Ферритовый материал

Изобретение относится к созданию анизотропных гексаферритов для миллиметрового диапазона. Техническим результатом является получение гексаферритового материала с полями анизотропии На~7-13 кЭ. Ферритовый материал содержит 6,75÷6,85 вес.% (SrO) оксида стронция, 9,75÷9,90 вес.% (NiO) оксида никеля, 0,45÷10,00 вес.% (Cr2O3) оксида хрома. При этом материал дополнительно содержит 0,10÷2,10 вес.% (Mn2O3) оксида марганца, 0,10÷4,60 вес.% (Sc2O3) оксида скандия, остальное вес.% (Fe2O3) оксида железа. 1 табл., 9 пр.

 

Изобретение относится к радиоэлектронной технике и касается создания анизотропных ферритовых СВЧ материалов для создания невзаимных устройств в миллиметровом диапазоне длин волн в современной и перспективной радиолокации и связи. Для развития этого направления необходимы улучшенные гексаферриты с пониженными СВЧ потерями, улучшенной термостабильностью и с повышенной коэрцитивной силой. Последнее качество позволит уменьшить величину внешнего подмагничивания устройства или совсем отказаться от него, что положительно скажется на массогабаритных характеристиках приборов, способствуя их миниатюризации.

К настоящему времени накоплен значительный опыт по производству высокоплотных ферритов с гексагональной кристаллической структурой с полями анизотропии На от 6 кЭ до 35 кЭ для миллиметрового диапазона длин волн - 18-94 ГГц (каталог фирмы АО «НИИ «Феррит-Домен»). При уменьшении значения На ниже 12-13 кЭ величина коэрцитивной силы падает, особенно при повышении плотности гексаферритов.

Ряд термостабильных марок с На от 6 до 13 кЭ и коэрцитивной силой Нс=0,07÷0,5 кЭ при низкой плотности материала (≤4,2) разработан на основе известного ферритового материала (авторское свидетельство №623239, 05.09.1978 г.), содержащего следующее соотношение компонентов, вес %:

Оксид бария (ВаО) 9,6÷10,0
Оксид никеля (NiO) 0,4÷4,8
Оксид скандия (Sc2O3) 0,1÷13,4
Оксид цинка (ZnO) 5,4÷9,8
Оксид железа (Fe2O3) Остальное.

Известен термостабильный ферритовый материал (авторское свидетельство №387442, 21.06.1973 г.) содержащий, вес %:

Оксид стронция (SrO) 6,7÷6,9
Оксид цинка (ZnO) 5,2÷5,4
Оксид никеля (NiO) 4,8÷5,0
Оксид железа (Fe2O3) Остальное

который характеризуется стабильной величиной поля анизотропии (На=10÷12 кЭ), но имеет узкий диапазон На.

Известен также ферритовый материал (авторское свидетельство №441598, 30.08.1974 г.), содержащий, вес %:

Оксид стронция (SrO) 6,8÷7,0
Оксид никеля (NiO) 9,7÷10,1
Оксид хрома (Cr2O3) 0,3÷15,3
Оксид железа (Fe2O3) Остальное

обладающий большой Нс до 1,5 кЭ.

При повышении плотности этих ферритовых материалов, необходимой при изготовлении полированных подложек для микрополосковых приборов в интегральном исполнении, возникают проблемы, связанные с ухудшением электромагнитных свойств. С ростом плотности происходит снижение коэрцитивной силы, увеличивается проводимость, растут диэлектрические потери.

Наиболее близким аналогом заявляемого изобретения является ферритовый материал по авторскому свидетельству №441598, взятый в качестве прототипа.

Технический результат заявляемого изобретения заключается в получении гексаферритового материала с полями анизотропии На=7÷13 кЭ, более низкими по сравнению с прототипом, с повышенным значением плотности ≥4,8 г/см3 (до 0,9ρтеор) при значения коэрцитивной силы Hc≥1 кЭ и уменьшенных диэлектрических потерях tgδε≤8⋅10-4.

Для достижения технического результата предлагается ферритовый материал, который содержит в качестве базового состава оксиды Sr, Ni, Cr и Fe, отличающийся тем, что он дополнительно содержит оксид скандия и оксид марганца при следующем соотношении компонентов, вес %:

Оксид стронция (SrO) 6,75÷6,85
Оксид никеля (NiO) 9,75÷9,90
Оксид хрома (Cr2O3) 0,45÷10,00
Оксид марганца (Mn2O3) 0,10÷2,10
Оксид скандия (Sc2O3) 0,10÷4,60
Оксид железа (Fe2O3) Остальное

Предлагаемый ферритовый материал получают по следующей технологии.

