Синусно-косинусный цифровой преобразователь

Изобретение относится к вычислительной технике и может быть использовано в управляющих системах и гибридных вычислительных устройствах для получения в следящем режиме одновременно кода непрерывной переменной (X) и кодов функций sin x и cos x. Технический результат заключается в повышении точности преобразования операндов по закону синуса и косинуса. Синусно-косинусный цифровой преобразователь содержит два (2n+1)-разрядных сумматоров, разделенных на старшие n разрядов и на (n+1) младших, логические элементы И и ИЛИ, два элемента задержки. Преобразователь дополнительно содержит два одноразрядных сумматора, четыре логических элемента И и два логических элемента ИЛИ в каждой итерации содержимое старших разрядов одного сумматора суммируется (вычитается) к младшим разрядам другого сумматора и наоборот. 1 ил.

 

Изобретение относится к вычислительной технике и может быть использовано в управляющих системах и гибридных вычислительных устройствах для получения в следящем режиме одновременно кода непрерывной переменной (X) и кодов функций sin x и cos x.

Известно устройство для вычисления тригонометрических функций [АС 519717 СССР, 1976], содержащее регистры, логические схемы, сумматоры, блок памяти. Недостатком данного устройства является большой объем оборудования.

Известен также синусно-косинусный преобразователь [АС 746535 СССР, 1980], содержащий два 2n-разрядных сумматора (где n - разрядность операндов), группы логических элементов И и ИЛИ, и являющийся наиболее близким к заявляемому преобразователю.

Недостатком известного синусно-косинусного цифрового преобразователя является низкая точность преобразования, обусловленная накоплением погрешности на каждом шаге (итерации) вычисления sin x и cos x.

Задачей изобретения является повышение точности преобразования операндов по закону синуса и косинуса.

Техническим результатом настоящего изобретения является снижение накопленной погрешности, образующейся на каждой итерации за счет метода численного решения дифференциального уравнения (метод трапеций).

Технический результат достигается тем, что синусно-косинусный цифровой преобразователь, содержащий два 2n-разрядных сумматора (где n - разрядность операндов), группы логических элементов И и ИЛИ, два элемента задержки, причем входы n младших разрядов первого сумматора соединены с выходами элементов ИЛИ первой группы, входы которых подключены к выходам соответствующих элементов И первой и второй групп, первые входы которых подключены соответственно к прямым и инверсным выходам n старших разрядов второго сумматора, входы n младших разрядов второго сумматора соединены с выходами элементов ИЛИ второй группы, входы которых подключены к выходам соответствующих элементов И третьей четвертой групп, первые входы которых подключены соответственно к прямым и инверсным выходам n старших разрядов первого сумматора, вход положительного приращения преобразователя соединен со вторыми входами элементов И второй и третьей групп и через первый элемент задержки соединен с третьим входом первого элемента ИЛИ первой группы, вход отрицательного приращения преобразователя соединены со вторыми входами элементов И первой и четвертой групп и через второй элемент задержки соединен с третьим входом первого элемента ИЛИ второй группы, дополнительно содержит два одноразрядных сумматора, четыре логических элементов И и два логических элемента ИЛИ. При этом дополнительные сумматоры подключены к младшим, 2n-м разрядам обоих сумматоров, а логические элементы по входам подключены к выходам старших разрядов каждого из сумматоров, а по выходам - ко входам дополнительных одноразрядных сумматоров.

Введение двух одноразрядных сумматоров, логических элементов И и ИЛИ и их связи с другими узлами и блоками прототипа позволило повысить точность преобразования операндов по закону синуса и косинуса.

Это является новым техническим решением в технике цифровых вычислительных устройств, поскольку результаты проведенного заявителем анализа аналогов и прототипа не позволили выявить признаки, тождественные всем существенным признакам данного изобретения.

Предложенный преобразователь имеет изобретательский уровень, так как из опубликованных научных данных и существующих технических решений явным образом не следует, что заявляемая совокупность блоков, узлов и связей между ними позволяет повысить точность функционирования синусно-косинусного цифрового преобразователя.

Предложенный преобразователь промышленно применим, поскольку его техническая реализация возможна с использованием типовых элементов микроэлектронной техники (интегральных логических элементов).

На чертеже изображена функциональная схема предлагаемого преобразователя.

