Способ термомеханической обработки титановых сплавов

Изобретение относится к области металлургии, в частности к высокотемпературной термомеханической обработке титановых сплавов. Способ термомеханической обработки титановых сплавов включает многократные нагревы до температуры выше и ниже температуры полиморфного превращения, деформации, охлаждения до комнатной температуры и последующее старение. Первый нагрев осуществляют до температуры на 230-370°С выше температуры полиморфного превращения, выдерживают, проводят деформацию со степенью деформации 25-60% и охлаждение. Второй нагрев осуществляют до температуры на 90-200°С выше температуры полиморфного превращения, выдерживают, проводят деформацию со степенью деформации 25-60% и охлаждение. Третий нагрев осуществляют до температуры на 10-100°С ниже температуры полиморфного превращения, проводят деформацию и охлаждение. Четвертый нагрев осуществляют до температуры на 100-220°С выше температуры полиморфного превращения, выдерживают, проводят деформацию и охлаждение. Пятый нагрев осуществляют до температуры на 20-70°С ниже температуры полиморфного превращения, проводят деформацию со степенью деформации 60-90% и охлаждение. Шестой нагрев осуществляют до температуры на 20-70°С ниже температуры полиморфного превращения, проводят деформацию со степенью деформации 20-40% и охлаждение. Повышаются значения ударной вязкости, удельной работы разрушения образца с трещиной при ударном изгибе, малоцикловой усталости, относительного сужения и прочности. 3 з.п. ф-лы, 1 табл.

 

Изобретение относится к области цветной металлургии, в частности к высокотемпературной термомеханической обработке титановых сплавов, проводимой с целью повышения уровня механических свойств поковок и штамповок, а также готовых изделий из них.

Эффективность использования высокотемпературной термомеханической обработки титановых сплавов для улучшения комплекса свойств титановых сплавов связана с их способностью не только к деформационному упрочнению, но и к термическому упрочнению, обусловленному распадом метастабильных фаз, фиксируемых ускоренным охлаждением после завершения горячей деформации. Термомеханическая обработка титановых сплавов обеспечивает более высокий комплекс механических свойств по сравнению с термической обработкой. Рациональный выбор для использования титановых сплавов в областях современного производства неразрывно связан с анализом их поведения при конкретных условиях эксплуатации. Наиболее часто встречающимся критичным параметром при эксплуатации деталей из титановых сплавов является работа при циклических нагрузках. В связи с этим важными эксплуатационными свойствами титановых сплавов считаются ударная вязкость, удельная работа разрушения образца с трещиной при ударном изгибе и усталостная выносливость при знакопеременном нагружении.

Из уровня техники известен способ обработки полуфабрикатов из титановых сплавов путем многократных нагревов до температуры выше и ниже температуры полиморфного превращения, в частности с первым нагревом до температуры на 250-350°С выше температуры полиморфного превращения, деформаций, охлаждений до комнатной температуры и последующего старения. Деформацию после первого нагрева ведут со степенью 30-50%, охлаждают, повторно нагревают до температуры на 100-180°С выше температуры полиморфного превращения, деформируют со степенью 30-50%, охлаждают, нагревают до температуры на 10-70°С ниже температуры полиморфного превращения, охлаждают, нагревают до температуры на 120-200°С выше температуры полиморфного превращения, деформируют, охлаждают, нагревают до температуры на 20-60°С ниже температуры полиморфного превращения, деформируют со степенью 65-80%, охлаждают, повторно нагревают до температуры на 20-60°С ниже температуры полиморфного превращения, деформируют со степенью 20-35% и охлаждают (SU 1061510 опубл., 10.10.2015, C22F 1/18).

К недостаткам данного способа относятся недостаточные характеристики ударной вязкости (KCU) и удельной работы разрушения образца с трещиной при ударном изгибе (KCT) после обработки полуфабрикатов из титановых сплавов данным способом.

Известен способ термомеханической обработки титановых сплавов, включающий нагрев сплава до температуры выше 900°С, резкое охлаждение, холодную деформацию и старение при температуре 200-600°С от 10 секунд до 10 минут (US 2014290811 опубл., 02.10.2014, С22С 14/00).