Исходные компоненты, взятые в необходимых соотношениях, перемешиваются в вибромельнице до получения однородной по составу смеси. Смесь синтезируют при температуре 1220-1280°C в течение 4-6 часов на воздухе. Полученный ферритовый порошок подвергают мокрому помолу в этиловом спирте в течение 20÷24 часов. Из полученной пасты прессуют образцы в постоянном магнитном поле величиной, примерно 0,7 На при удельном давлении 0,3÷0,5 т/см2. После сушки образцы обжигают при температуре 1250-1350°C в атмосфере кислорода.

На спеченных образцах определялись следующие параметры: плотность - ρ, поле анизотропии - На, диэлектрические потери - tgδε и коэрцитивная сила - Нс - по стандартным методикам в соответствии с МЭК. Плотность определялась методом гидростатического взвешивания, поле анизотропии измерялось резонансным методом на сферических образцах. Тангенс угла диэлектрических потерь измерялся резонансным методом на частоте 10 ГГц на стержнях размером 1,12×1,12×18 мм. Коэрцитивная сила контролировалась на гестериографе в магнитном поле 10 кЭ на дисках ∅30×4 мм.

Примеры получения ферритовых материалов, их состав и свойства приведены в таблице 1.

В примерах №1, 2, 3, 4 даны химические составы в пределах заявленных процентных соотношений и соответствующие им параметры.

Пример №5. Увеличение содержания Sc2O3 и уменьшение Cr2O3 по сравнению с заявленными пределами приводили к снижению На и Нс.

Пример №6. Уменьшение содержания Sc2O3 и увеличение Cr2O3 по сравнению с заявленными пределами приводили к росту На.

Пример №7. Увеличение содержания Mn2O3 по сравнению с заявленными пределами приводит к увеличению диэлектрических потерь.

Пример №8. Уменьшение Mn2O3 по сравнению с заявленными пределами также приводит к росту диэлектрических потерь.

Пример №9. Увеличение или уменьшение содержания NiO и SrO по сравнению с заявленными пределами приводит к появлению фаз других соединений, таких как SrFe12O19, Sr5Fe4O11, NiFeO4 и α-Fe2O3, которые ухудшают основные электромагнитные свойства ферритов и затрудняют спекание, например, №9.

Предлагаемое изобретение было создано в процессе выполнения тематического плана предприятия «Исследование возможности повышения коэрцитивной силы у гексаферритов с низкими полями анизотропии».

Создание гексаферритов с полями анизотропии менее 12-13 кЭ с повышенным значением коэрцитивной силы расширит номенклатуру материалов, применяемых в миллиметровом диапазоне радиочастот, и позволит создавать СВЧ приборы без внешнего подмагничивания.

Ферритовый материал, содержащий оксиды стронция, никеля, хрома и железа, отличающийся тем, что он дополнительно содержит оксид скандия и оксид марганца при следующих соотношениях компонентов, вес.%:

Оксид стронция (SrO) 6,75÷6,85
Оксид никеля (NiO) 9,75÷9,90
Оксид хрома (Cr2O3) 0,45÷10,00
Оксид марганца (Mn2O3) 0,10÷2,10
Оксид скандия (Sc2O3) 0,10÷4,60
Оксид железа (Fe2O3) Остальное



 

Похожие патенты:

Изобретение относится к области нанотехнологий и может быть использовано в обогащении полезных ископаемых для извлечения ценных минералов, а также их очистки от магнитных примесей, регенерации магнитных суспензий при гравитационном обогащении.

Изобретение относится к области металлургии, а именно к электротехнической листовой стали (11), имеющей улучшающую электроизоляцию покрытие (14). Покрытие образовано из оксида титана или оксида тантала.

Изобретение может быть использовано при создании магнитоактивных катализаторов. Способ получения раствора магнитоактивного соединения включает конденсацию из раствора сульфата железа (II), содержащего лигносульфонаты, и раствора окислителя при их смешении.

