Способ определения усредненного вектора скорости ветра с помощью беспилотного летательного аппарата



Способ определения усредненного вектора скорости ветра с помощью беспилотного летательного аппарата

 


Владельцы патента RU 2632270:

Федеральное государственное бюджетное учреждение науки Институт мониторинга климатических и экологических систем Сибирского отделения Российской академии наук (RU)

Изобретение относится к области метеорологии и может быть использовано для определения направления и скорости ветра в вертикальном разрезе. Сущность: в интересующую область пространства запускают беспилотный летательный аппарат (БПЛА), для которого заранее определена калибровочная зависимость между наклоном вектора тяги, вектором скорости ветра, углом поворота корпуса БПЛА, атмосферным давлением, влажностью, температурой и суммарной мощностью, развиваемой двигателями БПЛА. При этом БПЛА, выполненный способным зависать в заданной точке пространства, при достижении нужной точки с заранее выбранными координатами переводят в режим удержания географических координат и равномерного движения по вертикали, а затем запускают режим равномерного вращения вокруг вертикальной оси. Через промежутки времени, кратные полному обороту БПЛА вокруг вертикальной оси, измеряют наклон вектора тяги, потребляемую двигателями мощность, атмосферное давление, температуру и влажность воздуха. При этом полный оборот и направление БПЛА определяют с помощью электронного магнитного компаса. Используя полученную при калибровке зависимость и вновь измеренные характеристики, определяют направление и скорость ветра в вертикальном разрезе. Технический результат: расширение функциональных возможностей, повышение точности позиционирования зонда. 1 ил.

 

Способ определения усредненного вектора скорости ветра с помощью беспилотного летательного аппарата относится к метеорологии и предназначен для измерения метеовеличин в вертикальном разрезе атмосферы в определенной географической точке.

Известны способы и устройства для определения скорости и направления ветра путем использования воздушных шаров или радиозондов (Патент на изобретение РФ №2101736, МПК G01W 1/02, 01.10.1998, патенты на полезные модели №103195, МПК G01W 1/08, 01.12.2010, №92204, МПК G01W 1/02, 10.03.2010).

Недостатком таких технических решений является невозможность проведения измерений в заранее выбранных географических координатах вследствие неуправляемости зонда.

Наиболее близким является способ, описанный в устройстве для определения скорости и направления ветра на заданной высоте, который выбран в качестве прототипа. Способ заключается в запуске зонда в интересующую область пространства на заданную высоту с помощью специальных средств, обеспечении движения зонда в горизонтальном направлении по ветру и регистрации скорости и направления ветра с помощью специальных средств. Зонд снабжен системой спутниковой навигации, электронным гироскопом, электронным магнитным компасом (Патент РФ 98256, МПК G01W 1/00, 27.04.2010).

Недостатком прототипа является невозможность выбора координат точки проведения измерений.

Задачей изобретения является расширение функциональных возможностей, повышение точности позиционирования зонда.

Технический результат - расширение функциональных возможностей, а именно возможность измерения усредненного вектора скорости ветра в вертикальном разрезе атмосферы.

Технический результат достигается тем, что, как и в известном способе определения усредненных значений скорости и направления ветра, запускают зонд в интересующую область пространства на заданную высоту, направляя информацию на радиоприемную систему, при этом зонд снабжен системой спутниковой навигации, электронным гироскопом, электронным магнитным компасом.

В отличие от известного способа, в предлагаемом техническом решении в качестве зонда используют беспилотный летательный аппарат (БПЛА) с известными калибровочными характеристиками влияния ветра на наклон вектора тяги, способный зависать в заданной точке пространства и снабженный датчиками наклона, температуры, давления, влажности и потребляемой двигателями мощности, который, при достижении им нужной точки с заранее выбранными географическими координатами переводят в режим удержания географических координат, равномерного движения по вертикали, затем запускают режим равномерного вращения вокруг вертикальной оси, через промежутки времени, кратные полному обороту аппарата вокруг вертикальной оси, измеряют калибровочные характеристиками БПЛА, фиксируя наклон вектора тяги БПЛА, потребляемую двигателями мощность, атмосферное давление, температуру и влажность воздуха, при этом полный оборот и направление БПЛА определяют с помощью электронного магнитного компаса, используя заранее известные калибровочные характеристики и вновь измеренные, определяют направление и скорость ветра в вертикальном разрезе.

Режим удержания координат проиллюстрирован на фиг. 1.

Он характеризуется равновесием горизонтальной (Fтx) проекции тяги (Fт) БПЛА, находящегося в наклонном положении, и силы Fв, с которой ветер воздействует на БПЛА (см. фиг. 1). При этом БПЛА может перемещаться по вертикали или находиться на неизменной высоте, в зависимости от соотношения между вертикальной проекцией тяги и весом (Fg) БПЛА.