Ближайшим аналогом заявленного изобретения является способ термомеханической обработки титановых сплавов и изделий из них, включающий многократные нагрев изделий из титановых сплавов до температуры выше и ниже температуры полиморфного превращения и деформацию в процессе охлаждения до температуры ниже температуры полиморфного превращения, выдержку и охлаждение, термомеханическую обработку проводят в шесть стадий, при этом на первых стадиях осуществляют: нагрев до температуры (Тпп+120-Тпп+270)°С, деформацию со степенью 50-70% при охлаждении до (Тпп-40-Тпп-100)°С; нагрев до температуры (Тпп+60-Тпп+160)°С, деформацию со степенью 40-60% при охлаждении до (Тпп-100-Тпп-180)°С; нагрев до температуры (Тпп-20-Тпп-40)°С, деформацию со степенью 10-30% при охлаждении до (Тпп-40-Тпп-160)°С; нагрев до температуры (Тпп+20-Тпп+50)°С, деформацию со степенью 40-60% при охлаждении до (Тпп-110-Тпп-130)°С; нагрев до температуры (Тпп+20-5-Тпп+50)°С, деформацию со степенью 30-70% при охлаждении до (Тпп-110-Тпп-130)°С; на шестой стадии проводят нагрев до (Тпп-400-Тпп-500°С) с выдержкой в течение 5-20 ч, где Тпп - температура полиморфного превращения (RU 2219280, опубл., 20.12.2003, C22F 1/18). Однако значения прочности, малоцикловой усталости, относительного удлинения, а также характеристики ударной вязкости (KCU) и удельной работы разрушения образца с трещиной при ударном изгибе (КСТ) после обработки полуфабрикатов из титановых сплавов данным способом все еще недостаточно высоки.

Технической задачей заявленного изобретения является разработка способа высокотемпературной термомеханической обработки титановых сплавов, обеспечивающих повышение характеристик, ресурса и надежности деталей и узлов летательных аппаратов.

Технический результат заявленного изобретения заключается в повышении характеристик ударной вязкости, удельной работы разрушения образца с трещиной при ударном изгибе, а также значений малоцикловой усталости, относительного сужения и прочности.

Повышение ресурса и надежности деталей и узлов летательных аппаратов.

Технический результат заявленного изобретения достигается тем, что способ термомеханической обработки титановых сплавов включает многократные нагревы до температуры выше и ниже температуры полиморфного превращения, деформации, охлаждения до комнатной температуры и последующее старение. Первый нагрев осуществляют до температуры на 230-370°С выше температуры полиморфного превращения, выдерживают в течение 1-4 часа, проводят деформацию со степенью деформации 25-60% и охлаждение. Второй нагрев осуществляют до температуры на 90-200°С выше температуры полиморфного превращения, выдерживают в течение 3-40 мин, проводят деформацию со степенью деформации 25-60% и охлаждение. Третий нагрев осуществляют до температуры на 10-100°С ниже температуры полиморфного превращения, проводят деформацию и охлаждение. Четвертый нагрев осуществляют до температуры на 100-220°С выше температуры полиморфного превращения, выдерживают в течение 3-60 мин, проводят деформацию и охлаждение. Пятый нагрев осуществляют до температуры на 20-70°С ниже температуры полиморфного превращения, проводят деформацию со степенью деформации 60-90% и охлаждение, шестой нагрев осуществляют до температуры на 20-70°С ниже температуры полиморфного превращения, проводят деформацию со степенью деформации 20-40% и охлаждение.

Предпочтительно после третьего нагрева до температуры на 10-100°С ниже температуры полиморфного превращения проводят деформацию со степенью деформации 10-40%. После четвертого нагрева до температуры на 100-220°С выше температуры полиморфного превращения проводят деформацию со степенью деформации 20-80%.

В варианте выполнения многократные нагревы ведут со скоростями 0,06-0,10°С/с, а охлаждения - со скоростями 0,7-5,2°С/с.

В процессе первичного нагрева до температуры на 230-370°С выше температуры полиморфного превращения и выдержки 1-4 часа создается гомогенный β-твердый раствор. Деформацией 25-60% после первого и второго нагревов в β-области создается химический состав высокой степени однородности и исключается поверхностное растрескивание. При ограниченном времени выдержки 3-40 минут после нагрева до температуры на 90-200°С выше температуры плавления и 3-60 минут после нагрева до температуры на 100-200°С выше температуры плавления не происходит роста β-зерен. Деформацией после третьего и четвертого нагревов достигается создание высокой степени однородности макроструктуры. Деформацией со степенью 60-90% после пятого и шестого со степенью 20-40% нагревов достигается создание однородной мелкодисперсной микроструктуры. Нагрев со скоростью 0,06-0,10°С/с и охлаждение со скоростью 0,7-5,2°С/с обеспечивает требуемую степень метастабильности α- и β-твердых растворов.

