Способ контроля физиологических параметров дыхательной системы водолазов

Изобретение относится к медицине, а именно к оценке состояния органов дыхания, и может быть использовано для контроля физиологического состояния пловцов с подводным аппаратом открытого цикла. Зарегистрированные шумы дыхания водолаза раздельно фильтруют для выделения шумов вдоха в полосе частот свыше 1 кГц, а для выделения шумов выдоха в полосе частот до 500 Гц. Затем детектируют каждый фильтрованный сигнал. Сглаживают полученный сигнал, получая огибающую. По превышению уровня огибающей над фоном определяют фазы дыхания. Продолжительность фазы дыхания вычисляют как временной промежуток между начальным и конечным моментом времени вдоха или выдоха. Способ позволяет объективно определить продолжительность фаз вдоха и выдоха в каждом цикле дыхания в каждый момент времени пребывания водолаза под водой за счет раздельной фильтрации дыхательных шумов. 3 ил.

 

Изобретение относится к медицине, в частности к оценке состояния органов дыхания, и может быть использовано для контроля физиологического состояния пловцов с подводным аппаратом открытого цикла.

Контроль за физиологическим состоянием водолаза в море ведется по параметрам основных систем организма человека, таких как нервная, сердечно-сосудистая, дыхательная. В ряде случаев выбирают несколько характерных параметров, определяющих состояние объекта в целом.

Известно, что водолазная деятельность связана с воздействием на респираторную систему комплекса неблагоприятных факторов, в частности увеличенного парциального давления кислорода, что ведет к кислородной интоксикации. Хотя для водолазов разработаны стандарты использования газовых сред для дыхания, проблема оценки состояния легочной функции водолаза во время работы все еще остается актуальной, поскольку чувствительность к токсическим эффектам кислорода варьируется не только между субъектами, но и у одного и того же субъекта в разные периоды времени и уровня здоровья организма.

В обычных условиях дыхание, как известно, осуществляется рефлекторно, обеспечивая необходимое содержание кислорода и двуокиси углерода в организме человека. Однако повышенные уровни парциального давления кислорода, двуокиси углерода и азота при подводном погружении, учитывая глубину погружения, уровень физической нагрузки, наличие задержек дыхания и изменение плотности вдыхаемого газа требуют сознательного контроля над дыханием. Потеря контроля над дыханием может стать причиной панических состояний или потери сознания под водой, поэтому контроль за дыхательной системой по таким физиологическим параметрам водолаза как ритм дыхания, вариабельность, продолжительность фаз вдоха и выдоха является необходимой составляющей, обеспечивающей безопасность человека при его нахождении под водой.

Известно, что ритм дыхания является показателем двигательной активности водолаза, за которым во время работы водолаза следит обеспечивающий персонал (В.В. Смолин, Г.М. Соколов, Б.Н. Павлов. Водолазные спуски и их медицинское обеспечение. 2001, стр. 266).

Известно также, что в условиях патологии особую диагностическую ценность приобретает значительное удлинение одной из фаз дыхания. Например, удлинение фазы вдоха происходит при возникновении препятствия в верхних отделах дыхательных путей (отек гортани, ларингоспазм, сдавливание трахеи). Вдох становится шумным и продолжительным. Значительное удлинение выдоха на фоне редкого дыхания характерно для сужения просвета мелких бронхов (Врачебные методы диагностики: учеб. пособие. - Кукес В.Г., Маринин В.Ф., Реуцкий И.А., Сивков С.И., 2006. Стр. 300).

Показатель отношения продолжительности вдоха (I) к выходу (Е) на воздухе известен и лежит в пределах от 1.2 до 1.5, но для водолазов под водой численных значений этих параметров не обнаружено, вероятно, из-за относительной сложности их определения. Во время тренировок водолазу может быть дана команда делать вдох в два-три раза короче выдоха, но проконтролировать правильное выполнение данной команды под водой может только сам водолаз. При наличии связи персонал на слух может и, как правило, контролирует частоту дыхания водолаза по шумам дыхания [В.В. Смолин, Г.М. Соколов, Б.Н. Павлов. Водолазные спуски и их медицинское обеспечение. 2001, стр. 266], давая команды обратить внимание на ритм и продолжительность фаз дыхания. Самостоятельный контроль за фазами дыхания, который водолазу предлагается делать при отсутствии связи с обеспечивающим персоналом, требует от пловца большого внимания и не всегда возможен (Тюрин В.И. Внимание, глубина. Изд-во ДОСААФ, 1974, стр. 26).