Наклон вектора тяги БПЛА в описанном выше режиме однозначно соответствует усредненному движению ветра в данной точке пространства при известных значениях атмосферного давления, влажности и температуры, а также суммарной мощности, развиваемой двигателями БПЛА. Кратность оборотов вокруг оси БПЛА нивелирует асимметрию его парусности. Вращение БПЛА также повышает его устойчивость за счет возникновения момента инерции. Для определения вектора средней скорости ветра необходимо использовать заранее измеренную при калибровке системы зависимость между наклоном БПЛА α, вектором скорости ветра Fв, углом поворота корпуса БПЛА ϕ, атмосферным давлением Р, влажностью ψ, температурой Т и суммарной мощностью W, развиваемой двигателями БПЛА:

При одновременном запуске нескольких БПЛА в разных точках можно получить объемную модель метеопроцессов в рассматриваемой области пространства. Также использование нескольких БПЛА, одновременно сканирующих равноподеленные между ними участки единого вертикального разреза может служить для сокращения времени регистрации быстропротекающих процессов в атмосфере, при этом время получения вертикального разреза уменьшается в N раз, где N - количество одновременно запускаемых БПЛА.

Способ осуществляется следующим образом.

1. БПЛА, способный зависать в воздухе, имеющий спутниковую систему навигации, гироскоп, магнитный компас, датчики потребляемой двигателями суммарной мощности, атмосферного давления, влажности и температуры, помещают в аэродинамическую трубу и определяют зависимость между наклоном БПЛА α, вектором скорости ветра Fв, углом поворота корпуса БПЛА ϕ, атмосферным давлением Р, влажностью ψ, температурой Т и суммарной мощностью W, развиваемой двигателями БПЛА, в виде:

2. Запускают БПЛА в интересующую область пространства.

3. Переводят БПЛА в режим удержания географических координат и равномерного движения по вертикали, после чего придают БПЛА равномерное вращение вокруг вертикальной оси. Начинают фиксацию показаний бортовых навигационных приборов и датчиков через промежутки времени, кратные полному обороту аппарата вокруг вертикальной оси. Полный оборот и направление БПЛА определяют с помощью электронного магнитного компаса.

4. Используя заранее измеренную при калибровке системы зависимость наклона БПЛА от вектора скорости ветра, давления, влажности и температуры, определяют направление и величину трехмерного вектора средней скорости ветра в каждой точке траектории движения БПЛА.

5. Исходные данные передают на наземную станцию управления по штатному радиоканалу (телеметрия).

Можно перемещать БПЛА по вертикали для непрерывных измерений в вертикальном разрезе атмосферы, либо удерживать БПЛА на месте для точечных измерений, либо осуществить приземление БПЛА для замены аккумуляторных батарей.

Данный алгоритм может выполняться автоматически, по программе.

Измеренные величины передаются наземной станции управления с телеметрией и анализируются автоматически в режиме реального времени.

Таким образом может быть рассчитан усредненный вектор скорости ветра на вертикальном разрезе.

Возможен вариант, в котором измеряемые величины записываются на сменный носитель, устанавливаемый на БПЛА. Расчеты ведутся после посадки БПЛА.

Дополнительные достоинства: независимость от состояния облачности, тумана; произвольный выбор точки измерения; управляемый возврат зонда в точку старта по завершении измерений.

Способ определения усредненного вектора скорости ветра с помощью беспилотного летательного аппарата, по которому в интересующую область пространства запускают зонд, снабженный навигационными приборами, отличающийся тем, что в качестве зонда используют беспилотный летательный аппарат (БПЛА) с известными калибровочными характеристиками влияния ветра на наклон вектора тяги, способный зависать в заданной точке пространства и снабженный датчиками наклона, температуры, давления, влажности и потребляемой двигателями мощности, который при достижении им нужной точки с заранее выбранными географическими координатами переводят в режим удержания географических координат, равномерного движения по вертикали, затем запускают режим равномерного вращения вокруг вертикальной оси, через промежутки времени, кратные полному обороту аппарата вокруг вертикальной оси, измеряют калибровочные характеристиками БПЛА, фиксируя наклон вектора тяги БПЛА, потребляемую двигателями мощность, атмосферное давление, температуру и влажность воздуха, при этом полный оборот и направление БПЛА определяют с помощью электронного магнитного компаса, используя заранее известные калибровочные характеристики и вновь измеренные, определяют направление и скорость ветра в вертикальном разрезе.



