Устройство для мониторинга скорости коррозии

Изобретение относится к транспортной, энергетической, строительной и другим отраслям промышленности и может быть использовано для непрерывного (on-line) мониторинга скорости коррозии на таких объектах, как мосты, путепроводы, эстакады, градирни, дымовые трубы, резервуары и др. Заявленное устройство для измерения токов коррозии состоит из пакетного биметаллического датчика и регистратора, при этом пакет разделенных анодных пластин из низкоуглеродистой стали и катодных пластин из меди помещен в изолирующую оправку из эпоксидной смолы для контроля площади рабочей поверхности и возможности сопоставления данных с различных датчиков по величине удельной плотности тока. Технический результат заключается в определении коррозионного тока и оценке скорости коррозии стальной арматуры в железобетонных конструкциях. 1 з.п. ф-лы, 2 ил.

 

Изобретение относится к транспортной, энергетической, строительной и другим отраслям промышленности и может быть использовано для непрерывного (on-line) мониторинга скорости коррозии на таких объектах, как мосты, путепроводы, эстакады, градирни, дымовые трубы, резервуары и др.

Известен датчик скорости коррозии, содержащий металлический образец (пластина, стержень и др.), помещенный в агрессивную среду. Скорость коррозии определяется по потере массы образца после его извлечения из агрессивной среды [1]. Данный датчик дает наиболее достоверные результаты, однако не позволяет вести непрерывный или автоматический контроль скорости процесса, поскольку перед взвешиванием требуется очистка образца от продуктов коррозии.

Известен датчик скорости атмосферной коррозии, выбранный в качестве прототипа, изготавливаемый в виде пакета изолированных гальванических пар из разнородных металлов (стали и меди) и регистратора силы тока [2]. Данная система применялась для непрерывного определения скорости атмосферной коррозии по величине электрического тока, генерируемого коррозионным элементом.

Недостатком данного датчика является нечеткое ограничение рабочей поверхности, контактирующей с агрессивной средой, и применение микроамперметра в качестве регистратора. Отсутствие четкой ограниченности рабочей поверхности не дает возможности сопоставлять данные, получаемые с разных датчиков, т.к. невозможно рассчитать плотность генерируемого тока, отнесенную к единице площади. Использование обычного микроамперметра вносит систематическую ошибку в измерения из-за внутреннего омического падения напряжения в приборе, которое в свою очередь зависит от величины протекающего в системе тока и не является постоянной величиной.

Для повышения достоверности результатов непрерывного мониторинга скорости коррозии в заявляемом изобретении пакет гальванических элементов помещен в изолирующую оправку из эпоксидной смолы таким образом, чтобы рабочая поверхность была строго определена по площади (фиг. 1). В качестве регистратора используется амперметр «нулевого» сопротивления с пределом чувствительности 1⋅10-7 А, который позволяет получать более точные значения в отличие от обычных амперметров.

Техническая задача - создание устройства для мониторинга процесса коррозии стальной арматуры в железобетоне с простым приборно-аппаратным оформлением, предоставляющего корректные данные о количественных характеристиках процесса коррозии (плотность тока коррозии).

Техническим результатом изобретения является определение коррозионного тока и оценка скорости коррозии стальной арматуры в железобетонных конструкциях

Сопоставительный анализ с прототипом показал, что использование в предлагаемом решении всех заявленных отличий позволяет повысить достоверность результатов измерений.

Биметаллический пакетный датчик (фиг. 1) состоит из катодных пластин меди 1 толщиной 0,1-1,5 мм, объединенных в общую цепь 4, анодных пластин из низкоуглеродистой стали 2 толщиной 0,1-1,5 мм, также объединенных в общую цепь. Пластины разнородных металлов разделены между собой изолятором, в частности слюдой 3. Превышение толщины пластин более 1,5 мм снижает чувствительность датчика, использование более тонких значительно усложняет сборку и не повышает чувствительности датчика, которая в данном случае ограничена толщиной пластин изолятора. Пакет пластин помещен в изолирующую оправку 5, в частности из эпоксидной смолы, которая позволяет контролировать площадь рабочей поверхности датчика с торцов пластин.

