Способ определения коэффициента диффузии растворителей в листовых капиллярно-пористых материалах



Способ определения коэффициента диффузии растворителей в листовых капиллярно-пористых материалах
Способ определения коэффициента диффузии растворителей в листовых капиллярно-пористых материалах
Способ определения коэффициента диффузии растворителей в листовых капиллярно-пористых материалах
Способ определения коэффициента диффузии растворителей в листовых капиллярно-пористых материалах
Способ определения коэффициента диффузии растворителей в листовых капиллярно-пористых материалах
Способ определения коэффициента диффузии растворителей в листовых капиллярно-пористых материалах
Способ определения коэффициента диффузии растворителей в листовых капиллярно-пористых материалах
Способ определения коэффициента диффузии растворителей в листовых капиллярно-пористых материалах
Способ определения коэффициента диффузии растворителей в листовых капиллярно-пористых материалах
Способ определения коэффициента диффузии растворителей в листовых капиллярно-пористых материалах
Способ определения коэффициента диффузии растворителей в листовых капиллярно-пористых материалах
Способ определения коэффициента диффузии растворителей в листовых капиллярно-пористых материалах
Способ определения коэффициента диффузии растворителей в листовых капиллярно-пористых материалах
Способ определения коэффициента диффузии растворителей в листовых капиллярно-пористых материалах
Способ определения коэффициента диффузии растворителей в листовых капиллярно-пористых материалах
Способ определения коэффициента диффузии растворителей в листовых капиллярно-пористых материалах
G01N2013/003 - Исследование или анализ материалов путем определения их химических или физических свойств (разделение материалов вообще B01D,B01J,B03,B07; аппараты, полностью охватываемые каким-либо подклассом, см. в соответствующем подклассе, например B01L; измерение или испытание с помощью ферментов или микроорганизмов C12M,C12Q; исследование грунта основания на стройплощадке E02D 1/00;мониторинговые или диагностические устройства для оборудования для обработки выхлопных газов F01N 11/00; определение изменений влажности при компенсационных измерениях других переменных величин или для коррекции показаний приборов при изменении влажности, см. G01D или соответствующий подкласс, относящийся к измеряемой величине; испытание

Владельцы патента RU 2643174:

Федеральное государственное бюджетное образовательное учреждение высшего образования "Тамбовский государственный технический университет" (ФГБОУ ВО "ТГТУ") (RU)

Изобретение относится к измерительной технике и может быть использовано при исследовании процессов массопереноса и для определения коэффициентов диффузии растворителей в изделиях из листовых капиллярно-пористых материалов в бумажной, легкой, строительной и других отраслях промышленности. Предложен способ определения коэффициента диффузии растворителей в листовых изделиях из капиллярно-пористых материалов, заключающийся в том, что в исследуемом листовом материале создают равномерное начальное содержание распределенного в твердой фазе растворителя. Затем исследуемый материал помещают на плоскую подложку из непроницаемого для растворителя материала, гидроизолируют верхнюю поверхность материала, в начальный момент времени осуществляют импульсное точечное увлажнение верхней поверхности исследуемого изделия дозой растворителя. Затем измеряют изменение во времени сигнала гальванического преобразователя на заданном расстоянии от точки нанесения импульса дозой растворителя, фиксируют значения сигнала гальванического датчика в два момента времени и рассчитывают коэффициент диффузии. Причем измерение коэффициента диффузии осуществляют при условии достижения в эксперименте максимума сигнала гальванического преобразователя Еmax, составляющего 0,75-0,95 от максимально возможного значения данного сигнала Ее, соответствующего переходу растворителя из области связанного с твердой фазой исследуемого материала в область свободного состояния. Фиксируют моменты времени τ1 и τ2, при которых достигаются одинаковые значения сигналов гальванического датчика Е1 и Е2 из диапазона (0,7-0,9)Eе соответственно на восходящей и нисходящей ветвях кривой изменения сигнала во времени, а расчет коэффициента диффузии производят по формуле:

где r0 - расстояние между электродами гальванического преобразователя и точкой воздействия дозой растворителя на поверхность контролируемого изделия. Технический результат - повышение точности и быстродействия измерения коэффициента диффузии растворителей в листовых изделиях их капиллярно-пористых материалов. 1 з.п. ф-лы, 1 табл., 3 ил.

