Способ изготовления полупроводниковой структуры

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии получения кремниевых пленок на сапфире с пониженной дефектностью. В способе изготовления полупроводниковой структуры проводят отжиг подложки в атмосфере водорода в течение 2 часов при температуре 1250°C с последующим наращиванием пленок кремния пиролизом силана в атмосфере водорода при температуре 1000-1030°C в два этапа: сначала выращивают n+-слой кремния, легированный из PH3, с концентрацией примеси 1020 см-3, со скоростью роста 5 мкм/мин, затем наращивают n-слой кремния, легированный AsH3, с концентрацией примеси 4*1015 см-3, со скоростью роста 2,3 мкм/мин, с последующим термическим отжигом при температуре 600°C в течение 15 минут в атмосфере водорода. Затем формируют n-канальные полевые транзисторы и электроды стока, истока и затвора по стандартной технологии. Предложенный способ изготовления полупроводниковой структуры позволяет повысить процент выхода годных приборов и улучшить их надежность. 1 табл.

 

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии получения кремниевых пленок на сапфире с пониженной дефектностью.

Известен способ формирования полупроводниковой структуры [Заявка №2248556 Великобритания, МКИ C23C 14/24] выращиванием посредством молекулярно лучевой эпитаксии полупроводниковых соединений GaAs на подложках Si или GaAs. Для формирования пленок используют газообразные вещества, например хлориды, бромиды или фториды Ga или In, а также PH3 или AsH3, очищенные от углерода C. Для проведения процесса обеспечивается давление 1,33*10-8 Па, нагрев подложки до 650°C. В таких полупроводниковых структурах из-за нетехнологичности процесса имплантации образуется большое количество дефектов, которые ухудшают параметры приборов.

Известен способ изготовления полупроводниковой структуры [Заявка №2165820 Япония, МКИ H01L 21/20] выращиванием полупроводниковых тонких пленок для создания структур кремний на сапфире. Для этого аморфную кремниевую пленку приводят в контакт с плоским графитовым основанием, содержащим на своей поверхности точечные выступы, которые располагаются на фиксированном расстоянии друг от друга. После этого структуру подвергают отжигу при температуре 500-700°C для роста твердой фазы. Кристаллические зерна растут в двух противоположных направлениях, соприкасаются друг с другом, в результате чего образуются проводящие границы между зернами. Затем структура окисляется. Графитовое основание выполняет функции затравки для твердофазного роста.

Недостатками способа являются:

- высокие значения токов утечек;

- высокая дефектность;

- низкая технологичность.

Задача, решаемая изобретением: снижение токов утечек, обеспечение технологичности, улучшение параметров приборов, повышение качества и увеличение процента выхода годных.

Задача решается путем формирования на сапфировой подложке кремниевой пленки n+-слоя, с последующим наращиванием слоя n кремния после проведения отжига подложек в водороде в течение 2 часов при температуре 1250°C.

Технология способа состоит в следующем: сапфировую подложку отжигают в атмосфере водорода в течение 2 часов при температуре 1250°C для улучшения поверхности. Затем пленка кремния наращивается пиролизом силана в атмосфере водорода при температуре 1000-1030°C в два этапа: сначала выращивают n+-слой кремния, легированный из PH3, с концентрацией примеси 1020 см-3, со скоростью роста 5 мкм/мин, затем наращивают n-слой кремния, легированный AsH3, с концентрацией примеси 4*1015 см-3, со скоростью роста 2,3 мкм/мин, с последующим термическим отжигом при температуре 600°C в течение 15 минут в атмосфере водорода. Затем формируют n-канальные полевые транзисторы и электроды стока, истока и затвора по стандартной технологии.

По предлагаемому способу были изготовлены и исследованы структуры. Результаты обработки представлены в таблице.

Экспериментальные исследования показали, что выход годных полупроводниковых приборов на партии пластин сформированных в оптимальном режиме увеличился на 12,8%.

Технический результат: снижение токов утечек, обеспечение технологичности, улучшение параметров приборов, повышение качества и увеличения процента выхода годных.

Стабильность параметров во всем эксплуатационном интервале температур была нормальной и соответствовала требованиям.

Предложенный способ изготовления полупроводниковой структуры путем формирования на сапфировой подложке кремниевой пленки n+-слоя с последующим наращиванием слоя n кремния, после проведения отжига подложек в водороде в течение 2 часов при температуре 1250°C позволяет повысить процент выхода годных приборов и улучшить их надежность.

