Способ синтеза фосфорилированного моноалкилфенола и его применение в качестве гидротропа

Изобретение относится к способу синтеза фосфорилированных нонилфенолов, содержащих 4-9 оксиэтилированных звеньев и два вида остатка фосфорной кислоты, с применением в качестве фосфорилирующего агента фосфорного ангидрида или полифосфорной кислоты, отличающийся тем, что фосфорилируют оксиэтилированные нонилфенолы с соответствующей степенью оксиэтилирования и получают продукт фосфорилирования с содержанием 92-96 мас.% эфиров фосфорной или полифосфорной кислот, структурные формулы которых представлены ниже, где n=4-9, причем нейтрализация реакционной смеси щелочным агентом не обязательна. Также изобретение относится к применению указанных соединений в качестве гидротропа. Решаемая задача заявляемой группы изобретений - получить новый гидротроп упрощенным - на базе доступного российского сырья - способом. 2 н. и 4 з.п. ф-лы, 9 табл., 1 ил.

 

Группа изобретений относится к получению и применению фосфорилированных нонилфенолов, содержащих 4-9 оксиэтилированных звеньев и два вида остатка фосфорной кислоты, представляющих собой эфиры фосфорной или полифосфорной кислот. Указанные эфиры применимы в качестве гидротропа в водных растворах и, в частности, в чистящей композиции.

Прототипом предлагаемого способа синтеза фосфорилированных нонилфенолов, содержащих 4-9 оксиэтилированных звеньев и два вида остатка фосфорной кислоты, является способ синтеза фосфорилированных нонилфенолов, содержащих 4-9 оксиэтилированных звеньев и два вида остатка фосфорной кислоты, являющихся ингибиторами коррозии по патенту US №3502587 (опубл. 24.03.1970), включающий обработку полифосфорной кислотой или пятиокисью фосфора смеси нонилфенола с оксиэтилирующим спиртом.

К недостаткам прототипа относится сложность синтеза вследствие необходимости применения смеси нонилфенола с оксиэтилирующим спиртом.

Решаемая предлагаемым способом синтеза задача - упрощение способа синтеза фосфорилированных нонилфенолов, содержащих 4-9 оксиэтилированных звеньев и два вида остатка фосфорной кислоты, за счет фосфорилирования непосредственно оксиэтилированных нонилфенолов с соответствующей степенью оксиэтилирования, выпускаемых российской промышленностью.

Наиболее близким по технической сущности к заявляемому гидротропу является использование в качестве гитротропа фосфатированного 2-пропилгептанола для алкоксилата С818-спирта, содержащего 1-20 этиленоксидных звеньев, в щелочном водном растворе, в особенности в композициях для промышленной очистки твердых поверхностей (патент РФ №2392280, опубл. 20.06.2010. - прототип). Фосфатированный 2-пропилгептанол или фосфатированный алкоксилат 2-пропилгептанола можно получать, например, реакцией 2-пропилгептанола или алкоксилированного 2-пропилгептанола с полифосфорной кислотой или пентоксидом фосфора (Р2О5). Гидротроп по прототипу имеет хорошие технические характеристики, но недостаточную сырьевую базу в РФ.

Соответственно, решаемая задача и технический результат данного изобретения заключаются в том, чтобы на базе доступного сырья найти новый гидротроп, эффективный при получении прозрачных гомогенных концентратов, пригодных для использования в чистящих композициях.

Таким образом, общая решаемая задача заявляемой группы изобретений - получить новый гидротроп упрощенным - на базе доступного российского сырья - способом.

Указанная задача решается тем, что предлагается способ синтеза фосфорилированных нонилфенолов, содержащих 4-9 оксиэтилированных звеньев и два вида остатка фосфорной кислоты, с применением в качестве фосфорилирующего агента фосфорного ангидрида или полифосфорной кислоты, отличающийся тем, что фосфорилируют оксиэтилированные нонилфенолы с соответствующей степенью оксиэтилирования и получают продукт фосфорилирования с содержанием 92-96 мас. % эфиров фосфорной или полифосфорной кислот, структурные формулы которых представлены на фиг. 1, причем нейтрализация реакционной смеси щелочным агентом не обязательна.

Мольное соотношение моно- и диэфиров в указанных эфирах фосфорной или полифосфорной кислот составляет от 1,2/1 до 1,5/1.