 

Изобретение относится к измерительной технике и может быть использовано при исследовании процессов массопереноса и для определения коэффициентов диффузии растворителей в изделиях из листовых капиллярно-пористых материалов в бумажной, легкой, строительной и других отраслях промышленности.

Известен способ определения коэффициента массопроводности и потенциалопроводности массопереноса (А.С. 174005, кл. G01k, 1965), заключающийся в импульсном увлажнении слоя материала и измерении на заданном расстоянии от этого слоя изменения влагосодержания материала во времени. Коэффициент массопроводности вычисляется по установленной зависимости. Недостатками этого способа являются осуществление разрушающего контроля опытного образца при размещении датчиков во внутренних слоях исследуемого тела, большая трудоемкость метода при подготовке образцов, необходимость индивидуальной градуировки датчиков по каждому материалу.

Наиболее близким является способ измерения коэффициента диффузии влаги в капиллярно-пористых листовых материалах (патент РФ на изобретение №2436066, G01N 13/00, 10.12.2011, Бюл. №34), заключающийся в том, что исследуемый листовой материал помещают на плоскую подложку из влагонепроницаемого материала, размещенный на подложке исследуемый образец накрывают пластиной из влагонепроницаемого материала, в центре которой высверлено сквозное отверстие для подачи влаги, а на определенном расстоянии от центра этого отверстия размещают электроды гальванического датчика влагосодержания с известной градуировочной характеристикой и непосредственно перед моментом импульсного точечного увлажнения исследуемого образца регистрируют начальное значение сигнала датчика Е0, в начальный момент времени осуществляют импульсное точечное увлажнение поверхности исследуемого материала, затем с постоянным шагом во времени регистрируют значения сигнала гальванического датчика влагосодержания, после завершения эксперимента на каждом временном шаге вычисляют соотношение, равное отношению разности между текущим значением сигнала гальванического датчика влагосодержания Е и начальным значением сигнала Е0 к разности между максимальным значением сигнала Emax, достигаемым в опыте, и начальным значением сигнала E0, фиксируют два момента времени τ' и τ'', соответствующие двум разным значениям этого отношения и рассчитывают искомый коэффициент диффузии.

Недостатками этого способа являются:

1. Невысокая точность измерения коэффициента диффузии, поскольку все результаты исследования погрешностей и расчетные формулы для определения искомого коэффициента диффузии получены в предположении о линейности статической характеристики гальванического преобразователя, которая на самом деле является существенно нелинейной, что показано на фигуре 1 при использовании в качестве примера системы целлюлозный фильтр - этанол. При измерении коэффициента диффузии по данному способу существует большая вероятность того, что получаемые в эксперименте кривые изменения сигнала гальванического преобразователя во времени крайне затруднительно использовать для определения искомого коэффициента диффузии, т.к. эти изменения могут находиться на начальном участке статической характеристики гальванического преобразователя в области малых концентраций с нестабильным сигналом (фигура 2, кривая 4), на конечном участке статической характеристики в области высоких концентраций с крайне низкой чувствительностью преобразователя или в области свободного состояния растворителя в капиллярно-пористом теле, где чувствительность вообще отсутствует (фигура 2, кривая 1).

2. Значительные затраты времени на определение искомого коэффициента, связанные с необходимостью проводить градуировку применяемого гальванического преобразователя по каждому новому капиллярно-пористому материалу и растворителю (десятки часов).

Техническая задача изобретения - повышение точности и быстродействия измерения коэффициента диффузии растворителей в листовых изделиях из капиллярно-пористых материалов.

Техническая задача достигается тем, что в способе определения коэффициента диффузии растворителей в листовых изделиях из капиллярно-пористых материалов измерение коэффициента диффузии осуществляют при условии достижения в эксперименте максимума сигнала гальванического датчика Emax, составляющего 0,75-0,95 от максимально возможного значения данного сигнала Ее, соответствующего переходу растворителя из области связанного с твердой фазой исследуемого материала в область свободного состояния (на фигуре 1 область концентрации свыше 0,18 кг/кг), фиксируют моменты времени τ1 и τ2, при которых достигаются одинаковые значения сигналов гальванического датчика Е1 и Е2 из диапазона (0,7-0,9) Ее соответственно на восходящей и нисходящей ветвях кривой изменения сигнала во времени, а расчет коэффициента диффузии производят по формуле:

где r0 - расстояние между электродами гальванического преобразователя и точкой воздействия дозой растворителя на поверхность контролируемого изделия.