Известен способ определения длительностей фаз дыхания с использованием датчиков давления и/или потока, которые встраиваются в дыхательные трубки аппарата искусственной вентиляции легких, однако размещение таких датчиков в подводном дыхательном аппарате будет являться вмешательством в конструкцию с нарушением целостности трактов дыхательного аппарата (п. США №9186070 В2).

Известны способы регистрации ритма дыхания водолаза под водой с использованием одиночного гидрофона.

Например, показана возможность регистрации шумов вдоха пловца в подводном аппарате открытого цикла в нагруженном порту Готтенбург (Lennartsson R.K., Dalberg Е., Persson L. Passive acoustic detection and classification of divers in harbor environments // OCEANS, 2009, p. 1-7). Шумы вдоха устойчиво обнаруживаются за 25 м до приближения к гидрофону и после 5 м удаления от гидрофона. Для их выделения использовался следующий алгоритм:

Шаг 1: записанный с гидрофона сигнал фильтруют в полосе от 30 до 35 кГц для улучшения отношения сигнал/шум.

Шаг 2: после преобразования Гильберта и взятия абсолютного значения получают огибающую сигнала.

Шаг 3: строят спектр огибающей с помощью преобразования Фурье.

Шаг 4: определяют энергию спектра в полосе частот дыхания водолаза от 0,3 до 0,7 Гц с помощью интегрирования. По значению энергии спектра огибающей в полосе принимается гипотеза о наличии водолаза около гидрофона.

Описан способ регистрации шумов пловцов с аппаратом открытого цикла в полосе частот от 35 до 80 кГц (Lo K.W., Ferguson B.G. Diver detection and localization using passive sonar // Australian Acoustical Society Conference 2012, Acoustics 2012: Acoustics, Development, and the Environment, p. 489-496). Сообщается, что шумы эти соответствуют вдохам. Для надежного выделения ритма дыхания авторы используют два алгоритма: DEMON (Detection of Envelope Modulation on Noise, выделение модуляций из шума) и циклостационарная обработка (cyclostationary technique), которые показали схожие результаты. Из чего авторы делают вывод о достоверности определения ритма дыхания водолаза по вдохам. В качестве примера представлен график зависимости ритма дыхания пловца от времени.

Однако в обоих приведенных способах по высокочастотному сигналу первой ступени водолазного аппарата при вдохе определялся только дыхательный ритм, и способы не позволяют регистрировать и выделять шумы выдоха, то есть оценить продолжительность фазы выдоха и, соответственно, получить зависимость соотношения продолжительностей фаз дыхания.

Наиболее близким к заявляемому является способ определения ритма дыхания пловца с водолазным аппаратом по выдоху (Коренбаум В.И., Горовой С.В., Бородин А.Е., Тагильцев А.А., Костив А.Е., Ширяев А.Д., Василистов A.M., Почекутова И.А. Экспериментальные исследования возможности обнаружения дыхательных шумов легководолазов // Фундаментальная и прикладная гидрофизика, 2015, т. 8, №4. С. 67-71). Способ включает регистрацию размещенными на дне гидрофонами гидроакустического шума, соответствующего шумам пловца, проведение спектрального анализа записанных шумов, выделение квазипериодических составляющих дыхательных шумов пловца и определение по ним среднего ритма дыхания, а также принятие решения о необходимости прекращения погружения либо при снижении ритма дыхания, что происходит при отравлении кислородом либо при увеличении ритма при отравлении углекислым газом и чрезмерных физических нагрузках.

В прототипе рассматриваются шумы водолаза в низкочастотной области спектра, соответствующие преимущественно шумам выдоха для водолазов с аппаратами открытого цикла. Способ позволяет определить среднее значение ритма дыхания в интервале единицы минут, но не позволяет оценить шумы вдоха и, соответственно, получить зависимость соотношения продолжительностей фаз дыхания.

Таким образом, все известные способы позволяют следить только за ритмом дыхания, но не позволяют определить численные значения продолжительности фаз вдоха и выдоха, а также объективно оценивать соотношения этих фаз.

Техническая проблема - объективный контроль состояния водолаза под водой по данным дыхания.

Технический результат - определение продолжительностей фаз вдоха и выдоха в каждом цикле дыхания в каждый момент времени пребывания водолаза под водой.