Способ изготовления полупроводниковой структуры, включающий подложку, процессы выращивания полупроводниковых пленок и отжига, отличающийся тем, что проводят отжиг подложки в водороде при температуре 1250°С в течение 2 часов с последующим наращиванием пленок кремния пиролизом силана в атмосфере водорода при температуре 1000-1030°С в два этапа: сначала выращивают n+-слой кремния, легированный из РН3, с концентрацией примеси 1020 см-3 и со скоростью роста 5 мкм/мин, затем наращивают n-слой кремния, легированный AsH3, с концентрацией примеси 4*1015 см-3, со скоростью роста 2,3 мкм/мин, с последующим термическим отжигом при температуре 600°С в течение 15 минут в атмосфере водорода.



 

Похожие патенты:

Изобретение относится к полупроводниковой технике, а именно к области изготовления гетероэпитаксиальных слоев монокристаллического кремния различного типа проводимости и высокоомных слоев в производстве СВЧ-приборов, фото- и тензочувствительных элементов, различных интегральных схем с повышенной стойкостью к внешним дестабилизирующим факторам.
Изобретение относится к электронной технике, а именно к способам изготовления антимонида галлия с большим удельным электрическим сопротивлением, применяемым в производстве полупроводниковых приборов.

Группа изобретений относится к технологии вакуумной эпитаксии германия или германия и кремния, включающей применение вакуумного осаждения германия из газовой среды германа в качестве способа удаления естественно образовавшегося или сформированного защитного слоя диоксида кремния с рабочей поверхности химически очищенной кремниевой подложки на этапе - ее подготовительной вакуумной очистке перед вакуумным осаждением германия или германия и кремния на указанную подложку для получения соответствующей эпитаксиальной пленки.

Изобретение относится к способам получения эпитаксиальных тонкопленочных материалов, а именно новой фазы дисилицида стронция, обладающего в контакте с кремнием низкой высотой барьера Шоттки, и может быть использовано для создания контактов истока/стока в технологии производства полевых транзисторов с барьером Шоттки.

Изобретение относится к области формирования эпитаксиальных слоев кремния на изоляторе. Способ предназначен для изготовления эпитаксиальных слоев монокристаллического кремния n- и p-типа проводимости на диэлектрических подложках из материала с параметрами кристаллической решетки, близкими к параметрам кремния с помощью химической газофазной эпитаксии.

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления полупроводниковых структур с низкой плотностью дефектов.

Изобретение относится к способу выращивания пленки нитрида галлия путем автосегрегации на поверхности подложки-полупроводника из арсенида галлия и может быть использовано при изготовлении светоизлучающих диодов, лазерных светодиодов, а также сверхвысокочастотных транзисторных приборов высокой мощности.

Изобретение относится к технологии получения монокристаллического, полученного химическим осаждением из газовой фазы (ХОГФ), синтетического алмазного материала, который может быть использован в качестве квантовых датчиков, оптических фильтров, частей инструментов для механической обработки и исходного материала для формирования окрашенных драгоценных камней.

Изобретение относится к электронной технике. Способ изготовления полупроводниковой гетероструктуры для мощного полевого транзистора СВЧ включает расположение предварительно обработанной монокристаллической полуизолирующей подложки арсенида галлия на подложкодержатель в реакторе газофазной эпитаксии, запуск газа-носителя - водорода, нагрев подложкодержателя до рабочей температуры, запуск ростовых технологических газов и последующее наращивание в едином технологическом цикле последовательности слоев заданной полупроводниковой гетероструктуры.

Изобретение относится к области микроэлектроники и может быть использовано в производстве эпитаксиальных структур полупроводниковых соединений А3В5 и соединений А2В6 методом химического газофазного осаждения из металлоорганических соединений и гидридов.

Изобретение относится к полупроводниковой технике, а именно к области изготовления гетероэпитаксиальных слоев монокристаллического кремния различного типа проводимости и высокоомных слоев в производстве СВЧ-приборов, фото- и тензочувствительных элементов, различных интегральных схем с повышенной стойкостью к внешним дестабилизирующим факторам.

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления полупроводниковых структур с пониженной дефектностью.

Изобретение относится к области изготовления электронных устройств, в частности устройств на основе материалов III-V групп. Способ изготовления устройства на основе материала III-V групп включает этапы, на которых в изолирующем слое на кремниевой подложке формируют канавку, в канавку наносят первый буферный слой на основе материала III-V групп на кремниевую подложку, на первый буферный слой наносят второй буферный слой на основе материала III-V групп, слой канала устройства на основе материала III-V групп наносят на второй буферный слой на основе материала III-V групп.