Причем если после нанесения импульса дозой растворителя максимальное значение сигнала гальванического преобразователя Emax наблюдается за пределами диапазона (0,75-0,95)Ee, то ожидают снижение сигнала преобразователя до начального значения, а затем осуществляют новое импульсное воздействие увеличенной или уменьшенной дозой растворителя, причем эту процедуру повторяют до вхождения максимального значения сигнала преобразователя в указанный диапазон, после чего рассчитывают искомый коэффициент диффузии.

Сущность предлагаемого способа заключается в следующем: исследуемый образец из листового капиллярно-пористого материала с равномерным начальным распределением растворителя (в том числе и нулевым) помещают на плоскую подложку из непроницаемого для растворителя материала, например фторопласта.

К поверхности образца прижимается зонд с импульсным точечным источником дозы растворителя и расположенными на концентрической окружности относительно точки импульсного воздействия на изделие электродами гальванического преобразователя. После подачи импульса источник растворителя удаляется из зонда, отверстие для размещения источника растворителя герметизируется заглушкой, а сам зонд обеспечивает гидроизоляцию поверхности образца в зоне действия источника и прилегающей к ней области контроля распространения растворителя. После подачи импульса фиксируют изменение ЭДС гальванического преобразователя во времени.

После подачи импульса в виде дозы растворителя изменение концентрации растворителя на расстоянии r0 от источника описывается уравнением:

При толщине листового материала h<10 r0 коэффициент диффузии растворителя может быть определен по расчетному соотношению:

где τmax - момент времени, соответствующий максимуму на кривой U(r0, τ) изменения концентрации растворителя на расстоянии r0 от точечного источника.

На фигуре 2 представлены кривые изменения концентрации этанола в целлюлозном фильтре толщиной 0,2 мм плотностью 400 кг/м3 для r0=4 мм при различных значениях дозы импульса растворителя. С увеличением вносимой дозы растворителя увеличивается достигаемое в r0 значение максимума концентрации от кривой 4 к кривой 1.

При реализации предлагаемого способа измерению подлежит только изменение во времени ЭДС гальванического преобразователя на расстоянии r0 от источника без использования предварительной процедуры градуировки преобразователя. Расчетная зависимость для определения искомого коэффициента диффузии получена на основании следующих исследований. После импульсного воздействия дозой растворителя на заданном расстоянии r0 от точечного источника наблюдается изменение концентрации в виде характерных кривых, представленных на фигуре 2, имеющих восходящую ветвь от начала импульсного воздействия до момента τmax и нисходящую ветвь, наблюдаемую после наступления момента τmax. При этом одинаковые значения концентрации U*, достигаемые в моменты времени τ1 и τ2 соответственно на восходящей и нисходящей ветвях кривой изменения концентрации во времени могут быть определены из выражения (1) с учетом (2):

Деление (3) на (4) приводит к следующему выражению:

Из (5) получено

Из (6) с учетом (2) получено расчетное выражение для определения искомого коэффициента диффузии:

Для определения искомого коэффициента диффузии в предлагаемом способе измерению в моменты времени τ1 и τ2 подлежит не концентрация U(r0, τ), а связанная с ней ЭДС применяемого гальванического преобразователя в отсутствие предварительно найденной в результате градуировки статической характеристики. Для повышения точности необходимо, чтобы в данные моменты времени τ1 и τ2 измеряемое значение ЭДС находилось на среднем (рациональном) участке статической характеристики (см. фигуру 1), характеризующегося стабильным сигналом преобразователя и высокой чувствительностью к изменению концентрации. Исследования показывают, что рациональный участок статической характеристики соответствует изменению ЭДС преобразователя в диапазоне:

где Ее - сигнал преобразователя, соответствующий переходу растворителя из области связанного с твердой фазой исследуемого материала в область свободного состояния (на фигуре 1 - максимальный сигнал на плато насыщения статической характеристики).

На фигуре 3 представлены кривые изменения ЭДС преобразователя, соответствующие кривым изменения концентрации на фигуре 2 при различных внесенных дозах импульса растворителя. На фигуре 3 ЭДС преобразователя представлена в относительных единицах к максимально возможной ЭДС преобразователя Ee при температуре контроля.