Поставленная задача решается способом определения продолжительностей фаз дыхания у водолаза с подводным аппаратом открытого цикла, при котором регистрируют шумы дыхания водолаза, осуществляют раздельную фильтрацию зарегистрированного шумового сигнала в полосе частот свыше 1 кГц для выделения шумов вдоха и в полосе частот до 500 Гц для выделения шумов выдоха, проводят детектирование выделенных фильтрованных сигналов, сглаживают огибающую каждого детектированного сигнала, выделяют фазы дыхания по превышению уровня огибающей над фоном и определяют их продолжительности по величине интервала между начальным и конечным моментом времени вдоха или выдоха.

Ритм дыхания определяется по интервалам между окончаниями вдохов или выдохов.

Способ основывается на том, что основным источником шума при вдохе являются колебания давления турбулентного потока преимущественно в первой ступени (регулятор высокого давления) подводного аппарата. Процесс выдоха сопровождается шумом создаваемых выдохом пузырьков. После выдоха следует кратковременная пауза, которая скрывается шумом всплывающих пузырьков. Таким образом полоса частот, позволяющая обеспечить максимальное отношение сигнал/шум при вдохе, зависит от модели регулятора и может варьироваться в широких приделах, но она всегда выше 1 кГц, а при выдохе полоса частот не зависит от модели регулятора и всегда ниже 500 Гц. Это заключение экспериментально подтверждается проведенными измерениями, так для регулятора Titan LX (AquaLung, Франция) шумы вдоха регистрируются наилучшим образом в полосе частот 10-11 кГц, для регулятора mr12 III (Mares, Италия) в полосе частот 1-3,5 кГц, тогда как шумы выдоха - в полосе частот до 500 Гц. Способ позволяет, не нарушая целостности трактов дыхательного аппарата, измерить под водой и соотношение продолжительностей фаз вдоха и выдоха водолазов и ритм дыхания, которые могут быть использованы для мониторинга состояния водолаза во время пребывания под водой, в том числе принятия решения о прекращении водолазных работ. Преимуществом является также то, что заявляемый способ может быть аппаратно реализован как дополнительная функция в декомпрессионном компьютере подводного пловца.

На Фиг. 1 представлена блок-схема реализации заявляемого способа, где А - входной сигнал, В - канал обработки шумов вдоха, С - канал обработки шумов выдоха, 1 - фильтр высоких частот, 2 - фильтр низких частот, 3 - детекторы, 4 - сглаживание сигналов; 5 - выделение вдоха, 6 - выделение выдоха, 7 - вычисление ритма дыхания (ВРМ) и соотношения (I:Е) продолжительностей вдоха и выдоха.

На Фиг. 2 представлены осциллограммы шумов при дыхании водолаза под водой: Канал А - шумы дыхания водолаза, Канал В - шумы при вдохе, Канал С - шумы при выдохе. По оси ординат - амплитуда, условные единицы, по абсцисс - время, с.

На Фиг. 3 - огибающая шумов вдоха (Канал В) и выдоха (Канал С). Пунктирные линии показывают соответственно начало и окончание вдоха (8-9), а (10-11) выдоха. По оси ординат - амплитуда, условные единицы, по абсцисс - время, с.

Способ осуществляют следующим образом.

Регистрируют шумы (Фиг. 1, 2, канал А) дыхания водолаза, при этом регистрирующее устройство может быть как автономным, например диктофон, помещенный под водолазный костюм с последующим перенесением данных на компьютер, либо гидрофон, сигналы с которого в реальном времени передаются обеспечивающему водолазные спуски. Производят раздельную фильтрацию зарегистрированного шумового сигнала в полосе частот свыше 1 кГц для выделения шумов вдоха (Фиг. 1, блок 1; Фиг. 2, канал В) и в полосе частот до 500 Гц для выделения шумов выдоха (Фиг. 1, блок 2; Фиг. 2, канал С). Для каждого из фильтрованных сигналов производят построение огибающей, для чего каждый сигнал детектируют (Фиг. 1, блок 3), затем сглаживают (Фиг. 1, блок 4; Фиг. 3, канал В и С) с использованием любого из известных приемов, сравнивают уровень огибающей с фоном, и определяют длительность соответствующей фазы дыхания (Фиг. 1, блок 7) по интервалу между начальным (Фиг. 3, пунктир 8, 10) и конечным (Фиг. 3, пунктир 9, 11) моментом времени превышения уровня огибающей над фоном (Фиг. 1, блоки 5, 6). Ритм дыхания определяют по интервалам между окончаниями вдохов или выдохов (Фиг. 1, блок 7).