Указанная задача решается также тем, что в качестве гидротропа в водных растворах применяют продукт фосфорилирования оксиэтилированных нонилфенолов, содержащих 4-9 оксиэтилированных звеньев, с содержанием в продукте 92-96 мас. % эфиров фосфорной или полифосфорной кислот, структурные формулы которых представлены на фиг. 1.

Продукт применяют в качестве гидротропа в водных растворах для этиленоксидов спиртов, например для этиленоксидов нонилфенола, этиленоксидов 2-пропиленгептанола.

Мольное соотношение моно- и диэфиров в указанных эфирах фосфорной или полифосфорной кислот от 1,2/1 до 1,5/1.

Продукт применяют в водном щелочном растворе в чистящей композиции.

Таким образом, заявляемая группа изобретений связана единым изобретательским замыслом: для получения на базе доступного сырья нового гидротропа авторами разработан упрощенный способ синтеза фосфорилированных нонилфенолов, содержащих 4-9 оксиэтилированных звеньев и два вида остатка фосфорной кислоты, предполагающий фосфорилирование непосредственно оксиэтилированных нонилфенолов с соответствующей степенью оксиэтилирования, выпускаемых российской промышленностью.

Заявляемый гидротроп, согласно заявляемому способу синтеза, производится на базе оксиэтилированных нонилфенолов со степенью оксиэтилирования (ЕО) 4-9, производимых, соответственно, под торговыми названиями ОП-4 24 8389 по ТУ 2483-077-05766801-98; ОП-5 24 8389 по ТУ 2483-077-05766801-98; ОП-6 24 8389 по ТУ 2483-077-05766801-98; ОП-8 24 8389 по ТУ 2483-077-05766801-98; ОП-9 24 8389 по ТУ 2483-077-05766801-98.

Заявляемый гидротроп, кроме доступности сырья для его синтеза - оксиэтилированных нонилфенолов, выпускаемых российской промышленностью, обладает следующими достоинствами: малая токсичность и хорошая биоразлагаемость, широкая сырьевая база, отсутствие неприятного запаха, пожаробезопасность, отсутствие коррозийной активности, стабильность при длительном хранении, легкое транспортирование, хранение и применение.

Способ синтеза.

Получение предлагаемым способом из оксиэтилированного нонилфенола предлагаемого гидроторопа, как и гидротропа по прототипу (патент РФ №2392280), возможно реакцией оксиэтилированного спирта с фосфорным ангидридом - вариант 1 или с полифосфорной кислотой - вариант 2.

Описание первого варианта.

Реактор с рубашкой нагревания и охлаждения, оборудованный механическим перемешивающим устройством якорного типа (допускается рамного типа). Имеет два отдельных входа для подачи реагентов: 1) обычная подача; 2) шнековая подача.

Реактор разъемный. Имеет эллиптическое дно и эллиптическую крышку. В эллиптическом дне выполнено концевое отверстие для слива готового продукта.

Обогрев реактора происходит острым перегретым паром.

Охлаждение - холодной водой.

Описание процесса.

В реактор подается оксиэтилированный нонилфенол (степень оксиэтилирования - 4-9) при непрерывном перемешивании и подогреве до 40°C. После достижения температуры 40°C через вход для шнековой подачи подается фосфорный ангидрид Р4О10 (все это происходит при подаче тепла). Температура в реакторе не должна превышать 80°C.

Мольное соотношение оксиэтилированного нонилфенола к фосфорному ангидриду соответственно - 8:1.

Температуру поддерживают 50-80°C на протяжении 4 часов.

После 4-часового подогрева и непрерывного перемешивания реактор отключаем и оставляем отстаиваться. После исчезновения пузырьков сливается готовый продукт, через нижний дренаж.

Как видно, готовый продукт представляет собой реакционную смесь без заключительной ее нейтрализации щелочным агентом (в отличие от прототипа заявляемого способа синтеза US №3502587).

Описание второго варианта.

Использовали колбу с фланцевым соединением, снабженную якорной мешалкой. Реактор нагревали с помощью электрического нагревателя, оборудованного термостатом. В ходе реакции подавали слабый ток азота. Полифосфорная кислота (ПФК) представляла собой полифосфорную кислоту с эквивалентом Р2О5, равным 84%. Нонилфенол - с разной степенью оксиэтилирования.

1) Нонилфенол + ПФК

Нонилфенол (310,47 г, 1,41 моль) помещали в колбу и нагревали до 45°C. ПФК (340,09 г) добавили из шприца на 60 мл и поддерживали экзотермическую реакцию при 55-70°C при перемешивании со скоростью 240 об/мин. ПФК добавляли в течение 1 часа. Затем реакцию оставили на 2 часа при 60°C и перемешивании 300 об/мин. Затем добавляли постреакционную воду (8,0 г) для гидролиза оставшейся ПФК, после чего кислоту нейтрализовали КОН (362,4 г), растворенным в 580,0 г воды.