Амперметр «нулевого» сопротивления состоит из операционного усилителя 6, резистора 7, конденсаторов 8 и 9 разной емкости для подавления шумов и двухполюсного источника постоянного напряжения 10. В конструкции регистратора использованы прецизионные элементы для дополнительного повышения достоверности результатов.

Принцип работы устройства

Датчик помещают в среду бетона в момент изготовления конструкции или при производстве ремонтных работ на глубину залегания арматурных стержней. Бетон, представляя собой капиллярно-пористое тело, содержит в себе электролит, который осуществляет электролитический контакт между катодными и анодными пластинами. При этом возникает разность потенциалов, результатом которой является генерирование тока коррозионным элементом. Величина тока определяется степенью агрессивности электролита, которая зависит от содержания ионов-активаторов процесса коррозии, например хлоридов, которые нарушают пассивное состояние низкоуглеродистой стали и приводят к развитию локальной (питтинговой) коррозии.

Регистратор передает сигнал в форме напряжения U на записывающее устройство, например компьютер. Зная величину сопротивления R резистора 7, находят величину тока I, сгенерированного в процессе работы коррозионного элемента в соответствии с выражением

Лабораторные эксперименты, проведенные с использованием устройства, позволяют определить скорость коррозии стальной арматуры (фиг. 2) в зависимости от агрессивности среды. В качестве активаторов процесса коррозии использовались хлориды. Содержание хлорид-ионов определено в массовых процентах относительно массы цемента.

Предлагаемое изобретение найдет широкое применение во всех областях народного хозяйства, использующих железобетонные изделия, при определении необходимости затрат и сроков проведения планово-предупредительных работ и капитальных ремонтов.

Список использованной литературы

1. Eagles K. Corrosion monitoring technology / K. Eagles // Anti-Corrosion Metals and Materials. - 1987. - №3. - pp. 16-18.

2. Томашов Н.Д. Теория коррозии и защиты металлов, М.: Издательство АН СССР, 1959 с. 333.

1. Устройство для измерения токов коррозии, состоящее из пакетного биметаллического датчика и регистратора, отличающееся тем, что пакет разделенных анодных пластин из низкоуглеродистой стали и катодных пластин из меди помещен в изолирующую оправку из эпоксидной смолы для контроля площади рабочей поверхности и возможности сопоставления данных с различных датчиков по величине удельной плотности тока.

2. Устройство по п. 1, отличающееся тем, что в качестве регистратора используется амперметр «нулевого» сопротивления.



 

Похожие патенты:

Изобретение относится к области мониторинга коррозии и может быть использовано в нефте- и газотранспортных системах, а также теплосетях. Заявленное устройство для измерения коррозии трубопроводов, содержащее крышку, уплотняющую прокладку и пластину-свидетель, при этом в крышке закреплен центральный стержень, расположенный в отверстии на стенке трубопровода, снабженном сальниковым уплотнением, состоящим из прокладки и крышки сальника, в качестве пластины-свидетеля используют часть внутренней поверхности трубопровода, ограниченной внутренним диаметром крышки, на ограниченной части внутренней поверхности трубопровода расположены два патрубка с кранами на расстоянии 0,4-0,5 диаметра крышки от оси центрального стержня, а на расстоянии 0,2-0,3 диаметра крышки расположен серебряный электрод.

Изобретение относится к оценке эксплуатационных свойств топлив, в частности к оценке коррозионной активности реактивных топлив. Сущность изобретения заключается в том, что топливо циркулирует в вертикально расположенном замкнутом контуре из нержавеющей стали, представляющем собой конструкцию из труб круглого сечения, пластинку из бронзы ВБ-23НЦ размещают в верхнем горизонтальном участке контура, циркуляцию топлива в контуре осуществляют в 3 этапа по 3 ч каждый, со сменой топлива после 1-го и 2-го этапов, перед началом первого этапа непосредственно за пластинкой по ходу потока устанавливают фильтрующий элемент.

Изобретение относится к области исследований устойчивости материалов к световому воздействию и касается способа оценки светостойкости текстильных материалов. Способ включает в себя использование эталонов, проб и источника света.

Изобретение относится к области защиты от коррозии и может быть использовано для автоматической коррекции величины защитного потенциала по длине трубопровода для его эффективной защиты.