Заявленный способ термомеханической обработки обеспечивает получение однородной регламентированной структуры; повышение характеристик работоспособности: ударную вязкость на 11,3-27,4%, удельную работу разрушения образца с трещиной при ударном изгибе на 20-35%, значения малоцикловой усталости на 5,3-21,3%, относительного сужения на 2,8-28,6% и прочности на 11,5-23,0%.

Примеры осуществления изобретения

Пример 1

Термомеханическую обработку проводят по следующему способу: нагрев до температуры деформирования со скоростью 0,06°С/с; охлаждение со скоростью 0,7°С/с; выдержка 1 час; I деформация - 30% при tпп +240°C; выдержка 5 мин; II - 25% при tпп +90°C; III - 20% при tпп -15°C; выдержка 7 мин; IV - 20% при tпп +110°C; V - 60% при tпп -20°C; VI - 20% при tпп -20°C; старение.

Пример 2

Термомеханическую обработку проводят по следующему способу: нагрев до температуры деформирования со скоростью 0,08°С/с; охлаждение со скоростью 5°С/с; выдержка 3 часа; I деформация - 55% при tпп +370°C; выдержка 30 мин; II деформация - 60% при tпп +200°C; III деформация - 40% при tпп -90°C; выдержка 50 мин; IV деформация - 80% при tпп +200°C; V деформация - 85% при tпп -70°C; VI дeфopмaция - 40% при tпп -70°C; старение.

Пример 3

Термомеханическую обработку проводят по следующему способу: нагрев до температуры деформирования со скоростью 0,09°С/с; охлаждение со скоростью 3°С/с; выдержка 2 часа; I деформация - 40% при tпп +290°C; выдержка 18 мин; II - 45% при tпп +140°C; III - 30% при tпп -50°C; выдержка 25 мин; IV - 40% при tпп +160°C; V - 70% при tпп -40°C; VI - 30-% при tпп -45°C; старение.

В таблице 1 приведены сравнительные характеристики механических свойств и предела выносливости после обработки по способу-прототипу и заявленному способу (примеры 1-3).

Как видно из таблицы 1, заявленный способ термомеханической обработки титановых сплавов повышает ударную вязкость на 11,3-27,4%, удельную работу разрушения образца с трещиной при ударном изгибе на 20-35%, значение малоцикловой усталости на 5,3-21,3%, относительного сужения на 2,8-28,6% и прочности на 11,5-23,0%.

Заявленный способ может быть применен в цветной металлургии при производстве титановых сплавов.

1. Способ термомеханической обработки титановых сплавов, включающий многократные нагревы до температуры выше и ниже температуры полиморфного превращения, деформации, охлаждения до комнатной температуры и последующее старение, отличающийся тем, что первый нагрев осуществляют до температуры на 230-370°С выше температуры полиморфного превращения, выдерживают в течение 1-4 часа, проводят деформацию со степенью деформации 25-60% и охлаждение, второй нагрев осуществляют до температуры на 90-200°С выше температуры полиморфного превращения, выдерживают в течение 3-40 мин, проводят деформацию со степенью деформации 25-60% и охлаждение, третий нагрев осуществляют до температуры на 10-100°С ниже температуры полиморфного превращения, проводят деформацию и охлаждение, четвертый нагрев осуществляют до температуры на 100-220°С выше температуры полиморфного превращения, выдерживают в течение 3-60 мин, проводят деформацию и охлаждение, пятый нагрев осуществляют до температуры на 20-70°С ниже температуры полиморфного превращения, проводят деформацию со степенью деформации 60-90% и охлаждение, шестой нагрев осуществляют до температуры на 20-70°С ниже температуры полиморфного превращения, проводят деформацию со степенью деформации 20-40% и охлаждение.

2. Способ по п. 1, отличающийся тем, что после третьего нагрева до температуры на 10-100°С ниже температуры полиморфного превращения проводят деформацию со степенью деформации 10-40%.

3. Способ по п. 1 или 2, отличающийся тем, что после четвертого нагрева до температуры на 100-220°С выше температуры полиморфного превращения проводят деформацию со степенью деформации 20-80%.