2) Нонилфенол + 4 ЕО + ПФК

Нонилфенол + 4 ЕО + ПФК (506,88 г, 1,28 моль) помещали в колбу и нагревали до 45°C. ПФК (321,09 г) добавили из шприца на 60 мл и поддерживали экзотермическую реакцию при 55-70°C при перемешивании 240 об/мин. ПФК добавляли в течение 1 часа. Затем реакцию оставили на 2 часа при 60°C и перемешивании 300 об/мин. Затем добавляли постреакционную воду (8,0 г) для гидролиза оставшейся ПФК, после чего кислоту нейтрализовали КОН (338,6 г), растворенным в 448,0 г воды.

3) Нонилфенол + 5 ЕО + ПФК

Нонилфенол + 5 ЕО + ПФК (506,0 г, 1,15 моль) помещали в колбу и нагревали до 45°C. ПФК (303,33 г) добавили из шприца на 60 мл и поддерживали экзотермическую реакцию при 55-70°C при перемешивании 240 об/мин. ПФК добавляли в течение 1 часа. Затем реакцию оставили на 2 часа при 60°C и перемешивании 300 об/мин. Затем добавляли постреакционную воду (8,0 г) для гидролиза оставшейся ПФК, после чего кислоту нейтрализовали КОН (314,8 г), растворенным в 471,0 г воды.

4) Нонилфенол + 6 ЕО + ПФК

Нонилфенол + 6 ЕО + ПФК (493,68 г, 1,02 моль) помещали в колбу и нагревали до 45°C. ПФК (284,95 г) добавили из шприца на 60 мл и поддерживали экзотермическую реакцию при 55-70°C при перемешивании 240 об/мин. ПФК добавляли в течение 1 часа. Затем реакцию оставили на 2 часа при 60°C и перемешивании 300 об/мин. Затем добавляли постреакционную воду (8,0 г) для гидролиза оставшейся ПФК, после чего кислоту нейтрализовали КОН (291 г), растворенным в 494,0 г воды.

5) Нонилфенол + 8 ЕО + ПФК

Нонилфенол + 8 ЕО + ПФК (463,32 г, 0,81 моль) помещали в колбу и нагревали до 45°C. ПФК (230 г) добавили из шприца на 60 мл и поддерживали экзотермическую реакцию при 55-70°C при перемешивании 240 об/мин. ПФК добавляли в течение 1 часа. Затем реакцию оставили на 2 часа при 60°C и перемешивании 300 об/мин. Затем добавляли постреакционную воду (8,0 г) для гидролиза оставшейся ПФК, после чего кислоту нейтрализовали КОН (242,37 г), растворенным в 540 г воды.

6) Нонилфенол + 9 ЕО + ПФК

Нонилфенол + 9 ЕО + ПФК (375,76 г, 0,61 моль) помещали в колбу и нагревали до 45°C. ПФК (202,62 г) добавили из шприца на 60 мл и поддерживали экзотермическую реакцию при 55-70°C при перемешивании 240 об/мин. ПФК добавляли в течение 1 часа. Затем реакцию оставили на 2 часа при 60°C и перемешивании 300 об/мин. Затем добавляли постреакционную воду (8,0 г) для гидролиза оставшейся ПФК, после чего кислоту нейтрализовали КОН (213,04 г), растворенным в 563,0 г воды.

Экспериментально показано, что независимо от способа фосфорилирования - фосфорным ангидридом или полифосфорной кислотой - и независимо от степени этоксилирования фосфорилируемого нонилфенола - от 4 до 9 - получаемый продукт-концентрат, заявляемый в качестве гидротропа в водных растворах, представляет собой прозрачную вязкую бесцветную жидкость без механической примеси, без резкого запаха.

В табл. 1 представлены физико-химические характеристики заявляемого продукта-гидротропа, синтезированного заявляемым способом, на базе оксиэтилированных нонилфенолов с разной степенью ЕО. При этом соотношение моно- и диэфиров, содержание свободного спирта, воды и фосфорной кислоты определялись при помощи ЯМР-спектрометрии; вязкость исследуемой жидкости определялась относительным капиллярным методом с помощью вискозиметра Оствальда.