Преобразователь состоит из первого сумматора 1, содержащего старших n разрядов 2 и младших n разрядов 3, второго сумматора 4, содержащего n старших разрядов 5 и n младших разрядов 6, группы элементов ИЛИ 7, группы элементов И 8-11, элементы задержки 12 и 13. Кроме того, он содержит два одноразрядных сумматора 16 и 16', подключенных в качестве младших (2n+1)-х разрядов первого 1 и второго 4 сумматоров. Дополнительно введены два логических элемента ИЛИ 17 и четыре логических элемента И 18, 19, включенных по управляющим входам аналогично группам элементов И 8 и 9, а по сигнальным входам соединенных с выходами самого старшего разряда обоих сумматоров 1 или 4. Входы 20 и 21 являются входами сигналов "ε=+1" и "ε=-1" соответственно. Выходами преобразователя являются 14 (sin x) и 15 (cos x).

В основу принципа действия предлагаемого преобразователя положены формулы, обеспечивающие повышенную точность за счет численного интегрирования дифференциальных уравнений по методу трапеций. [Булатникова И.Н. Целочисленные алгоритмы генерации гармонических сигналов // Изв. вузов, Северо-Кавказский регион, Техн. науки, 2005, №3, с. 13-17].

Обозначим si=M⋅sin(i/M) и ci=M⋅cos(i/M). M - масштабный коэффициент, M=2n, i - номер итерации и одновременно единичная величина 2-n в масштабе 1:М. Тогда приращения величин si и ci на единичном интервале (i,i+1) будут следующими:

Формулы (1) и (2) получены на основе усреднения производных в начале и в конце единичного интервала между соседними итерациями. При этом учтено, что производная от синуса равна косинусу, а производная от косинуса равна минус синусу.

Упрощая, имеем систему уравнений

Решая ее относительно Δsi и Δci, получаем

Упростим знаменатели (4М2>>1) и разделив на 4M2, имеем

Окончательно, учитывая, что М=2n, имеем

где Yi - текущее значение функции sinθi содержимого первого сумматора 1 (yi=sinθi, y0=0);

Xi - текущее значение функции cosθi содержимого первого сумматора 4 (xi=cosθi, x0=1);

θi - текущее значение аргумента θ (θ0=0);

ε - алгебраический знак операции (ε=sign(UBx-Uθ));

n - разрядность.

Синусно-косинусный цифровой преобразователь работает следующим образом. Перед началом работы устройства старшие n разрядов 5 и младшие (n+1) разрядов 6 второго сумматора 4 устанавливаются в единичное состояние, а n старшие разрядов 2 и младшие (n+1) разрядов 3 первого сумматора 1 - в нулевое состояние, что соответствует θi=0, x0=1, y0=0.

Передача прямого или обратного кода выходов старших n разрядов 2 первого сумматора 4 на входы младших n разрядов 6 второго сумматора 4 соответственно через группу элементов И 8 и 9, группу элементов ИЛИ 7, а также передачей прямого или обратного кода с выходов старших n разрядов 5 второго сумматора 4 на входы младших n разрядов 3 первого сумматора 1 соответственно через группу элементов И 10 и 11, группу элементов ИЛИ 7. Элементы 12, 13 задержки используются для добавления единицы в одноразрядные сумматоры 16' и 16, как в самые младшие разряды первого 1 и второго 4 сумматоров с целью получения дополнительного кода при выполнении операции вычитания.

Таким образом, в предлагаемом преобразователе реализуются вычисления по формулам (9)÷(11), и на выходе 14 n старших разрядов 2 первого сумматора (1) получается код текущего значения функции Y=sinθ, а на выходе 15 n старших разрядов 5 второго 4 сумматора образуется код текущего значения функции X=cosθ.

Все вычисления производятся однообразно, но в зависимости от сигналов "ε=+1" (вход 20) или "ε=-1" (вход 21).

В первом случае ("ε=+1") в работу включаются элементы И первой 10 и третьей 9 групп. Во втором случае ("ε=-1") (вход 21) в работу включаются элементы И второй 11 и четвертой 8 групп.

И в первом и во втором случаях одновременно включаются логические элементы И 19 и 18' (первый случай) или такие же элементы 18 и 19' (второй случай). Они вносят поправки в ход вычислений по (9) и (10).

Аналогично прототипу срабатывают логические элементы ИЛИ 17 (первый случай) и 17' (второй случай). Свое управление они получают от линий задержки 12 (первый случай) или 13 (второй случай). Их выходной сигнал поступает на одноразрядные сумматоры 16 и 16', и формируют дополнительный код при операции вычитания.