4. Способ по п. 1 или 2, отличающийся тем, что многократные нагревы ведут со скоростями 0,06-0,10°С/с, а охлаждения - со скоростями 0,7-5,2°С/с.



 

Похожие патенты:

Изобретение относится к обработке металлов давлением, в частности к способам изготовления промежуточных заготовок из интерметаллидных титановых сплавов, основанных на орторомбической фазе Ti2AlNb, которые предназначены для дальнейших операций формоизменения, например для изготовления лопаток компрессора высокого давления газотурбинных двигателей.

Изобретение относится к области обработки металлов давлением, в частности к способам изготовления прутков и заготовок из сплавов титана, применяемых в качестве конструкционного материала для активных зон атомных реакторов, в химической и нефтегазовой промышленности, медицине.

Изобретение относится к металлургии, а именно к способам получения имплантатов из титановых сплавов с остеоинтегрирующим покрытием. Способ получения высокопористого остеоинтегрирующего покрытия на имплантатах из титановых сплавов включает термодиффузионное водородное насыщение имплантата и вакуумный отжиг.

Изобретение относится к области металлургии, а именно к изготовлению листов из титанового сплава ОТ4, и может быть использовано для получения изделий сложной конфигурации глубокой вытяжкой и штамповкой.

Изобретение относится к обработке заготовок для измельчения микроструктуры. Производят ковку нагретой заготовки на прессе в открытом штампе в первом направлении ковки до предела пластичности материала заготовки.

Изобретение относится к обработке металлов давлением и может быть использовано при изготовлении муфт для термомеханического соединения трубопроводов. Муфту изготавливают из сплава с памятью формы Ti-Ni-Nb-Zr со следующим содержанием элементов (ат.

Группа изобретений относится к способу дробеструйной обработки поверхности металлической детали для получения наноструктурированного поверхностного слоя и устройству для его осуществления.

Изобретение относится к обработке давлением и может быть использовано в заготовительном производстве при подготовке металла к последующим операциям обработки давлением или к механической обработке.

Изобретение относится к заготовительному производству машиностроительных предприятий и может быть использовано для получения ультрамелкозернистых материалов, заготовок с измельченной однородной равноплотной структурой для дальнейшего изготовления высоконагруженных деталей.

Изобретение относится к получению дисперсно-упрочненных ультрамелкозернистых материалов путем обработки высокоскоростным потоком порошковых частиц. Способ включает обработку заготовки из металла или сплава потоком порошковых частиц, разогнанных энергией взрыва заряда взрывчатого вещества, в режиме сверхглубокого проникания частиц.

Изобретение относится к металлургии, а именно к области радиационного материаловедения, и может быть использовано в технологических циклах получения полуфабрикатов сплавов на основе ванадия, легированных элементами Периодической системы элементов.

Изобретение относится к обработке металлов давлением, в частности к способам изготовления промежуточных заготовок из интерметаллидных титановых сплавов, основанных на орторомбической фазе Ti2AlNb, которые предназначены для дальнейших операций формоизменения, например для изготовления лопаток компрессора высокого давления газотурбинных двигателей.

Изобретение относится к обработке металлов давлением, в частности к способам изготовления промежуточных заготовок из интерметаллидных титановых сплавов, основанных на орторомбической фазе Ti2AlNb, которые предназначены для дальнейших операций формоизменения, например для изготовления лопаток компрессора высокого давления газотурбинных двигателей.

Изобретение относится к области обработки металлов давлением, в частности к способам изготовления прутков и заготовок из сплавов титана, применяемых в качестве конструкционного материала для активных зон атомных реакторов, в химической и нефтегазовой промышленности, медицине.

Изобретение относится к области обработки металлов давлением, в частности к способам изготовления прутков и заготовок из сплавов титана, применяемых в качестве конструкционного материала для активных зон атомных реакторов, в химической и нефтегазовой промышленности, медицине.

Изобретение относится к металлургии, а именно к способам получения имплантатов из титановых сплавов с остеоинтегрирующим покрытием. Способ получения высокопористого остеоинтегрирующего покрытия на имплантатах из титановых сплавов включает термодиффузионное водородное насыщение имплантата и вакуумный отжиг.