Исследования показывают, что значения моментов времени τ1 и τ2, соответствующие значениям ЭДС преобразователя из диапазона (8), надежно фиксируются при условии достижения в эксперименте максимума сигнала гальванического датчика Emax, составляющего приблизительно 0,75-0,95 от максимально возможного значения сигнала Ее (фигура 3, кривые 2, 3). На кривой 2 (фигура 3) - это моменты времени и , на кривой 3 - это моменты времени и .

При Emax<0,75 Ee сигнал преобразователя нестабилен, определение τ1 и τ2 связано с существенными погрешностями (фигура 3, кривая 4). При значениях Emax>0,95 Ee возрастает длительность эксперимента за счет того, что значительная часть нисходящей ветви кривой изменения концентрации (фигура 2) находится в области плато насыщения статической характеристики преобразователя с низкой чувствительностью к изменению концентрации или вообще за ее пределами, где чувствительность преобразователя вообще отсутствует (фигура 3, кривая 1). В этих случаях существенно возрастает значение момента времени τ2, соответствующего сигналу ЭДС преобразователя из диапазона (8), а также погрешность определения момента времени τ2 из-за малоинтенсивного изменения сигнала преобразователя во времени.

При реализации предлагаемого способа наносят первый импульс дозой растворителя и фиксируют изменение ЭДС гальванического преобразователя на заданном расстоянии от точки нанесения импульса. Если достигаемое в эксперименте максимальное значение ЭДС Emax составляет приблизительно 0,75-0,95 от максимально возможного значения сигнала Ее, то эксперимент завершают в момент времени τ2 достижения в опыте значения ЭДС преобразователя из диапазона (8), равного значению ЭДС в момент времени τ1, после чего по формуле (7) рассчитывают значение искомого коэффициента диффузии.

Если после нанесения первого импульса максимальное значение сигнала преобразователя Emax наблюдается за пределами диапазона (0,75-0,95)Ee, то ожидают снижение сигнала преобразователя до начального значения, а затем осуществляют новое импульсное воздействие увеличенной или уменьшенной дозой растворителя, причем эту процедуру повторяют до вхождения достигаемого после нанесения нового импульса максимального значения сигнала преобразователя в указанный диапазон (0,75-0,95)Ee. После этого эксперимент завершают в момент времени τ2 достижения в опыте значения ЭДС преобразователя из диапазона (8), равного значению ЭДС в момент времени τ1, а затем по формуле (7) рассчитывают значение искомого коэффициента диффузии.

В таблице представлены результаты 20-кратных измерений коэффициента диффузии этанола в целлюлозном фильтре толщиной 0,2 мм, плотностью в сухом состоянии 400 кг/м куб. Расстояние от источника дозы растворителя до расположения электродов гальванического преобразователя - 4 мм. Расчетное значение ЭДС, соответствующее моментам времени τ1 и τ2, приблизительно равно 0,8 Ee; Emax ≈ 0,9 Ее.

Погрешность результата измерения равна половине доверительного интервала и определялась следующим образом:

где - математическое ожидание случайной величины; tα,n - коэффициент Стьюдента при доверительной вероятности α и количестве измерений n; Sn - среднеквадратическая погрешность отдельного измерения:

Проведенные экспериментальные исследования показали, что случайная погрешность результата определения коэффициента диффузии этанола в целлюлозном фильтре при двадцатикратных испытаниях (tα,n=2,1 при α=0,95) составляет 5,8≈6%. Длительность эксперимента не превышает 23 минут.

1. Способ определения коэффициента диффузии растворителей в листовых изделиях из капиллярно-пористых материалов, заключающийся в том, что в исследуемом листовом материале создают равномерное начальное содержание распределенного в твердой фазе растворителя, затем исследуемый материал помещают на плоскую подложку из непроницаемого для растворителя материала, гидроизолируют верхнюю поверхность материала, в начальный момент времени осуществляют импульсное точечное увлажнение верхней поверхности исследуемого изделия дозой растворителя, затем измеряют изменение во времени сигнала гальванического преобразователя на заданном расстоянии от точки нанесения импульса дозой растворителя, фиксируют значения сигнала гальванического датчика в два момента времени и рассчитывают коэффициент диффузии,

отличающийся тем,

что измерение коэффициента диффузии осуществляют при условии достижения в эксперименте максимума сигнала гальванического датчика Emax, составляющего 0,75-0,95 от максимально возможного значения данного сигнала Ее, соответствующего переходу растворителя из области связанного с твердой фазой исследуемого материала в область свободного состояния, фиксируют моменты времени τ1 и τ2, при которых достигаются одинаковые значения сигналов гальванического датчика Е1 и E2 из диапазона (0,7-0,9)Ее соответственно на восходящей и нисходящей ветвях кривой изменения сигнала во времени, а расчет коэффициента диффузии производят по формуле:

где r0 - расстояние между электродами гальванического преобразователя и точкой воздействия дозой растворителя на поверхность контролируемого изделия.