В каждой i-й итерации старшие части 2 и 5 каждого из сумматоров 1 и 4, с учетом переносов в младшие части 3 и 6 от одноразрядных сумматоров 16' и 16, подсуммируются к (вычитаются из) содержимым младших частей 6 и 3, которые, кроме того, учитывают переносы из одноразрядных сумматоров 16 и 16', соответственно. Причем всегда, если в одном сумматоре идет одна операция, то в другом - обратная ей по знаку. Это обеспечивается перекрестным подключением входов логических элементов И.

В таблице приведены максимальные абсолютные погрешности прототипа и заявленного синусно-косинусного цифрового преобразователя. Данные получены путем цифрового моделирования на ЭВМ обоих преобразователей.

Синусно-косинусный цифровой преобразователь, содержащий два 2n-разрядных сумматора, где (n-разрядность операндов), группы элементов И и ИЛИ, два элемента задержки, причем входы n младших разрядов первого сумматора соединены с выходами элементов ИЛИ первой группы, входы которых подключены к выходам соответствующих элементов И первой и второй групп, первые входы которых подключены соответственно к прямым и инверсным выходам n старших разрядов второго сумматора, входы n младших разрядов второго сумматора соединены с выходами элементов ИЛИ второй группы, входы которых подключены к выходам соответствующих элементов И первой и второй групп, первые входы которых подключены соответственно к прямым и инверсным выходам n старших разрядов второго сумматора, входы n младших разрядов второго сумматора соединены с выходами элементов ИЛИ второй группы, входы которых подключены к выходам соответствующих элементов И третьей и четвертой групп, первые входы которых подключены соответственно к прямым и инверсным выходам n старших разрядов первого сумматора, вход положительного приращения преобразователя соединен со вторыми входами элементов И второй и третьей групп и через первый элемент задержки соединен с третьим входом первого элемента ИЛИ первой группы, вход отрицательного приращения преобразователя соединен со вторыми входами элементов И первой и четвертой групп и через второй элемент задержки соединен с третьим входом первого элемента ИЛИ второй группы, отличающийся тем, что дополнительно содержит два одноразрядных сумматора, четыре логических элемента И и два логических элемента ИЛИ, причем каждый одноразрядный сумматор подключен к младшему разряду одного из 2n-разрядных сумматоров в качестве (2n+1)-го разряда, а логические элементы по входу подключены к выходам первого, старшего разряда каждого из сумматоров, а по выходам - ко входам одноразрядных сумматоров.



 

Похожие патенты:

Изобретение относится к способу и системе выбора оптимального провайдера для передачи данных. Технический результат изобретения заключается в повышении релевантности определения оптимального провайдера.

Изобретение относится к области инфокоммуникаций, а именно к обеспечению информационной безопасности цифровых систем связи. Техническим результатом является повышение скрытности связи и затруднение идентификации абонентов сети несанкционированными абонентами за счет непрерывного изменения идентификаторов абонентов сети в передаваемых пакетах сообщений и передачи пакетов сообщений по всем допустимым маршрутам связи.

Изобретение относится к технике формирования сложных шумоподобных сигналов. Технический результат заключается в расширении функциональных возможностей за счет формирования различных словарей нелинейных рекуррентных последовательностей для различных кодовых словарей и их программную смену в процессе работы длительностью L=12.

Изобретение относится к вычислительной технике и автоматике и может найти применение в быстродействующих вычислительных комплексах. Техническим результатом является повышение достоверности функционального преобразования.
Изобретение относится к вычислительной технике, а именно к вычислительным системам для оптимизации распределения ресурсов. Технический результат – расширение функциональных возможностей.

Изобретение относится к многофункциональным защищенным микровычислителям. Технический результат заключается в обеспечении устройства комплексной защитой от внешних воздействующих факторов при сохранении функциональных возможностей устройства.

Изобретение относится к области вычислительной техники и может быть использовано для получения точного решения задачи о назначениях. Технический результат заключается в повышении точности работы устройства за счет оптимизации решения задачи о назначениях в двух вариантах постановки задачи нахождения оптимального решения.

Изобретение относится к области контрольно-измерительной техники и может быть использовано в устройствах по определению возникновения перемещений конструкций сооружения относительно друг друга.
Изобретение относится к автомобильной промышленности, в частности к системам и способам автоматической настройки автомобильных устройств. Технический результат заключается в ускорении работы за счет упрощения настройки автомобильных устройств при подключении к бортовому компьютеру или мобильному устройству управления.

Изобретение относится к устройству для вычисления функций. Технический результат заключается в повышении достоверности информации.