Способ был экспериментально проверен при погружении водолаза, снабженного дыхательным аппаратом на основе регулятора Titan LX (AquaLung, Франция) с открытым циклом дыхания на сжатом воздухе и мокрого/сухого водолазного костюма.

Регистрация шумов дыхания проводилась с помощью диктофона марки H1 (ZOOM Corporation, Япония). Запись сохранялась в формате WAV в импульсно-кодовой модуляции без сжатия, разрядность квантования 24 бита, частота дискретизации 48 кГц. Низкочастотная фильтрация и автоматическое регулирование усиления отключены. Запись велась на карту памяти microSDHCcard 32 Гб. В качестве чувствительного элемента использовался встроенный микрофон. Используемый диктофон оборудован входным регулируемым усилителем 0-39 дБ. Величина коэффициента усиления подбиралась перед каждым погружением. Объем диктофона 185 см3, плотность ~0,5 г/см3 - положительная плавучесть.

Диктофон помещался в герметичную эластичную трехслойную оболочку из латекса, толщина каждого слоя 0,06-0,08 мм. Диктофон в оболочке размещался в районе яремной ямки и прижимался к телу водолаза костюмом. Материал водолазного костюма - пористый синтетический каучук толщиной 5 мм, покрытый нейлоном. Костюм отделяет оболочку диктофона от внешней среды. При этом воздухозаполненная латексная оболочка выполняет роль трансформатора колебаний волн, бегущих как из внешней среды, так и изнутри грудной клетки. Колебания оболочки передаются на чувствительный элемент - микрофон диктофона через воздушное пространство внутри оболочки.

После завершения погружения запись с диктофона переносилась в память персонального компьютера и обрабатывалась программой LabChart 6 (ADInstruments, Австралия).

Проведена запись дыхательных шумов при погружении водолазов на глубины 5-8 метров. Время погружения до 30 мин.

Показанные на Фиг. 2 шумы записаны при дыхании нормально чувствовавшего себя водолаза (канал А, слева на право: выдох, вдох, выдох, вдох). Уровень сигнала выдоха больше вдоха. Выдох начинается с хорошо различимой паузы после вдоха. В записи присутствуют кратковременные, широкополосные шумы артефактов ударного происхождения. Выбор оптимальной полосы фильтрации позволяет уменьшить амплитудное значение артефактов и упростить последующее автоматическое определение границ фаз дыхания. Последующее детектирование инструментом Arithmetic программы LabChart и сглаживание (Smoothing программы LabChart) сигналов (Фиг. 3, канал В для вдоха и канал С для выдоха) позволяет определять начало (Фиг. 3, пунктир 8, 10) и окончание (Фиг. 3, пунктир 9, 11) фаз дыхания (PeakAnalysis программы LabChart) и соответственно продолжительность вдоха и выдоха водолаза.

Так, для нормально чувствовавшего себя водолаза соотношение фаз вдоха и выдоха оказалось равным 1:2.5, а дыхательный интервал 5.8 с, что соответствует 10.3 дыхательных движений в минуту.

Были также оценены характеристики шумов дыхания водолаза, у которого возникли проблемы с оборудованием и он запросил эвакуацию из воды. Перед эвакуацией дыхательный ритм составил 18 дыхательных движений в минуту, соотношение фаз дыхания 1:1.3, что существенно отличается от параметров дыхания нормально чувствовавшего себя водолаза.

Таким образом, за счет раздельной фильтрации зарегистрированных шумов водолаза с подводным аппаратом открытого цикла в полосе частот свыше 1 кГц для выделения шумов вдоха и в полосе частот до 500 Гц для выделения шумов выдоха и детектирования каждого фильтрованного сигнала достигается технический результат - определение как продолжительностей вдоха и выдоха в каждом цикле дыхания, так и ритма дыхания, и решается техническая проблема объективного контроля состояния водолаза под водой по шумам дыхания, в том числе принятия решения о прекращении миссии.

Способ определения продолжительностей фаз дыхания у водолаза с подводным аппаратом открытого цикла, включающий регистрацию шумов дыхания водолаза и определение ритма дыхания, отличающийся тем, что осуществляют раздельную фильтрацию зарегистрированного шумового сигнала в полосе частот свыше 1 кГц для выделения шумов вдоха и в полосе частот до 500 Гц для выделения шумов выдоха, проводят детектирование фильтрованных сигналов, осуществляют сглаживание детектированных сигналов, получая огибающую, выделяют фазы дыхания по превышению уровня огибающей над фоном и определяют продолжительности фаз вдоха и выдоха по величине интервала между начальным и конечным моментом времени вдоха и выдоха.