* Образец №1 - фосфорилированный нонилфенол + 4ЕО

Образец №2 - фосфорилированный нонилфенол + 6ЕО

Образец №3 - фосфорилированный нонилфенол + 8ЕО

Образец №4 - фосфорилированный нонилфенол + 9ЕО

В составе заявляемого продукта-гидротропа, синтезированного заявляемым способом, наблюдаются сложные структуры двух видов: диэфир и моноэфир, структурные формулы которых представлены на фиг. 1. Соответственно остаток фосфорной кислоты в данном гидротропе двух видов - однозамещенный (в моноэфире) и двузамещенный (в диэфире). Буква n на фиг. 1 означает степень оксиэтилирования (количество этиленоксидных (ЕО) звеньев); согласно заявляемому изобретению n=4-9.

Чистящие концентраты, полученные с использованием предлагаемых фосфорилированных оксиэтилированных нонилфенолов в качестве гидротропов для водных растворов, являются прозрачными и стабильными также и при разбавлении, а получаемые при этом чистящие композиции проявляют хорошие чистящие характеристики (щелочной гидроксид в чистящей композиции обычно представляет собой гидроксид натрия или калия; щелочной комплексообразователь может быть органическим или неорганическим).

Готовили следующую рецептуру чистящей композиции:

5% по массе неионогенного поверхностно-активного вещества

10% по массе нитрилотриацетата натрия

Х% по массе заявляемого продукта-гидротропа (концентрат)

вода до 100%.

Для оценки эффективности очистки чистящими композициями проводили следующие тесты: белые окрашенные пластины размером 15 см на 15 см намазывали 15 граммами смеси жирной сажи и 25 мл тестируемого образца. Раствор образца выливали на пластины и оставили на 1 минуту. Затем пластины промыли. Чистящую способность измеряли с помощью рефлектометра Minolta Chroma Meter CR-200, результаты представлены как % удаления грязи. Результаты приведены в таблицах 2-3.

В табл. 2 сравниваемые рецептуры: фосфатированный 2-пропиленгептанол (2-ПГ) + 5 этиленоксидных (ЕО) звеньев и фосфорилированый нонилфенол + 5ЕО в качестве гидротропа для нонилфенола + 5ЕО.

В табл. 3 сравниваемые рецептуры: фосфатированный 2-пропиленгептанол (2-ПГ) + 5 этиленоксидных (ЕО) звеньев и фосфорилированый нонилфенол + 5ЕО в качестве гидротропа для 2-пропиленгептанола + 5ЕО.

Оказалось (таблица 4), что чистящая композиция на основе предлагаемого гидротропа (рецептуры 2 по табл. 2, 3) эффективнее по сравнению с чистящей композицией на основе гидротропа-прототипа (рецептура 1 по табл. 3) и тем более эффективнее по сравнению с чистящей композицией на основе фосфатированного 2-пропиленгептанола (2-ПГ) + 5 этиленоксидных (ЕО) звеньев в качестве гидротропа для нонилфенола + 5ЕО (рецептура 1 по табл. 2).

Предлагаемый фосфорилированный нонилфенол + 5ЕО применим в качестве гидротропа в водных растворах как для нонилфенола + 5ЕО, так и для 2-пропиленгептанола + 5ЕО.

Аналогичные исследования эффективности чистящих композиций проводились с гидротропами, вводимыми с постоянной концентрацией, но с отличающейся степенью оксиэтилирования (количество звеньев ЕО). Соответственно в таблицах 5 и 6 приведены рецептуры исследованных чистящих композиций, а в таблице 7 - результаты исследований.

Аналогично получено, что (таблица 7) чистящая композиция на основе предлагаемого гидротропа (рецептуры 3-4 по табл. 5 и рецептуры 3-4 по табл. 6) эффективнее по сравнению с чистящей композицией на основе гидротропа-прототипа (рецептуры 1-2 по табл. 6) и тем более эффективнее по сравнению с чистящей композицией на основе фосфатированного 2-пропиленгептанола (2-ПГ) + 5 или 3 этиленоксидных (ЕО) звеньев в качестве гидротропа для нонилфенола + 5ЕО (рецептуры 1-2 по табл. 5).

Предлагаемый фосфорилированный нонилфенол + 6ЕО или + 8ЕО применим в качестве гидротропа в водных растворах как для нонилфенола + 5ЕО, так и для 2-пропиленгептанола + 5ЕО.