Изобретение может быть использовано при создании магниточувствительных диодных структур, магнитных переключателей и сенсоров магнитных полей на основе ферромагнитного композита.
Настоящее изобретение относится к магнитомягкому композитному порошковому материалу на основе железа и может быть использовано для изготовления сердечника индукционной катушки большой мощности.

Изобретение относится к порошковой металлургии, связанной с изготовлением магнитов из порошковых материалов, в частности из сплавов редкоземельных металлов с кобальтом и железом, и может быть использовано при производстве металлокерамических и металлопластических постоянных магнитов с высокими величинами остаточной индукции и максимального энергетического произведения для машиностроительной, приборостроительной, электротехнической и других отраслей промышленности.

Изобретение может быть использовано в производстве модифицированных глинистых материалов. Для изготовления высокодисперсных гидрофобных магниточувствительных глинистых материалов готовят суспензию глинистых материалов в воде в реакторе с помощью механического перемешивания.

Изобретение относится к области металлургии, а именно к изготовлению полосы из магнитомягкого сплава. Способ изготовления полосы из магнитомягкого сплава толщиной менее 0,6 мм, пригодной для механической резки, включает холодную прокатку полосы, полученной горячей прокаткой полуфабриката, затем полосу подвергают непрерывному отжигу пропусканием через печь непрерывного действия при температуре в пределах от температуры перехода упорядочения/разупорядочения сплава до температуры начала ферритно-аустенитного превращения сплава, причем скорость движения полосы устанавливают таким образом, чтобы время выдержки полосы в печи непрерывного действия при температуре отжига составляло меньше 10 минут.

Изобретение относится к области металлургии, а именно листу из неориентированной электротехнической стали, используемому в качестве сердечника для приводного двигателя электротранспортного средства и гибридного транспортного средства, а также двигателя электрогенератора.

Группа изобретений относится к спеченному магниту Nd-Fe-B, состоящему из редкоземельного элемента R, дополнительного элемента Т, железа Fe, бора В и примесей. Указанный магнит содержит фазу, обогащенную редкоземельными элементами, и основную фазу кристаллической структуры Nd2Fe14B.

Изобретение может быть использовано в системах магнитной записи информации, органической электронике, медицине, при создании ионообменных материалов, компонентов электронной техники, солнечных батарей, дисплеев, перезаряжаемых батарей, сенсоров и биосенсоров. Металлополимерный нанокомпозитный магнитный материал включает полимерную матрицу и диспергированные в ней наночастицы Fe3O4. В качестве полимерной матрицы используют матрицу из поли-3-амино-7-метиламино-2-метилфеназина ПАММФ при содержании наночастиц Fe3O4 в материале 1-70 мас.% от массы ПАММФ. Для получения металлополимерного нанокомпозитного магнитного материала окислительной полимеризацией мономера in situ на поверхности наночастиц Fe3O4 в присутствии водного раствора окислителя в качестве мономера используют 3-амино-7-диметиламино-2-метилфеназин гидрохлорид - нейтральный красный, в качестве окислителя - персульфат аммония. Мольное соотношение окислителя к мономеру при проведении окислительной полимеризации равно 2-5. Перед окислительной полимеризацией мономер растворяют в органическом растворителе, в качестве которого используют ацетонитрил, диметилформамид или диметилсульфоксид, до концентрации 0,01-0,05 моль/л. К раствору добавляют наночастицы Fe3O4 в количестве 1-70 мас.% от массы ПАММФ. Окислительную полимеризацию проводят при 0-60°С в течение 1-6 ч. Изобретение позволяет повысить намагниченность насыщения гибридного металлополимерного нанокомпозитного магнитного материала с супермагнитными свойствами, высокой термостабильностью, упростить его получение, снизить энергозатраты. 2 н.п. ф-лы, 10 ил., 1 табл., 24 пр.

Изобретение относится к области металлургии, а именно к листу нетекстурированной электротехнической стали толщиной 0,10-0,50 мм, используемому в качестве материала для сердечника приводного двигателя и электрогенератора. Лист выполнен из стали следующего химического состава, мас.%: C не более 0,010, Si 1,0-7,0, Mn 0,001-3,0, раств. Al 0,0001-3,5, Р 0,01-0,2, S не более 0,010, N не более 0,010, остальное Fe и неизбежные примеси. Отношение (P120/Fe700) высоты пика P120 Р при энергии электронов 120 эВ к высоте пика Fe700 Fe при энергии электронов 700 эВ в дифференциальном спектре оже-электронов, полученном анализом нарушенной поверхности границы зерна оже-спектроскопией, составляет не менее 0,1. Обеспечивается высокая плотность магнитного потока и превосходные потери в железе в области высоких частот. 2 н. и 7 з.п. ф-лы, 5 ил., 3 табл.