Способ относится к технологии изготовления полупроводниковых приборов методом молекулярно-лучевой эпитаксии. В способе подготовки поверхности InSb подложки для выращивания гетероструктуры молекулярно-лучевой эпитаксией проводят предварительную обработку поверхности подложки InSb с модификацией состава остаточного оксидного слоя.
Изобретение относится к области микроэлектронной техники, а более конкретно к способам изготовления многослойных полупроводниковых структур в системе AlGaAs методом жидкофазной эпитаксии (ЖФЭ).

Изобретение относится к электронной технике, в частности к способам получения методом жидкофазной эпитаксии многослойных полупроводниковых структур. При реализации способа используют герметичную ростовую камеру с раствором-расплавом, в которой закрепляют попарно группу подложек.
Изобретение относится к способу получения тонких пленок, в частности к получению аморфных пленок халькогенидных стеклообразных полупроводников с эффектом фазовой памяти, и может быть использовано в качестве рабочего слоя в приборах записи информации.

Изобретение относиться к области технологии производства полупроводниковых приборов, в частности к технологии изготовления приборов с гетероструктурой с пониженной дефектностью.

Использование: для создания массива упорядоченных ферромагнитных нанопроволок на ступенчатой поверхности Cu2Si с буферным слоем меди. Сущность изобретения заключается в том, что в условиях сверхвысокого вакуума на предварительно сформированной ступенчатой поверхности силицида меди формируют ровные монокристаллические нанопроволоки заданной ширины осаждением металла под малыми углами наклона в интервале 10°÷30° к плоскости подложки при толщине покрытия металла, равной 20 нм.

Использование: для создания массива упорядоченных ферромагнитных нанопроволок на ступенчатой поверхности Cu2Si с буферным слоем меди. Сущность изобретения заключается в том, что способ формирования массива ферромагнитных нанопроволок включает формирование упорядоченной ступенчатой структуры силицида меди Cu2Si в условиях сверхвысокого вакуума на предварительно подготовленной поверхности вицинального кремния Si(111), на поверхность подложки Cu2Si/Si(111) наносят буферный слой меди толщиной 2 нм с последующим формированием на его поверхности эпитаксиальных массивов ферромагнитных нанопроволок с заданными геометрическими параметрами осаждением ферромагнитных металлов под малыми углами наклона в интервале (10°÷30°) к плоскости ступенчатой подложки с медным буферным слоем.

Использование: для изготовления полупроводниковых p-i-n структур на основе системы GaAs-GaAlAs методами жидкостной эпитаксии. Сущность изобретения заключается в том, что способ включает выращивание в едином технологическом цикле многослойной полупроводниковой структуры GaAs-GaAlAs, сформированной из композиции трех последовательных эпитаксиальных слоев GaAs или GaAlAs на подложке GaAs р+-типа проводимости, состоящей из буферного слоя р-типа проводимости, рабочего высокоомного p--i-n--слоя и контактного n+-слоя, причем буферный р-слой выращивают в виде трехкомпонентной системы Ga1-xAlxAs, где х=0.36-0.40, с концентрацией носителей в интервале 1⋅1017-5⋅1017 см-3, контактный n-слой легируют до концентрации носителей в интервале 2⋅1018-5⋅1018 см-3 при толщине в интервале 120-150 мкм, а после окончания эпитаксиального наращивания слоев и отмывки структур от остатков раствора-расплава производят операцию селективного полного химического удаления подложки GaAs р-типа проводимости. Технический результат: обеспечение возможности снижения прямого падения напряжения при заданном токе, уменьшения тепловых потерь, снижения обратных токов утечки при повышенных температурах окружающей среды, повышения рабочей температуры диода, увеличения рабочей плотности тока, уменьшения размеров чипа, повышения процента выхода годного. 2 табл.

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии получения кремниевых пленок на сапфире с пониженной дефектностью. В способе изготовления полупроводниковой структуры проводят отжиг подложки в атмосфере водорода в течение 2 часов при температуре 1250°C с последующим наращиванием пленок кремния пиролизом силана в атмосфере водорода при температуре 1000-1030°C в два этапа: сначала выращивают n+-слой кремния, легированный из PH3, с концентрацией примеси 1020 см-3, со скоростью роста 5 мкммин, затем наращивают n-слой кремния, легированный AsH3, с концентрацией примеси 4*1015 см-3, со скоростью роста 2,3 мкммин, с последующим термическим отжигом при температуре 600°C в течение 15 минут в атмосфере водорода. Затем формируют n-канальные полевые транзисторы и электроды стока, истока и затвора по стандартной технологии. Предложенный способ изготовления полупроводниковой структуры позволяет повысить процент выхода годных приборов и улучшить их надежность. 1 табл.

Наверх