Таким образом, предлагаемой группой изобретений решена задача на базе доступного сырья синтезировать новый гидротроп - продукт фосфорилирования оксиэтилированных нонилфенолов, содержащих 4-9 оксиэтилированных звеньев, с содержанием в продукте не менее 92-96% эфиров фосфорной или полифосфорной кислот, структурные формулы которых представлены на фиг. 1. Предлагаемый продукт-гидротроп, синтезированный предлагаемым способом, представляет собой прозрачный гомогенный концентрат, пригодный для использования в чистящих композициях.

Предлагаемый продукт-гидротроп применяют в качестве гидротропа в водных растворах для этиленоксидов нонилфенола, этиленоксидов 2-пропиленгептанола.

Для доказательства изобретательского уровня предлагаемой группы изобретений проведен поиск технических решений, содержащих отличительные признаки заявляемых изобретений. Из уровня техники известно применение для синтеза ингибитора солеотложения и коррозии оксиэтилированного нонилфенола со степенью оксиэтилирования 2,5; фосфатируемого пятиокисью фосфора; причем реакционная смесь по завершении фосфатирования нейтрализуется морфолином (патент РФ №2007502, опубл. 15.02.1994). Авторами воспроизведен и экспериментально исследован на предмет наличия гидротропных свойств указанный ингибитор солеотложения и коррозии.

Чистящую способность исследовали по приведенной выше методике с помощью рефлектометра Minolta Chroma Meter CR-200, с белыми окрашенными пластинами, намазанными смесью жирной сажи и 25 мл тестируемого образца. Раствор образца выливали на пластины и оставляли на 1 минуту, после чего промывали. Результаты представлены как процент удаления грязи в таблицах 8-9.

Готовили рецептуру:

5% по массе неионогенного поверхностно-активного вещества

10% по массе нитрилотриацетата натрия

Х% по массе исследуемого образца

воду до 100%.

В данном примере сравнивается фосфорилированый нонилфенол + 5ЕО в качестве гидротропа для пропиленгептанол + 5ЕО звена и фосфорилированный (фосфатированный) нинилфенол, оксиэтилированный на 2,5 моля окиси этилена по патенту РФ №2007502.

Видно, что фосфорилированный (фосфатированный) нинилфенол, оксиэтилированный на 2,5 моля окиси этилена по патенту РФ №2007502, гидротропными свойствами не обладает, что подтверждает неочевидность заявляемой группы изобретений.

1. Способ синтеза фосфорилированных нонилфенолов, содержащих 4-9 оксиэтилированных звеньев и два вида остатка фосфорной кислоты, с применением в качестве фосфорилирующего агента фосфорного ангидрида или полифосфорной кислоты, отличающийся тем, что фосфорилируют оксиэтилированные нонилфенолы с соответствующей степенью оксиэтилирования и получают продукт фосфорилирования с содержанием 92-96 мас.% эфиров фосфорной или полифосфорной кислот, структурные формулы которых:

где n=4-9,

причем нейтрализация реакционной смеси щелочным агентом не обязательна.

2. Способ по п. 1, отличающийся тем, что мольное соотношение моно- и диэфиров в указанных эфирах фосфорной или полифосфорной кислот составляет от 1,2/1 до 1,5/1.

3. Применение в качестве гидротропа в водных растворах продукта фосфорилирования оксиэтилированных нонилфенолов, содержащих 4-9 оксиэтилированных звеньев, с содержанием в продукте 92-96 мас.% эфиров фосфорной или полифосфорной кислот, структурные формулы которых:

где n=4-9.

4. Применение продукта по п. 3, отличающееся тем, что продукт применяют в качестве гидротропа в водных растворах для этиленоксидов спиртов, например для этиленоксидов нонилфенола, этиленоксидов 2-пропиленгептанола.

5. Применение продукта по п. 3, отличающееся тем, что мольное соотношение моно- и диэфиров в указанных эфирах фосфорной или полифосфорной кислот составляет от 1,2/1 до 1,5/1.

6. Применение продукта по п. 3, отличающееся тем, что продукт применяют в водном щелочном растворе в чистящей композиции.



 

Похожие патенты:
Изобретение относится к химическим составам, используемым для удаления солей жесткости с твердой поверхности. Предложена композиция следующего состава, мас.

