральная мельница работает следующим образом.

Мельница работает следующим образом.

Возмущающая сила вибратора через стенки спирального корпуса 1 передается частицам измельчаемых материалов, находящихся внутри спирального корпуса 1 и поступающих внутрь спирального корпуса 1 непрерывным потоком через загрузочное приспособление 5. Частицы измельчаемых материалов совершают вращательное движение по вертикальным эллиптическим траекториям, при этом происходит процесс измельчения материалов. При этом частицы измельчаемых материалов не только интенсивно взаимодействуют друг с другом, но и под воздействием вибрации совершают вращательное движение в плоскости, перпендикулярной проходному сечению спирального корпуса 1. Так как у спирального корпуса 1 размеры поперечного сечения, форма и расположение по мере перемещения измельчаемых материалов от загрузки к выгрузке меняются, то усугубляется нарушение движения частиц измельчаемых материалов, которые при этом взаимодействуют с карманами криволинейной формы внутренних стенок спирального корпуса 1, т.е. имеет место повышение интенсивности измельчаемых материалов. Наличие винтовых поверхностей и винтовых линий по периметру спирального корпуса 1 способствует не только усложнению траекторий движения частиц измельчаемых материалов, но и их перемещению по проходному сечению спирального корпуса 1 в сторону выгрузки и к разгрузочному устройству 7.

При движении частиц измельчаемых материалов по проходному сечению спирального корпуса 1 из-за изменения проходного сечения по форме и размерам образуются попеременно зоны сжатия и разряжения в каждом сечении спирального корпуса 1 по всему его объему, что тоже интенсифицирует процесс измельчения материалов и расширяет технологические возможности.

Технико-экономические преимущества возникают за счет того, что спиральный корпус выполнен спиральным из пустотелого тоннеля с многозаходной винтовой поверхностью по периметру, свернутого по спирали, что обеспечивает повышение производительности и расширение технологических возможностей, а также за счет монтажа вибратора горизонтально под платформой со спиральным корпусом 1, что обеспечивает увеличение удельной плотности кинетической энергии в 1,3-1,5 раза и повышает производительность.

Спиральная мельница, содержащая установленный на платформе пустотелый корпус с вибратором, загрузочное и разгрузочное приспособления, отличающаяся тем, что корпус жестко установлен на платформе с вибратором, смонтированным горизонтально под платформой, выполнен спиральным из пустотелого тоннеля с многозаходной винтовой поверхностью по периметру свернутого по спиральной оси 01-01 вокруг центральной прямолинейной оси 02-02 спирального корпуса, снабженного винтовыми канавками внутри под углом к его спиральной оси в виде карманов криволинейной формы с центрами кривизны, расположенными внутри поперечного сечения пустотелого тоннеля, и собран из секций в виде одинаковых по форме и размерам колец, свернутых из одинаковых полос ромбовидной формы, на которых размещены трапеции, боковые стороны которых расположены на боковых сторонах ромбовидной полосы, а верхние и нижние основания трапеции расположены под острым углом к оси симметрии ромбовидной полосы 03-03 и являются линиями сгиба, находящимися друг от друга на расстояниях, равных длине карманов криволинейной формы по внутренней поверхности пустотелого тоннеля спирального корпуса, при этом секции в виде колец соединены друг с другом боковыми сторонами трапеций.



 

Похожие патенты:

Изобретение относится к горной промышленности и, в частности, может быть использовано для управления процессом измельчения руды в агрегатах непрерывного действия - барабанных мельницах.
Изобретение относится к системе управления измельчением руды в барабанных мельницах разных типов в горной промышленности. Определяют оптимальное задание по подаче руды в мельницу и соотношение руда-вода для измельчения рудной массы до заданного гранулометрического состава в технологическом контуре с классификацией.

Изобретение относится к агрегатам для смешения и измельчения твердых дисперсных материалов. Агрегат содержит устройства загрузки и выгрузки, мелющие тела, установленный на опорах приводной барабан.
Изобретение предназначено для измельчения барабанными мельницами на горно-обогатительных комбинатах. Фиксируют шум микрофоном.

Изобретение относится к асфальтовым изделиям, включая модифицированные асфальтовые композиции. Описан способ изготовления модифицированных асфальтовых связующих композиций, который включает перемешивание асфальтового связующего материала и по меньшей мере одной асфальтовой добавки и/или асфальтового модификатора в шаровой мельнице-мешалке, что вызывает перемешивающее, сдвигающее, ударное и измельчающее воздействие на смесь.
Изобретение относится к горной промышленности, в частности к способам автоматизации процесса измельчения минеральной массы в барабанных мельницах. Способ включает дозированную загрузку рудной галей рудно-галечной барабанной мельницы.

Изобретение к устройствам для измельчения, в частности для тонкого измельчения порошкообразных твердых материалов, и может быть использовано в лакокрасочной, керамической, пищевой, химической, горнодобывающей и других отраслях промышленности.

Изобретение относится к машиностроительной, строительной, химической промышленности, производящей или использующей помольно-смесительные агрегаты с устройствами автоматического уравновешивания.

Изобретение относится к области измельчения различных материалов сложного состава, в частности диспергирования сложных неорганических соединений. Материал размалывают в атмосфере заданного состава.

Изобретение предназначено для производства высококачественного цемента. Установка содержит криогенную барабанную мельницу циклического действия в виде вращающегося теплоизолированного помольного криостата (7), криогенную машину Стерлинга (1) с конденсатором (2), линию подачи криогенной жидкости из емкости (3) для хранения криогенной жидкости в помольный криостат, линию выпара криогенной жидкости и линию подачи атмосферного воздуха (12) с охладителем (11) и вымораживателем влаги и углекислоты (18).

Изобретение относится к области порошковой металлургии. Для размола порошка обрабатывают исходный железосодержащий материал в мельнице. В мельницу загружают измельченный исходный железосодержащий материал и рабочие тела. Рабочие тела выполнены в виде стальных шариков. Предварительно в сосуд загружают исходный порошок и стальные шарики диаметром 6-22 мм в соотношении 10:1 соответственно. Заливают жидким азотом с добавлением этилового спирта. Помещают в камеру вибрационной мельницы. Герметизируют и создают вакуум 1 кгс/см2. Наполняют камеру газообразным аргоном и осуществляют помол в течение 1-4 часов с последующим анализом размера частиц. Изобретение упрощает процесс и увеличивает эффект измельчения. 1 з.п. ф-лы, 8 ил.

Изобретение относится к керамической промышленности и может быть использовано при изготовлении керамических изделий методом водного шликерного литья в пористые формы. Способ заключается в том, что в шаровую мельницу загружают исходный материал и мелющие тела, вводят дистиллированную воду, нагретую до температуры 90-95 градусов С, после чего осуществляют мокрый помол и стабилизацию механическим перемешиванием. Способ обеспечивает высокую производительность получения водных шликеров при сохранении их параметров. 1 табл., 2 пр.
Наверх