Изобретение относится к области информационной безопасности сетей связи. Технический результат заключается в повышении безопасности передачи данных. В способ в качестве параметров сети связи задают минимальное допустимое значение комплексного показателя безопасности для линий связи, общее количество Dmax случайных испытаний, обеспечивающее достоверность результатов экспериментов, где D=1, 2, …, двумерный массив памяти для хранения значений критического соотношения «опасных» и «безопасных» линий связи каждого из D случайных испытаний по каждому j-му варианту подключения абонентов, где j=1, 2,…, задают значение текущего количества случайных испытаний DТЕК равным нулю, и после запоминания альтернативных маршрутов пакетов сообщений для каждого j-го варианта подключения абонентов, где j=1, 2,…, вычисляют комплексный показатель безопасности для каждой i-й линии связи, где i=1, 2, 3, …, сравнивают значение комплексного показателя безопасности i-й линии связи, с предварительно заданным минимальным допустимым значением , и при запоминают i-ю линию связи как «опасную», в противном случае, при , запоминают линию связи как «безопасную. 6 з.п ф-лы, 5 ил.

Изобретение относится к области вычислительной техники и может быть использовано в технике связи. Технический результат заключается в сокращении аппаратных затрат на построение программно-аппаратным способом большего ансамбля имитостойких сложных сигналов вида дискретно-частотных сигналов фиксированной длительности, в структуре которых наблюдается повышенная степень неопределенности вида, формы, длительности, ансамблевых и других характеристик, свойственных случайным процессам явлениям. В устройстве реализуется правило формирования двукратных производных управляющих числовых кодовых последовательностей заданной длины при наименьших требуемых для устройства значений входных данных. На основе этих последовательностей устройство позволяет формировать более имитостойкие и структурно скрытностные дискретно-частотные сигналы в виде систем двукратных производных кодовых дискретно-частотных сигналов, чем подобные им сигналы вида дискретно-частотных сигналов, строящихся непосредственно на элементах мультипликативных групп конечных полей. 2 з.п. ф-лы, 17 ил.

Изобретение относится к средствам обработки информации для прогнозирования стационарных и нестационарных случайных процессов. Технический результат заключается в повышении точности обработки данных. Для этого в блок прогноза адаптивного цифрового сглаживающего и прогнозирующего устройства, содержащего три вычитателя, два субблока расчета квадратичного и линейного прогнозов, субблок расчета первой производной и узел управления динамикой прогноза, введены сумматор усреднения, субблок подсчета приращений скорости процесса и схема коррекции кода прогноза на динамике. 6 ил., 1 табл.

Изобретение относится к автоматизированным электронным библиотечным системам. Технический результат заключается в расширении инструментария по обработке контента, маркетингового инструментария, расширения арсенала средств того же назначения. Система содержит средства взаимодействия, которыми являются интернет-ресурсы и мобильные приложения для технических средств работы пользователя, а также технические средства обработки информации и средства хранения контента, при этом технические средства обработки информации включают ядро системы, содержащее модуль обработки и управления контентом, модуль управления лицензиями, модуль обработки статистики, модуль подготовки выдачи контента, модуль отображения выдачи, модуль обработки рейтингов, а также средства хранения информации контента и данных для его администрирования и регулирования доступа к модулям ядра. 4 н. и 12 з.п. ф-лы, 2 ил.

Изобретение относится к средствам обработки информации для прогнозирования стационарных и нестационарных случайных процессов. Технический результат заключается в повышении точности обработки данных. Для этого в блок прогноза адаптивного цифрового прогнозирующего устройства, содержащий три вычитателя, два субблока расчета квадратичного и линейного прогнозов, субблок расчета первой производной, сумматор усреднения, субблок подсчета приращений скорости процесса и схему коррекции кода прогноза на динамике введен дополнительный субблок коррекции кода прогноза на стационарных режимах. 5 ил., 1 табл.

Для установки специального программно-математического обеспечения на бортовом компьютере программно-аппаратного комплекса топопривязчика используют компакт-диск с загрузочным модулем, внешний дисковод CD-ROM с интерфейсным кабелем типа USB, клавиатуру с интерфейсным кабелем типа USB, манипулятор, источник питания, комплект технологических жгутов. В процессе установки специального программно-математического обеспечения выполняют действия, требуемые в диалоговых окнах программы установки. Обеспечивается установка специального программно-математического обеспечения на бортовом компьютере программно-аппаратного комплекса топопривязчика. 10 ил.