Настоящее изобретение относится к жидкому моющему составу для мытья посуды ручным способом, обеспечивающему улучшенный блеск, содержащему: (a) от 0,2% до 3%, от массы состава в целом, хелатирующего агента, выбранного из группы, состоящей из глутаминовой-N,N-диуксусной кислоты, ее солей и производных, диэтилентриаминпентаметилфосфоновой кислоты; диэтилентриаминпентауксусной кислоты, метилглициндиуксусной кислоты и их смесей; (b) от 15% до 30%, от массы состава в целом, анионных поверхностно-активных веществ, выбранных из группы, состоящей из сульфатных и сульфонатных поверхностно-активных веществ; (c) от 3% до 20%, от массы состава в целом, неионного поверхностно-активного вещества; и (d) от 0,5% до 10%, от массы состава в целом, поверхностно-активного вещества, выбранного из группы, состоящей из аминоксидных и бетаиновых поверхностно-активных веществ и их смесей, где общее содержание поверхностно-активного вещества составляет от 18% до 60% от массы состава в целом, и весовое отношение совокупности поверхностно-активных веществ к неионному поверхностно-активному веществу составляет от 2 до 10.
Изобретение относится к беспенному средству для мойки металлических поверхностей, содержащему ортофосфорную кислоту, азотную кислоту и воду. При этом указанное средство дополнительно содержит четырехнатриевую соль оксиэтилендифосфоновой кислоты и ингибитор кислотной коррозии КИ-1М, при следующем соотношении компонентов, мас.%: ортофосфорная кислота 40-60, азотная кислота 20-40, четырехнатривая соль оксиэтилендифосфоновой кислоты 2-4, ингибитор кислотной коррозии КИ-1М 1-2, вода - остальное.
Изобретение относится к композициям для очистки поверхности, включая детергентные стиральные композиции, композиции для мытья посуды, композиции для смягчения текстиля и твердые очистители поверхности.

Настоящее изобретение относится к жидкому моющему составу для мытья посуды ручным способом, содержащему: (a) от 0,2% до 3%, от массы состава в целом, хелатирующего агента, выбранного из группы, состоящей из глутаминовой-N,N-диуксусной кислоты, ее солей и производных, диэтилентриаминпентаметилфосфоновой кислоты; диэтилентриаминпентауксусной кислоты, метилглициндиуксусной кислоты и их смесей, (b) от 12% до 45%, от массы состава в целом, поверхностно-активного вещества, выбранного из группы, состоящей из анионных, неионных, катионных, амфотерных, цвиттер-ионных, полуполярных неионных поверхностно-активных веществ и их смесей; причем указанный состав содержит от 5% до 30%, от массы состава в целом, анионных поверхностно-активных веществ, выбранных из группы, состоящей из сульфатных и сульфонатных поверхностно-активных веществ; и от 3% до 20%, от массы состава в целом, неионных поверхностно-активных веществ, где указанное неионное поверхностно-активное вещество включает разветвленное поверхностно-активное вещество; где массовое отношение общего содержания поверхностно-активного вещества к содержанию неионного поверхностно-активного вещества составляет от 2 до 10; и где средняя степень разветвленности алкильной цепи поверхностно-активных веществ составляет, по меньшей мере, 10% от общей массы поверхностно-активных веществ.
Изобретение относится к биоцидной композиции, содержащей перекись водорода в концентрации 0,05-50% (мас./мас.) и соединение структуры формулы 1: (OH)(2-m)(X)(O)P-[(O)p -(R')q-(CH(Y)-СН2-O)n-R] m, или его соль, где Х является Н или ОН; каждый Y независимо является Н или СН3; m равно 1 и/или 2; каждый р и q независимо равны 0 или 1 при условии, что если р равно 0, q равно 1; каждый n независимо равен 2-10; каждый R' независимо является алкиленовым радикалом, содержащим 1-18 атомов углерода; каждый R независимо является Н или алкильным радикалом, содержащим 1-18 атомов углерода; и R'+R 20; в концентрации 0,01-60% (мас./мас.), в качестве биоцидной композиции.

Изобретение относится к моющим составам для очистки металлических поверхностей от нефтяных и жировых загрязнений и одновременного предупреждения их коррозийного поражения.

Изобретение относится к моющим составам для очистки металлов от масла, эмульсий, смазок и углеродистых загрязнений. .

Изобретение относится к способу получения L-α-глицерофосфорилхолина фармакопейного качества и может быть использовано в фармацевтической промышленности. Предложенный способ включает этапы, на которых сорбируют L-α-глицерофосфорилхолин из метанольного обезжиренного раствора L-α-глицерофосфорилхолина, полученного переэтерификацией лецитина, на катионите в среде безводного растворителя, элюируют его с катионита обессоленной водой, обесцвечивают элюат активированным углем, очищают от минеральных и органических солей на ионообменных смолах и концентрируют, при этом сорбцию и элюирование с катионита проводят при пониженной температуре 0÷5°C, а перед концентрированием применяют фильтрацию через стерилизующий фильтр.