 

Похожие патенты:

Изобретение относится к области оптических измерений и касается способа и устройства для динамического контроля газовых сред. Устройство включает в себя монохроматические пары, представляющих собой твердотельный монохроматический излучатель на базе диодного лазера и твердотельный монохроматический приемник.

Изобретения относятся к медицине. Система для получения характеристик анатомического параметра верхних дыхательных путей пациента посредством анализа спектральных свойств фрагмента речи содержит механический соединитель, содержащий средство для ограничения положения челюстей пациента, средство для записи фрагмента речи и средство обработки для определения анатомического параметра верхних дыхательных путей по записанному фрагменту речи и сравнения записанного фрагмента речи с пороговым значением.

Группа изобретений относится к медицине и может быть использована для оценки функции легких субъекта. Группа изобретений представлена способом и системой.

Изобретение относится к ветеринарии, а именно к пульмонологии, и может быть использовано для выявления остаточных патологических явлений в посттерапевтический период респираторных болезней у телят.

Изобретения относятся к медицинской технике, а именно к средствам отслеживания перемещения и ориентации. Устройство для отслеживания перемещения и ориентации субъекта содержит блок формирования изображений, удерживающее средство для удерживания блока формирования изображений, причем удерживающее средство содержит держатель для размещения блока формирования изображений на субъекте таким образом, что блок формирования изображений обращен от субъекта, устройство также содержит блок обработки для обнаружения перемещения и ориентации субъекта.

Изобретение относится к медицине, а именно к функциональной диагностике, гериатрии и геронтологии и может быть использовано для определения биологического возраста у женщин.
Изобретение относится к медицине, а именно к функциональной диагностике, гериатрии и геронтологии, и может быть использовано для определения биологического возраста у мужчин.

Изобретение относится к медицине, психоневрологии, логопедии. На фоне диафрагмального дыхания и общего расслабления тела пациент с заиканием формирует речевой выдох с колебательным движением диафрагмы с записью его кинетики в виде эталонной кривой.

Изобретение относится к медицине, а именно к спортивной медицине, и может быть использовано для определения биологического возраста человека, резервов его здоровья, количественной оценки эффективности оздоровительно-тренировочных и реабилитационных программ в практике врачебного контроля за занимающимися спортом, оздоровительной физической культурой и лечебной физкультурой с целью оценки эффективности процессов оздоровления и омоложения организма.

Изобретение относится к медицине, а именно к анатомии, рентгенологии, хирургии, эндоскопии, анестезиологии, и может быть использовано для диагностики деформации трахеи.

Изобретение относится к медицинской технике, а именно к устройству для извлечения, хранения и/или обработки крови либо других веществ человеческого или животного происхождения, а также для использования соединений крови или других биологических соединений.
Изобретение относится к области медицины, а именно к кардиологии. Выделяют клинико-лабораторные и инструментальные показатели у пациентов с острым инфарктом миокарда с подъемом сегмента St: сохранение/отсутствие болевого синдрома в области сердца после тромболитической терапии, динамика сегмента ST на ЭКГ через 60-90 минут после тромболитической терапии, уровень сознания, необходимость в искусственной вентиляции легких (ИВЛ), степень острой сердечной недостаточности по Killip, наличие нарушений ритма сердца, наличие большого кровотечения, уровень креатинина.

Изобретение относится к медицине и может быть использовано для прогнозирования инвалидности у детей с ишемическим инсультом. Определяют 28 параметров: оценка по шкале Апгар, тромботические события у кровных родственников в возрасте до 50 лет, диспансерное наблюдение у невролога в течение первого года жизни, инфекционное заболевание до инсульта, «часто болеющий ребенок, первоначально диагноз «инсульт» не был установлен, в течение первых 6 часов имелись признаки парезов или параличей конечностей, при проведении нейровизуализации очаг инфаркта зафиксирован в течение первых суток, инсульт локализуется в бассейне задней мозговой артерии, внутривенная инфузия включала раствор MgSO4, применение антибактериальной терапии, гемотрансфузионной терапии, признаки комы сохраняются на 7-е сутки пребывания в стационаре, судорожный синдром сохраняется или появился на 7-е сутки пребывания в стационаре, признаки пареза или паралича конечностей сохраняются на 7-е сутки пребывания в стационаре, признаки бульбарного паралича сохраняются на 7-е сутки пребывания в стационаре, признаки пареза глазодвигательной группы черепных нервов сохраняются на 7-е сутки пребывания в стационаре, потребность в искусственной вентиляции легких сохраняется на 7-е сутки пребывания в стационаре, антитромботическая и антиэпилептическая терапия рекомендована при выписке из стационара, количество эритроцитов, количество лейкоцитов, количество тромбоцитов, тромбоцитопения, СОЭ, лейкоцитарная формула, фибриноген в общем анализе крови в остром периоде болезни, в остром периоде болезни зафиксирована патология строения сердца по результатам эхокардиографии.