Изобретение относится к электрохимическому способу оценки защитной концентрации летучих ингибиторов коррозии (ЛИК), которые абсорбируются в фазовой пленке влаги, формирующейся на поверхности металла.

Изобретение относится к области металлургии, конкретнее к оценке стойкости против коррозионного растрескивания под напряжением (КРН) низколегированных сталей, предназначенных для строительства магистральных газо- и нефтепроводов.

Изобретение относится к области принятия решений о продлении срока службы летательных аппаратов после 25 лет эксплуатации. Способ заключается в прогнозировании степени коррозионного поражения с помощью метода нечеткого логического вывода на основе априорных данных о свойствах конструкционного материала конструкции, условиях эксплуатации летательного аппарата, режиме эксплуатации и сроке службы после последнего ремонта.
Изобретение относится к контролю режима работы систем протекторной защиты стальных корпусов кораблей и судов. Способ контроля режима работы систем протекторной защиты стальных корпусов кораблей и судов включает периодическое измерение потенциала корпуса в контрольных точках по длине корпуса с помощью переносного электроизмерительного прибора и переносного электрода сравнения.

Изобретение относится к коррозионным испытаниям, а именно к способам испытания высокопрочных сталей на склонность к коррозионному растрескиванию. Способ испытания трубных сталей на коррозионное растрескивание под напряжением (КРН) заключается в том, что сперва вырезают модельный образец прямоугольной формы, его очищают от загрязнения, обезжиривают и высушивают.
Изобретение относится к способам измерения эрозионной опасности дождя. По слоям почвенного образца размещают группы меченых почвенных частиц.

Изобретение относится к сельскому хозяйству и может быть использовано для оценки опасности водной эрозии почв. Способ оценки эрозионной опасности дождя на орошаемых участках, обработанных раствором гербицида глифосат, включает создание капельного потока воды, торможение капель дождя в среде поровой жидкости, измерение в ней давления и оценку эрозионной опасности по средней величине давления в поровой жидкости. При этом в поровую жидкость вводят раствор гербицида глифосат в концентрации 2-6%, затем тормозят в поровой жидкости капли дождя, измеряют давление в поровой жидкости и по его величине оценивают эрозионную опасность дождя. Изобретение обеспечивает расширение функциональных возможностей способа за счет возможности контроля эрозионной опасности дождя на орошаемых участках, обработанных раствором гербицида глифосат. 1 табл., 1 пр.

Изобретение относится к испытательной контролирующей технике, а именно к коррозионным водородным зондам. Коррозионный водородный зонд содержит корпус, датчик водорода, поршни, манометры, тензодатчики и регистрирующий прибор. Датчик водорода выполнен в виде трубки, в которую вставлен трубчатый вкладыш с тензодатчиками, которые нагружаются растягивающей нагрузкой от давления агрессивной наводороживающей среды, воздействующей на связанный с ними поршень. При этом уровень напряжения регулируют изменением величины противодавления компенсирующего поршня через сжимаемую кремнийорганическую жидкость. Коррозионный водородный зонд может быть использован для контроля скорости коррозии оборудования, эксплуатируемого в агрессивной наводороживающей среде, в частности для определения эффективности и времени последействия ингибиторов коррозии, для контроля водородопроницаемости, что также может быть использовано для определения защитной эффективности ингибиторов коррозии и времени их последействия, для определения времени до сквозного питтингообразования в стенке датчика водорода для фиксации времени до коррозионного растрескивания датчика, водорода и обеспечения условий безопасной эксплуатации зонда. Технический результат - повышение чувствительности зонда и, как результат, обеспечение безопасности эксплуатации объекта. 1 ил.