Изобретение относится к металлургии, а именно к способам получения имплантатов из титановых сплавов с остеоинтегрирующим покрытием. Способ получения высокопористого остеоинтегрирующего покрытия на имплантатах из титановых сплавов включает термодиффузионное водородное насыщение имплантата и вакуумный отжиг.

Изобретение относится к области металлургии, а именно к изготовлению листов из титанового сплава ОТ4, и может быть использовано для получения изделий сложной конфигурации глубокой вытяжкой и штамповкой.

Изобретение относится к области металлургии, а именно к изготовлению листов из титанового сплава ОТ4, и может быть использовано для получения изделий сложной конфигурации глубокой вытяжкой и штамповкой.

Изобретение относится к области металлургии, а именно термомеханической обработке листовых полуфабрикатов из двухфазного титанового сплава для получения низких значений термического коэффициента линейного расширения ТКЛР в плоскости листа, то есть для реализации двухмерного инвар-эффекта в двухфазных титановых сплавах.

Изобретение относится к области металлургии, а именно к составу и способу производства композиционного материала с заранее заданными свойствами, например элементов бронезащиты высокого класса, режущего элемента, элементов станочных конструкций. Композиционный материал на основе титанового сплава состоит из основного металла титанового сплава и модифицированного поверхностного слоя. Модифицированный поверхностный слой состоит из лицевого слоя с керамической структурой, слоя с металлокерамической структурой и слоя с переходной структурой от слоя с металлокерамической структурой к основному металлу титанового сплава и содержит насыщенный твердый раствор азота в титане с внедренными в нее керамическими частицами TiNx, и/или TiCx, и/или TixNyCz. Лицевой слой имеет толщину от 0,08 мм до 0,5 мм и твердость не менее 62 HRC. Слой с металлокерамической структурой имеет толщину от 0,5 до 24 мм и твердость от 50 HRC до 74 HRC. Слой с переходной структурой имеет толщину от 5 до 10% от толщины металлокерамического слоя и твердость от 60 до 30 HRC, снижающуюся при переходе от слоя с металлокерамической структурой к основному металлу титанового сплава. Способ изготовления композиционного материала включает нагрев поверхности титанового сплава высококонцентрированным движущимся источником тепловой энергии в газовой атмосфере, содержащей модифицирующие компоненты. Нагрев и переплав поверхности титанового сплава осуществляют плазменной погруженной дугой прямого действия при удельном тепловом потоке в центре пятна от 104 до 105 Вт/см2, силе тока 50-450 А, напряжении дуги от 20 до 40 В и скорости перемещения источника тепловой энергии относительно поверхности титанового сплава от 0,003 до 0,01 м/с, а газовая атмосфера содержит смесь аргона с добавлением модифицирующих компонентов азота и/или углерода в виде содержащего углерод газа. Материал характеризуется высокими значениями прочности, твердости, термической и коррозионной стойкости и износостойкости. 2 н. и 6 з.п. ф-лы, 3 ил., 1 табл.

Изобретение относится к области металлургии, в частности к высокотемпературной термомеханической обработке титановых сплавов. Способ термомеханической обработки титановых сплавов включает многократные нагревы до температуры выше и ниже температуры полиморфного превращения, деформации, охлаждения до комнатной температуры и последующее старение. Первый нагрев осуществляют до температуры на 230-370°С выше температуры полиморфного превращения, выдерживают, проводят деформацию со степенью деформации 25-60 и охлаждение. Второй нагрев осуществляют до температуры на 90-200°С выше температуры полиморфного превращения, выдерживают, проводят деформацию со степенью деформации 25-60 и охлаждение. Третий нагрев осуществляют до температуры на 10-100°С ниже температуры полиморфного превращения, проводят деформацию и охлаждение. Четвертый нагрев осуществляют до температуры на 100-220°С выше температуры полиморфного превращения, выдерживают, проводят деформацию и охлаждение. Пятый нагрев осуществляют до температуры на 20-70°С ниже температуры полиморфного превращения, проводят деформацию со степенью деформации 60-90 и охлаждение. Шестой нагрев осуществляют до температуры на 20-70°С ниже температуры полиморфного превращения, проводят деформацию со степенью деформации 20-40 и охлаждение. Повышаются значения ударной вязкости, удельной работы разрушения образца с трещиной при ударном изгибе, малоцикловой усталости, относительного сужения и прочности. 3 з.п. ф-лы, 1 табл.

Наверх