Изобретение относится к соединению формулы (I), его энантиомерам и фармацевтически приемлемым солям и композициям на их основе, которые могут применяться в онкологии: где X и Y представляют собой С или N, но не могут быть одинаковыми, A1 и А2 вместе с атомами, несущими их, образуют гетероцикл Het, выбранный из 5,6,7,8-тетрагидроиндолизина или индолизина, или A1 и А2 представляют собой Н, (С1-С6)полигалогеналкил или (С1-С6)алкил, Т представляет собой Н, (С1-С6)алкил, необязательно замещенный одним-тремя атомами галогена, (C1-C4)алкил-NR1R2, или (С1-С4)алкил-OR6, R1 и R2 представляют собой Н или (С1-С6)алкил, или R1 и R2 с атомом азота, несущим их, образуют гетероциклоалкил, R3 представляет собой циклоалкил, гетероциклоалкил, арил или гетероарил, R4 представляет собой фенил, замещенный в пара-положении группой -ОРО(ОМ)(ОМ'), -ОРО(ОМ)(O-М1+), -OPO(O-M1+)(O-M2+), -ОРО(O-)(O-)М32+, -ОРО(ОМ)(O[CH2CH2O]nCH3), или -ОРО(O-М1+)(O[CH2CH2O]nCH3), где М и М' представляют собой Н, (С1-С6)алкил, (С2-С6)алкенил, (С2-С6)алкинил, циклоалкил или гетероциклоалкил из 5 или 6 членов, тогда как М1+, М2+ и М32+ представляют собой фармацевтически приемлемые катионы, n равен от 1 до 5, при этом атомы углерода предыдущих групп или их возможных заместителей могут быть дейтерированными, R5 представляет собой Н или галоген, (С1-С6)алкил или (C1-С6)алкокси, R6 представляет собой Н или (С1-С6)алкил, Ra, Rb, Rc и Rd представляет собой R7, галоген, (С1-С6)алкокси, гидрокси, NR7R7'-CO-(C0-C6)алкил-O-, или заместители пары (Rb,Rc) вместе с атомами углерода, несущими их, образуют кольцо из 5-7 членов с 1 или 2 гетероатомами, выбранными из О и S, при этом один или несколько атомов углерода кольца могут быть дейтерированными или замещенными 1-3 группами, выбранными из галогена и (С1-С6)алкила, R7 и R7' представляют собой H, (С1-С6)алкил, или R7 и R7' вместе с атомом азота, несущим их, образуют гетероцикл, состоящий из 5-7 членов, "арил" означает фенил, нафтил, бифенил или инденил, "гетероарил" означает моно- или бициклическую группу, состоящую из 5-10 членов c по меньшей мере одним ароматическим фрагментом и 1-4 гетероатомами, выбранными из O, S и N, "циклоалкил" означает моно- или бициклическую, неароматическую, карбоциклическую группу из 3-10 членов, "гетероциклоалкил" означает моно- или бициклическую, неароматическую, конденсированную или спирогруппу из 3-10 кольцевых членов с 1-3 гетероатомами, выбранными из О, S, SO, SO2 и N, причем арильные, гетероарильные, циклоалкильные и гетероциклоалкильные группы, алкил, алкенил, алкинил и алкокси могут быть замещены посредством 1-3 групп, выбранных из (С1-С6)алкила, (С3-С6)спиро, (С1-С6)алкокси, (С1-С6)алкил-S-, гидрокси, оксо или N-оксида, нитро, циано, -COOR', -OCOR', NR'Rʺ, (С1-С6)полигалогеналкила, трифторметокси, (С1-С6)алкилсульфонила, галогена, арила, гетероарила, арилокси, арилтио, циклоалкила, гетероциклоалкила, необязательно замещенного одним или несколькими галогенами или алкилами, R' и Rʺ представляют собой Н или (C1-С6)алкил, Het группа может быть замещена 1-3 группами, выбранными из (C1-С6)алкила, гидрокси, (С1-С6)алкокси, NR1'R1ʺ и галогена, при этом R1' и R1ʺ принимают значения, определенные для групп R' и Rʺ.