Изобретение относится к области измерительной техники и может быть использовано для определения остаточных технологических напряжений в образцах, вырезанных из исследуемой детали. Устройство содержит основание со стойкой, травильную ванну, датчики деформации и толщины образца, соединенные с системой обработки информации, приспособление для размещения узла крепления образца и датчиков деформации и толщины образца, выполненное в виде вертикальной рамки, присоединенной к стойке двумя подвижными консолями, в нижней части рамки установлен узел крепления исследуемого образца в вертикальном положении. Узел крепления образца снабжен держателем, зажимом для образца и плоским кронштейном с криволинейным пазом. Держатель расположен вертикально, выполнен в виде прямолинейной пластины с продольным пазом, прикреплен верхней частью к рамке и кронштейну болтами с шайбами и гайками, проходящими через пазы держателя и кронштейна, причем держатель установлен с возможностью перемещения в направлении продольного паза и отклонения от вертикали в пределах длин продольного и криволинейного пазов при ослабленной затяжке болтов. Зажим для образца расположен на нижней части держателя и состоит из двух пластинок, скрепленных болтами с гайками, причем одна из пластинок жестко соединена с держателем, другая пластинка выполнена накладной с возможностью размещения на нижнем конце закрепляемого образца. Плоский кронштейн жестко закреплен вертикально на рамке. Датчик деформации состоит из удлинителя, выполненного с возможностью закрепления на верхнем конце образца в вертикальном положении, и цифрового индикатора, закрепленного на рамке, контактирующего измерительным наконечником с верхним концом удлинителя, на верхнем конце удлинителя прикреплена пружинка, вторым концом соединенная с цифровым индикатором, датчик толщины включает два рычага, охватывающие концами образец по толщине, выполненные длинными, установленные вертикально, шарнирно закрепленные на рамке, на верхнем конце левого рычага закреплен цифровой индикатор, контактирующий измерительным наконечником с правым рычагом, нижние плечи рычагов соединены пружинкой, а верхний конец правого рычага соединен с индикатором другой пружинкой, при этом длины рычагов и удлинителя в 5…8 раз больше длины образца и соотношение длин плеч рычагов составляет 1:4…1:6, причем большему соотношению длин рычагов и удлинителя к длине образца соответствует большее соотношение длин плеч рычагов. Технический результат: возможность исследовать образцы с широким диапазоном длин рабочей зоны, с прямолинейной и криволинейной формой, что значительно расширяет технологические возможности устройства. 5 ил.

Использование: для оценки индивидуальных вкладов компонентов антикоррозионной системы в ее суммарную защитную эффективность при коррозии металлических конструкционных материалов в воздушной атмосфере или в объеме жидкой агрессивной среды любой природы. Сущность изобретения заключается в том, что экспериментально определяют интегральную эффективность антикоррозионной системы в агрессивной среде, на основании которой производят оценку вклада каждого компонента системы. Технический результат: обеспечение возможности оценки индивидуальных вкладов компонентов антикоррозионной системы в ее суммарную защитную эффективность. 5 ил.

Изобретение относится к средствам для мониторинга и диагностики коррозионных процессов внутри технологических аппаратов и трубопроводов. Способ включает установку метки, отбор флюида и контроль индикаторов. Метку наносят на внутреннюю металлическую поверхность исследуемого объекта на заранее определенные участки. Метку выбирают из условий: устойчивости к рабочему флюиду, отсутствия аналогов в составе рабочего флюида, биологической и химической неактивности по отношению к рабочему флюиду и поверхности, на которую наносят метку, а также устойчивости к баротермическому воздействию. При эксплуатации объекта в результате коррозионного процесса метка вместе с частицами металла или антикоррозийного покрытия отслаивается от объекта и выходит в зону отбора флюида. По концентрации меток определяют наличие, интервал, в котором произошла коррозия, и интенсивность коррозионного процесса. В качестве метки выбирают флуоресцентные вещества, или индикаторы радикального типа, или вещества с высоким поглощением тепловых нейтронов, или радиоактивные изотопы, или цветные вещества. 4 з.п. ф-лы.

Изобретение относится к транспортной, энергетической, строительной и другим отраслям промышленности и может быть использовано для непрерывного мониторинга скорости коррозии на таких объектах, как мосты, путепроводы, эстакады, градирни, дымовые трубы, резервуары и др. Заявленное устройство для измерения токов коррозии состоит из пакетного биметаллического датчика и регистратора, при этом пакет разделенных анодных пластин из низкоуглеродистой стали и катодных пластин из меди помещен в изолирующую оправку из эпоксидной смолы для контроля площади рабочей поверхности и возможности сопоставления данных с различных датчиков по величине удельной плотности тока. Технический результат заключается в определении коррозионного тока и оценке скорости коррозии стальной арматуры в железобетонных конструкциях. 1 з.п. ф-лы, 2 ил.

Наверх