Изобретение относится к области черной металлургии. Для обеспечения высокой магнитной проницаемости стали и равномерности магнитных свойств осуществляют выплавку стали, содержащей медь от 0,4 до 0,6 мас.%, разливку, горячую прокатку, травление, двукратную холодную прокатку с промежуточным обезуглероживающим отжигом, нанесение на полосу магнезиального покрытия, высокотемпературный и выпрямляющий отжиги. Перед стадией обезуглероживания полосы в промежуточной толщине производят её нагрев до 700-980°С со скоростью не менее 100°С/с в безокислительной атмосфере и охлаждение в безокислительной атмосфере до 600-840°С при скорости не менее 60°С/сек сразу после достижения максимальной температуры на этапе нагрева. 1 ил., 2 табл., 2 пр.

Изобретение относится к получению керамических перовскитоподобных манганитов и может быть использовано в электротехнике, магнитной и спиновой электронике. Поликристаллический материал на основе лантан-стронциевого манганита имеет состав La0,810Sr0,190Mn1-x(Zn0,5Ge0,5)xO3, где x принимает значения от 0,148 до 0,152. Материал изготавливают из шихты, содержащей окись лантана, углекислый стронций, двуокись марганца, окись цинка и окись германия. Указанные компоненты смешивают и проводят первичное измельчение в шаровой мельнице в течение 4 часов с последующей термической обработкой при температуре 1000°С в течение 4 часов. Затем проводят вторичное измельчение в шаровой мельнице в течение 10 часов, формование и спекание при температуре 1200°С в течение 10 часов. Полученный материал имеет положительный эффект колоссального магнитосопротивления, достигаемый при индукции магнитного поля до 1 Тл и слабо изменяющийся в широком диапазоне температур от 190 K до 300 K. Изобретение позволяет уменьшить затраты на изготовление манганита, расширить диапазон рабочих температур устройств на его основе, исключив при этом необходимость термостабилизации чувствительных элементов, обеспечить повышение надежности и достоверности измерений. 1 ил., 1 пр.

Изобретение относится к области коллоидной химии и может быть использовано для получения магнитных жидкостей, применяемых в медицине для доставки лекарственных препаратов в требуемые органы живых организмов. Способ получения магнитной жидкости заключается в том, что приготавливают водный раствор солей железа и аммиака из хлорида железа-III и сульфата железа-II и в него добавляют (5-15) об. % водного раствора аммиака, перед добавлением тетраэтоксисилана по меньшей мере пять раз проводят очистку раствора магнитных частиц от избытка аммиака путем формирования осадка воздействием магнитного поля на раствор магнитных частиц, отделения осадка от раствора магнитных частиц, помещения и распределения осадка в дистиллированной воде, добавляют тетраэтоксисилан в количестве (1,5-2,5) об. %, а обработку ультразвуком полученного раствора магнитных частиц проводят в течение (2,5-7,5) мин посредством диспергатора. Изобретение позволяет сократить длительность процесса и снизить затраты на получение магнитной жидкости. 5 ил.

Изобретение относится к порошковой металлургии, а именно к способам изготовления постоянных магнитов из магнитотвердых материалов на основе сплавов редкоземельных металлов с железом и азотом, и может быть использовано в электротехнической, автомобильной, приборостроительной и других областях промышленности. Изготовление постоянных магнитов проводят азотацией монокристаллической заготовки, полученной из сплава редкоземельных металлов с железом. При этом скорость выращивания монокристалла находится в интервале от 0,1 до 2 мм/с, а степень разориентации текстуры 3,6-30,7. Изобретение позволяет улучшить магнитные характеристики магнитов за счет повышения плотности и уменьшения степени разориентации частиц магнитного материала. 3 з.п. ф-лы, 1 табл., 2 ил.