2. Способ по п. 1, отличающийся тем, что при достижении максимального значения сигнала гальванического преобразователя Emax после нанесения импульса дозой растворителя за пределами диапазона (0,75-0,95)Ee ожидают снижения сигнала преобразователя до начального значения, а затем осуществляют новое импульсное воздействие увеличенной или уменьшенной дозой растворителя, причем эту процедуру повторяют до вхождения максимального значения сигнала преобразователя в указанный диапазон, после чего рассчитывают искомый коэффициент диффузии.



 

Похожие патенты:

Изобретение относится к области медицины и может быть использовано в контрольно-аналитических лабораториях для стандартизации и контроля качества лекарственных средств, а именно для количественного определения фенибута методом капиллярного электрофореза.Способ количественного определения фенибута в микрокапсулах методом капиллярного электрофореза включает выполнение анализа в кварцевом капилляре эффективной длиной 0,5 м, внутренним диаметром 75 мкм, под действие электрического поля с использованием раствора ведущего электролита, с последующим спектрофотометрическим определением продуктов реакции, в качестве ведущего электролита используется 10 мМ раствор натрия тетраборнокислого 10-водного с рН 9,2, анализ проводится при напряжении +20 кВ, температуре 30°С и длине волны детектирования 193 нм.

Изобретение относится к электрохимическому сенсору для мониторинга воздуха на содержание летучих органических токсичных веществ, состоящему из планарной электродной группы, фонового электролита, пористой гидрофильной мембраны, полимерной газопроницаемой мембраны, герметичной емкости.

Изобретение относится к измерительной технике и может быть использовано в системах автоматического контроля водно-химического режима для тепловой, атомной и промышленной энергетики.

Изобретение относится к области гидрофизики и биохимии, а именно к способам обнаружения изменений электропроводимости водной среды в результате изменения структуры (концентрации) исследуемого раствора.

Группа изобретений относится к медицине, а именно к лабораторной диагностике, и может быть использована для различения между образцом крови и водным образцом, отличным от крови.

Изобретение относится к области физико-химических методов анализа, в частности к анализу растворов на предмет определения антиоксидантной активности. Изобретение может быть использовано в научно-исследовательских лабораториях для изучения антиоксидантных свойств различных природных, синтетических и биологических объектов.

Изобретение относится к биологии, в частности к биохимии и молекулярной биологии, и может найти применение при разделении белков сыворотки крови и молока на фракции в полиакриламидном геле.

Способ относится к области химической промышленности и позволяет определить содержание коэнзима Q10 в кремах косметических методом катодной дифференциально-импульсной вольтамперометрии.

Изобретение относится к измерительной технике и может быть использовано при исследовании процессов массопереноса в капиллярно-пористых материалах для определения коэффициента диффузии растворителей в строительных материалах и конструкциях, а также в пищевой, химической и других отраслях промышленности.

Изобретение относится к новому способу определения скорости генерирования пероксильных радикалов. Технический результат: разработан новый способ определения скорости генерирования пероксильных радикалов, который повышает точность, достоверность и воспроизводимость результатов, а также расширяет круг исследуемых веществ и используемых реагентов.

Изобретение относится к области медицины и предназначено для диагностики онкологических заболеваний. При исследовании образца, взятого у пациента, выделяют суммарную РНК, получают кДНК и амплифицируют ее с помощью полимеразной цепной реакции с праймерами, специфическими к нуклеотидной последовательности гена LINC00309 (Long intergenic non-protein coding RNA 309).
Изобретение относится к области медицины и лабораторных методов диагностики и представляет собой способ дифференциальной диагностики тремора головы и верхних конечностей, заключающийся в том, что в сыворотке крови определяют концентрацию серотонина и при его значении 200 нг/мл и выше определяют дистонический тремор при цервикальной дистонии, ниже 200 нг/мл - тремор при болезни Паркинсона.

Предложенная группа изобретений относится к области биотехнологии и молекулярной биологии. Предложены набор олигонуклеотидов для синтеза генетической конструкции, предназначенной для коррекции митохондриальной дисфункции, вызванной «основной делецией», генетическая конструкция и способ доставки генетической конструкции в митохондрии клеток человека.