Изобретение относится к электрохимическому способу получения трис(2-хлорэтил)фосфата из красного фосфора. Способ характеризуется тем, что процесс электролиза проводят в непрерывном режиме путем постоянной подачи порошкообразного красного фосфора и смеси этиленхлоргидрина, воды и электропроводящей добавки в циркуляционный контур проточного бездиафрагменного электролизера фильтр-прессного типа, где суспензию подвергают электролизу, с отводом части электролизуемой смеси из циркуляционного контура через фильтр, после которого из отфильтрованного раствора выделяют трис(2-хлорэтил)фосфат отгонкой электролита, который вместе с отфильтрованным красным фосфором возвращают на электролиз.

Изобретение относится к производному дифенилсульфида, которое может применяться в медицине в качестве антагониста S1P3 рецептора, общей формулы (1) где R1 представляет собой С1-6-алкоксигруппу, R2 представляет собой пропил или аллил, X представляет собой метилен или атом кислорода и Z представляет собой атом галогена.
Настоящее изобретение относится к способу получения раствора диалкилфосфата гадолиния, который может быть использован при производстве синтетических каучуков, цис-1,4-гомополимеров и цис-1,4-сополимеров изопрена и бутадиена.
Группа изобретений относится к применению О,О-диметил-О-[(1-метакрилокси)-3-хлорпропил-2]фосфата в качестве замедлителя горения винилэфирных смол, а также способу его получения, которые могут использоваться при производстве полимеров.

Изобретение относится к способу получения лантаноидной соли ди-(2-этилгексил)фосфорной кислоты, который может быть использован в химической промышленности. Предложенный способ состоит в контактировании водного раствора хорошо растворимой соли лантаноида и органического раствора ди-(2-этилгексил)фосфорной кислоты в разбавителе в виде двухслойной системы, в межфазном слое которой синтезируют и удерживают лантаноидную соль ди-(2-этилгексил)фосфорной кислоты, отличающийся тем, что на межфазный слой с помощью виброэлемента, установленного на межфазной поверхности, оказывают локальное колебательное механическое воздействие.

Изобретение относится к новым соединениям структурной формулы (I) , которые могут быть использованы для лечения или профилактики заболеваний или нарушений, ассоциированных с воспалением.

Изобретение относится к новым омега-3 липидным соединениям общей формулы (I) или к их любой фармацевтически приемлемой соли, где в формуле (I): R1 и R2 являются одинаковыми или разными и могут быть выбраны из группы заместителей, состоящей из атома водорода, гидроксигруппы, С1-С7алкильной группы, атома галогена, C1-С7алкоксигруппы, С1-С7алкилтиогруппы, С1-С7алкоксикарбонильной группы, карбоксигруппы, аминогруппы и С1-С7алкиламиногруппы; Х представляет собой карбоновую кислоту или ее карбоксилат, выбранный из этилкарбоксилата, метилкарбоксилата, н-пропилкарбоксилата, изопропилкарбоксилата, н-бутилкарбоксилата, втор-бутилкарбоксилата или н-гексилкарбоксилата, карбоновую кислоту в форме триглицерида, диглицерида, 1-моноглицерида или 2-моноглицерида, или карбоксамид, выбранный из первичного карбоксамида, N-метилкарбоксамида, N,N-диметилкарбоксамида, N-этилкарбоксамида или N,N-диэтилкарбоксамида; и Y является С16-С22 алкеном с двумя или более двойными связями, имеющими Е- и/или Z-конфигурацию.

Изобретение относится к соединениям формулы , которые могут использоваться в способе синтеза предшественников иммунологического адъюванта Е6020. В формуле (3) R1, R2, R3 представляют собой C5-C15 алкильную группу, C5-C15 алкенильную группу или C5-C15 алкинильную группу.

Изобретение относится к способу синтеза фосфорилированных нонилфенолов, содержащих 4-9 оксиэтилированных звеньев и два вида остатка фосфорной кислоты, с применением в качестве фосфорилирующего агента фосфорного ангидрида или полифосфорной кислоты, отличающийся тем, что фосфорилируют оксиэтилированные нонилфенолы с соответствующей степенью оксиэтилирования и получают продукт фосфорилирования с содержанием 92-96 мас. эфиров фосфорной или полифосфорной кислот, структурные формулы которых представлены ниже, где n4-9, причем нейтрализация реакционной смеси щелочным агентом не обязательна. Также изобретение относится к применению указанных соединений в качестве гидротропа. Решаемая задача заявляемой группы изобретений - получить новый гидротроп упрощенным - на базе доступного российского сырья - способом. 2 н. и 4 з.п. ф-лы, 9 табл., 1 ил.

Наверх