Изобретение относится к раствору для образования изоляционного покрытия на листе текстурированной электротехнической стали и к листу текстурированной электротехнической стали, имеющему изоляционное покрытие. Раствор для образования изоляционного покрытия на листе текстурированной электротехнической стали содержит водный раствор, полученный смешиванием фосфатного раствора и коллоидного диоксида кремния, причем коллоидный диоксид кремния представляет собой либо частицы коллоидного диоксида кремния, поверхностно модифицированные алюминатом, либо раствор коллоидного диоксида кремния, содержащий алюминат. Водный раствор не содержит хрома. Лист текстурированной электротехнической стали в соответствии с аспектом настоящего изобретения обладает превосходными магнитными свойствами благодаря высокому растягивающему напряжению, а также превосходной электрической изоляцией, термостойкостью, химической стойкостью и химической безопасностью, поскольку лист текстурированной электротехнической стали имеет плотное изоляционное покрытие, которое образовано при использовании раствора для образования изоляционного покрытия. 2 н. и 5 з.п. ф-лы, 9 ил., 3 табл.

Изобретение относится к электротехнике, к трансформаторостроению и может найти применение при изготовлении обмоток трансформаторов и реакторов. Технический результат состоит в расширении функциональных возможностей при относительной простоте изготовления. Обмотка индукционного устройства содержит n последовательно соединенных катушек, каждая из которых содержит m параллельных проводников, расположенных в осевом направлении. По меньшей мере, один из m параллельных проводников закреплен на наружном торце катушки. Введены гильзы из электропроводящего материала, размещенные на внутреннем диаметре каждой четной катушки, а также на наружных переходах между четной и нечетной катушками, обеспечивая соединение соответствующих катушек между собой. В способе изготовления обмотки индукционного устройства осуществляют намотку n катушек m параллельными проводниками, поступающими с намоточных барабанов, и выполняют последовательное соединение катушек. Перед намоткой катушек формируют переходы между нечетной и четной катушками, наматывают нечетную (первую) катушку в одном направлении, отрезают концы (m-m1) проводников, a m1 проводниками выполняют один виток, располагая его на торце первой катушки, отрезают m1 проводников, наматывают следующую четную катушку в противоположном направлении. Затем процедуру намотки повторяют аналогичным образом, включая предпоследнюю катушку. Последнюю катушку выполнять аналогично первой. Затем выполняют наружные переходы при помощи гильз из электропроводящего материала, где n - любое целое число, больше двух; m - любое целое число, больше единицы, m1 - любое целое число, 1≤m1<m. 2 н.п. ф-лы, 2 ил.

Изобретение относится к области получения постоянных магнитов и может быть использовано при производстве высокоэнергетических постоянных магнитов на основе редкоземельных (РЗМ) сплавов и, в частности, на основе неодима, железа и бора (сплав Nd-Fe-B). Способ получения высококоэрцитивных магнитов из сплавов на основе Nd-Fe-B включает дробление базового сплава, смешивание сплава и добавки для коррекции состава сплава, прессование смеси порошков в магнитном поле, спекание заготовки и охлаждение, при этом добавкой для коррекции состава сплава являются гидриды лигатуры РЗМ-Fe, а спекание магнита производят в вакууме или при остаточном давлении в течение 1-2 ч. Изобретение позволяет увеличить коэрцитивную силу и остаточную индукцию получаемых магнитов. 1 з.п. ф-лы, 2 ил.

Изобретение касается способа изготовления магнитной керамики. Способ включает следующие этапы: компактирование в пресс-форме порошковой композиции, содержащей смесь железа и BN, выдавливание компактированной массы из пресс-формы, размещение в кальцийкарбонатном контейнере с графитовым нагревателем, обработка при 2-8 ГПа и 1000-2000°С. Изобретение позволяет получить магнитомягкое керамическое изделие, обладающее превосходными магнитными, электрическими и механическими свойствами. 2 н. и 11 з.п. ф-лы, 1 ил., 2 табл.

Изобретение относится к созданию анизотропных гексаферритов для миллиметрового диапазона. Техническим результатом является получение гексаферритового материала с полями анизотропии На~7-13 кЭ. Ферритовый материал содержит 6,75÷6,85 вес. оксида стронция, 9,75÷9,90 вес. оксида никеля, 0,45÷10,00 вес. оксида хрома. При этом материал дополнительно содержит 0,10÷2,10 вес. оксида марганца, 0,10÷4,60 вес. оксида скандия, остальное вес. оксида железа. 1 табл., 9 пр.

Наверх