Изобретение относится к области связи. Технический результат изобретения заключается в возможности загрузки программы управления при отсутствии подключения к сети Интернет. Способ включает в себя этапы: прием сигнала LAN, отправленного посредством подлежащего управлению устройства после входа в режим точки доступа AP; установление соединения LAN с подлежащим управлению устройством согласно сигналу LAN; и загрузка программы управления для управления подлежащим управлению устройством с подлежащего управлению устройства через соединение LAN. Аппаратура включает в себя модуль приема, модуль установления и модуль загрузки через соединение LAN. 4 н. и 8 з.п. ф-лы, 12 ил.

Изобретение относится к области комбинации игрового контроллера и устройства ввода информации. Техническим результатом является обеспечение конструкции, которая смягчает неаккуратное вынимание планшетного компьютера из трехсторонней структуры, когда планшетный компьютер полностью вложен в трехстороннюю структуру. Устройство для управления электронными играми и ввода информации содержит: планшетный компьютер, причем планшетный компьютер обеспечивает множество сторон, причем каждая из множества сторон располагается между электронным экраном отображения планшетного компьютера и задней стороной планшетного компьютера; устройство ввода, электронно связанное с планшетным компьютером, причем устройство ввода обеспечивает пару управляющих модулей, причем пара управляющих модулей прилегает к и ограничивает планшетный компьютер по меньшей мере с двух противоположных сторон из множества сторон планшетного компьютера, причем пара управляющих модулей обеспечивает входные модульные отверстия, причем каждое входное модульное отверстие крепит устройство командного ввода, причем упомянутые входные модульные отверстия прилегают к каждой из по меньшей мере двух противоположных сторон из множества сторон планшетного компьютера; и структурный мост, скрепляющий пару управляющих модулей друг с другом и осуществляющий связь с задней стороной планшетного компьютера в средней части задней стороны планшетного компьютера, и причем устройство ввода является электронным игровым контроллером, в котором пара управляющих модулей обеспечивает упор ограничения и в котором структурный мост содержит: линию связи, передающую сигналы между парой управляющих модулей; и закрепляющий механизм, взаимодействующий с упором ограничения для скрепления пары управляющих модулей друг с другом. 18 з.п. ф-лы, 15 ил.

Изобретение относится к средствам телемеханического контроля и управления объектами. Технический результат - повышение эффективности управления удаленными объектами. Для этого предложен способ, который включает установку на удаленных объектах микрокомпьютеров, применение каналов связи, сбор массивов первичных данных и выдачу управляющих команд на исполнительные механизмы удаленных объектов, приемопередачу данных и их обработку с применением средств программного обеспечения, визуализацию, хранение, реализацию доступа к данным, а также использование автоматизированных рабочих мест, причем пакеты с данными передают на сервер телемеханики, а просмотр данных об удаленных объектах и выдачу команд управления организуют при использовании стандартных Web-браузеров с заданием IP-адреса сервера телемеханики. В качестве источников данных используют помимо микрокомпьютеров базы данных сторонних систем, интегрируемых в единую систему телемеханического контроля, а приемопередачу данных осуществляют по защищенному каналу связи через VPN-шлюз, обеспечивая за счет программных средств, устанавливаемых на сервере телемеханики, организацию скоростного трафика данных и минимизацию сетевого трафика за счет кэширования данных. 3 ил.

Изобретение относится к области вычислительной техники, а именно к специализированным устройствам для воспроизведения и вычисления логарифмических функций вида . Технический результат заключается в возможности воспроизведения и вычисления логарифмической функции вида и получении более точного значения логарифма. Устройство включает соединенные между собой генератор, триггер, делитель аргумента, счетчик аргумента, счетчик, счетчик результата, элемент ИЛИ, регистр сдвига, степенной делитель, умножитель, группу элементов И. 1 ил.

Изобретение относится к вычислительной технике и может быть использовано в управляющих системах и гибридных вычислительных устройствах для получения в следящем режиме одновременно кода непрерывной переменной и кодов функций sin x и cos x. Технический результат заключается в повышении точности преобразования операндов по закону синуса и косинуса. Синусно-косинусный цифровой преобразователь содержит два -разрядных сумматоров, разделенных на старшие n разрядов и на младших, логические элементы И и ИЛИ, два элемента задержки. Преобразователь дополнительно содержит два одноразрядных сумматора, четыре логических элемента И и два логических элемента ИЛИ в каждой итерации содержимое старших разрядов одного сумматора суммируется к младшим разрядам другого сумматора и наоборот. 1 ил.

Наверх