Изобретение относится к области геологии и может быть использовано для прогнозирования добычи углеводородов из продуктивного пласта. Предложен способ, который позволяет осуществлять определение смачиваемости с пространственным разрешением для пористых или других материалов.

Изобретение относится к области молекулярной биологии и медицинской генетики. Предложен способ прогнозирования развития криоглобулинемического васкулита у больных хроническим гепатитом С (ХГС).

Изобретение относится к области медицины, в частности к акушерству и гинекологии, и предназначено для диагностики хронического эндометрита (ХЭ) в среднюю стадию фазы секреции.

Изобретение относится к области медицины и предназначено для профессионального отбора лиц для работ по уничтожению боевых отравляющих веществ (БОВ). В лимфоцитах периферической крови исследуют количество хромосомных аберраций.

Изобретение относится к биохимии. Предложены способы обнаружения человеческого антитела изотипа IgE против омализумаба.
Изобретение относится к лабораторной диагностике и представляет собой способ диагностики эндогенной интоксикации у лабораторных мышей для разработки нетоксичного криопротектора, включающий внутрибрюшинное введение испытуемого антифриза, забор крови, высушивание капель сыворотки крови объемом 4 мкл при +37°C, анализ структурности фации дегидратированных капель под микроскопом по показателям: индекс структурности, кристаллизуемость, степень деструкции фации и выраженность краевой зоны фации, отличающийся тем, что фации испытуемых веществ сравнивают с паттерном эндогенной интоксикации низкой выраженности, и вещества, у которых структурность фации аналогична паттерну с высокой выраженностью, относят к высокотоксичным и неперспективным, а вещества, у которых структурность фации аналогична паттерну с низкой выраженностью, относят к малотоксичным и перспективным для разработки криопротектора.

Изобретение относится к области испытаний полимерных материалов, входящих в состав конструкций космических аппаратов (КА). В предлагаемом способе образцы материалов экспонируют в течение заданного срока на поверхности КА, затем помещают в контейнер, который, в свою очередь, укладывают в транспортный контейнер (герметизируемый в условиях космоса) и возвращают их на Землю.

Изобретение относится к области геологии и может быть использовано для моделирования многофазного потока текучей среды. Структура пор горных пород и других материалов может быть определена посредством микроскопии и подвержена цифровому моделированию для определения свойств потоков текучей среды, проходящих сквозь материал.

Изобретение относится к измерительной технике и может быть использовано при исследовании процессов массопереноса и для определения коэффициентов диффузии растворителей в изделиях из листовых капиллярно-пористых материалов в бумажной, легкой, строительной и других отраслях промышленности. Предложен способ определения коэффициента диффузии растворителей в листовых изделиях из капиллярно-пористых материалов, заключающийся в том, что в исследуемом листовом материале создают равномерное начальное содержание распределенного в твердой фазе растворителя. Затем исследуемый материал помещают на плоскую подложку из непроницаемого для растворителя материала, гидроизолируют верхнюю поверхность материала, в начальный момент времени осуществляют импульсное точечное увлажнение верхней поверхности исследуемого изделия дозой растворителя. Затем измеряют изменение во времени сигнала гальванического преобразователя на заданном расстоянии от точки нанесения импульса дозой растворителя, фиксируют значения сигнала гальванического датчика в два момента времени и рассчитывают коэффициент диффузии. Причем измерение коэффициента диффузии осуществляют при условии достижения в эксперименте максимума сигнала гальванического преобразователя Еmax, составляющего 0,75-0,95 от максимально возможного значения данного сигнала Ее, соответствующего переходу растворителя из области связанного с твердой фазой исследуемого материала в область свободного состояния. Фиксируют моменты времени τ1 и τ2, при которых достигаются одинаковые значения сигналов гальванического датчика Е1 и Е2 из диапазона Eе соответственно на восходящей и нисходящей ветвях кривой изменения сигнала во времени, а расчет коэффициента диффузии производят по формуле: где r0 - расстояние между электродами гальванического преобразователя и точкой воздействия дозой растворителя на поверхность контролируемого изделия. Технический результат - повышение точности и быстродействия измерения коэффициента диффузии растворителей в листовых изделиях их капиллярно-пористых материалов. 1 з.п. ф-лы, 1 табл., 3 ил.

Наверх