 

Похожие патенты:

Изобретение относится к измерительной технике и может найти применение для определения усредненного вектора скорости ветра. Технический результат – расширение функциональных возможностей.
Изобретение относится к области приборостроения, в частности к метеорологии, и может найти применение для определения усредненных значений вертикальных и горизонтальных составляющих скорости ветра и его направления.
Изобретение относится к метеорологии, а именно к способам обнаружения штормовой погоды в океане. Согласно способу обнаружения шторма в океане со спутника облучают поверхность океана оптическим излучением и принимают отраженный сигнал.

Изобретение относится к области метеорологии и может быть использовано для измерения пространственных распределений параметров атмосферы. Сущность: система включает летательный аппарат (2) с измерительной аппаратурой (4) на борту, устройство (1) для транспортировки летательного аппарата в виде шара-зонда или аэростата, а также устройство управления полетом летательного аппарата.

Изобретение относится к области метеорологии и может быть использовано для указания параметров ветра при посадке летательного аппарата. Сущность: устройство развертывается вдоль воздушной траектории по направлению к поверхности земли, например, после сброса с летательного аппарата в полете.

Устройство для обнаружения аэрозолей содержит летательный аппарат, имеющий диэлектрический элемент, такой как окно (10), размещенный в его корпусе (12), так что поверхность диэлектрического элемента образует часть наружной поверхности летательного аппарата.

Изобретение относится к измерительным океанографическим приборам, предназначенным для определения характеристик окружающей среды, преимущественно - пограничного слоя атмосферы и океана. Технический результат - повышение точности определения параметров заданного пограничного слоя приводной среды. Сущность: радиозонд-буй содержит: газонаполненную оболочку 1, к которой посредством стропа 2 прикреплен приборный блок, который включает в себя электрически соединенные верхний приборный блок (контейнер) 3, закрепленный вверху стропа 2, преимущественно вблизи оболочки 1, и нижний приборный блок (контейнер) 4, прикрепленный к нижнему концу стропа 2.
Изобретение относится к области дистанционного зондирования ледяного покрова и может быть использовано для обнаружения айсбергов. Сущность: получают спутниковые радиолокационные снимки.

Изобретение относится к области метеорологии и может быть использовано для диагностики конвективных опасных метеорологических явлений (гроза, град, шквал, ливень).
Изобретение относится к области метеорологии, а именно к получению водорода, предназначенного для наполнения оболочек для проведения радиозондовых измерений различных параметров атмосферы.

Изобретение относится к области морского приборостроения и может быть использовано при разработке и производстве технических средств измерений морских подводных течений.

Группа изобретений относится к датчикам для измерения скорости воздушного летательного аппарата по отношению к окружающей его воздушной массе. Сущность заключается в том, что устройство для измерения скорости воздуха содержит гибкую конструкцию, имеющую внешнюю поверхность с первым открытым каналом для воздуха, имеющим нижнюю часть с первым отверстием, и первый датчик давления, установленный в гибкой конструкции в положении с нижней стороны и сообщающийся по текучей среде с первым отверстием.

Способ определения скорости ветра над водной поверхностью, в котором получают при помощи двух оптических систем на основе линеек ПЗС-фотодиодов с разными направлениями визирования два пространственно-временных изображения водной поверхности.

Изобретение относится к способам дистанционных исследований атмосферы, основанных на использовании эффекта Доплера и применении фазоманипулированных сигналов, и может быть использовано для измерения скорости ветра.

Изобретение относится к контрольно-измерительной технике и позволяет исследовать ограниченные (замкнутые) вихревые потоки жидкости. Изобретение может использоваться в фундаментальных и прикладных исследованиях в экспериментальной гидродинамике.

Способ измерения векторного поля скорости протяженной поверхности относится к радиолокации поверхности Земли с космических аппаратов и может быть использован для одновременного формирования яркостных и векторно-скоростных портретов речных и океанских течений с необходимым пространственным разрешением и привязкой к координатам местности.

Изобретение относится к области авиационного метеорологического оборудования. Бортовая система измерения параметров вектора скорости ветра содержит неподвижное ветроприемное устройство, преобразователи информативных сигналов, канал аналого-цифрового преобразования, вычислительное устройство, соединенные определенным образом.

Изобретение относится к области метеорологии и касается способа определения профиля ветра в атмосфере. Способ включает в себя излучение приемопередатчиком длинных когерентных импульсов, регистрацию отраженного сигнала, получение доплеровского сигнала на различных высотах в различных направлениях зондирования.

Изобретение относится к устройствам для измерения величины (модуля) и угла направления (аэродинамического угла) вектора истинной воздушной скорости, а также других высотно-скоростных параметров летательного аппарата (ЛА), определяющих движение ЛА относительно окружающей воздушной среды.

Изобретение относится к устройствам для измерения величины (модуля) и угла направления (аэродинамического угла) вектора истинной воздушной скорости, а также других высотно-скоростных параметров летательного аппарата, определяющих движение относительно окружающей воздушной среды.
Наверх