Изобретение относится к медицине, а именно к педиатрии, и может быть использовано для диагностики и реабилитации детей школьного возраста с железодефицитным состоянием.

Изобретение относится к медицине, хирургии, интраоперационной дифференциальной диагностике объемных образований щитовидной железы (ЩЖ). В режиме реального времени проводят конфокальную лазерную микроскопию ткани ЩЖ.

Изобретение относится к области медицины, а именно к стоматологии, и может быть использовано для оценки проведенного стоматологического лечения парафункции жевательных мышц.

Изобретение относится к области транспортных средств для перевозки и размещения специальных медицинских устройств для программного управления, надзора или прогнозирования процессов реабилитации спортсменов.

Изобретение относится к медицине, а именно к хирургии и может быть использовано для прогнозирования течения острого панкреатита Проводят лапароскопию в первые 72 часа от начала заболевания.
Изобретение относится к медицине, иммунологии, гастроэнтерологии, лабораторной диагностике и предназначено для выявления иммунодефицитных состояний при определенном преимущественном типе питания человека, формирования групп риска по дефициту зрелых Т-лимфоцитов.

Изобретение относится к медицине, а именно к клинической кардиологии. Проводят эхокардиографическое обследование.

Изобретение относится к области медицины, а именно к дифференциальной диагностике. Для дифференциальной диагностики боли в пояснично-крестцовом отделе позвоночника проводят анализ таких показателей как: наличие боли в нижней части спины, возможность переносить боль без приема болеутоляющих средств, наличие травм в течение последнего года, распространение боли в ноги, наличие травм более одного года назад, наличие онемения в ноге, длительность боли, наличие опухолевых образований доброкачественной или злокачественной природы, болезненность паравертебральных точек, наличие гиперлордоза, сглаженного лордоза, гипотонии мышц. Рассчитывают значения дискриминантных функций y1, y2, y3 с помощью показателей, полученных в ходе опроса и клинического обследования пациента, где все показатели представлены как бинарные величины. При максимальном значении y1 устанавливают отсутствие клинических проявлений заболеваний пояснично-крестцового отдела позвоночника и пациенту назначают профилактические мероприятия. При максимальном значении y2 устанавливают наличие неспецифической боли в пояснично-крестцовом отделе позвоночника и назначают лечебно-диагностические мероприятия. При максимальном значении y3 устанавливают наличие специфической боли и пациенту назначают комплексное обследование для определения специфики заболевания. Способ позволяет определить характер боли в спине каждого пациента, выявить практически здоровых людей и пациентов с неспецифической и специфической болью пояснично-крестцового отдела позвоночника, что позволяет в дальнейшем определить для каждого их них спектр необходимых лечебно-диагностических мероприятий. 3 табл., 3 пр.

Изобретение относится к медицине, а именно к оценке состояния органов дыхания, и может быть использовано для контроля физиологического состояния пловцов с подводным аппаратом открытого цикла. Зарегистрированные шумы дыхания водолаза раздельно фильтруют для выделения шумов вдоха в полосе частот свыше 1 кГц, а для выделения шумов выдоха в полосе частот до 500 Гц. Затем детектируют каждый фильтрованный сигнал. Сглаживают полученный сигнал, получая огибающую. По превышению уровня огибающей над фоном определяют фазы дыхания. Продолжительность фазы дыхания вычисляют как временной промежуток между начальным и конечным моментом времени вдоха или выдоха. Способ позволяет объективно определить продолжительность фаз вдоха и выдоха в каждом цикле дыхания в каждый момент времени пребывания водолаза под водой за счет раздельной фильтрации дыхательных шумов. 3 ил.

Наверх