Способ получения кефира с наноструктурированным иодидом калия

Изобретение относится к молочной промышленности и к области нанотехнологии. В процессе заквашивания в получаемый продукт вводят наноструктурированную добавку, включающую иодид калия в конжаковой камеди или наноструктурированную добавку, включающую иодид калия в высоко- или низкоэтерифицированном яблочном или цитрусовом пектине. Изобретение обеспечивает профилактическую направленность продукта, стабилизацию структуры готового продукта, расширение ассортимента кисломолочных продуктов. 2 табл., 20 пр.

 

Изобретение относится к молочной промышленности и может быть использовано при производстве кисломолочных продуктов функционального назначения.

Известен способ производства кефира (авт. свид. СССР №314380, МПК А23С 9/12), включающий нормализацию молочного сырья, гомогенизацию его при давлении 175 кг/см2, пастеризацию с выдержкой при температуре 86-87°C, охлаждение до температуры заквашивания 20-25°C, заквашивание 1-3% грибковой или 3-5% производственной закваски от нормализованной смеси, сквашивание до образования достаточно плотного сгустка с кислотностью 85-100°T (pH 4,65-4,5), охлаждение до 14-16°C в течение 3-4,5 ч, сохранение в течение 9-13 ч при перемешивании, охлаждение до 6±2°C и хранение.

Недостатком способа является недостаточная биологическая ценность.

Известен способ производства кефира (пат. РФ №2155488, МПК A23C 9/127, A23C 9/12), в котором пастеризованное и охлажденное до температуры заквашивания молоко сквашивают. Полученный сгусток охлаждают до 12-16°C и вносят биологически активную добавку к пище «Эраконд» жидкую 40%-ную.

Недостатком способа является недостаточная биологическая ценность.

Техническое решение - повышение пищевой и биологической ценности, обеспечение профилактической направленности продукта за счет обогащения его наноструктурированным иодидом калия, снижение себестоимости, улучшение органолептических свойств и стабилизации структуры готового продукта, расширение ассортимента кисломолочных продуктов, увеличение выхода готового продукта (решение проблемы ресурсосбережения) без изменения традиционной технологии.

Это достигается тем, что способ производства кефира с экстрактом зеленого чая на основании традиционной технологии производства кисломолочных продуктов (Забодалова Л.А., Евстигнеева Т.Н. Технология цельномолочных продуктов и мороженого. Учеб. пособие. - СПб: НИУ ИТМО; ИХиБТ, 2013, 304 с.) предусматривает внесение в смесь на стадии заквашивания нанокапсул иодида калия, полученных по патентам №2595820 от 27.08.2016 и №2595825 от 27.08.2016.

Для выработки кефира по данному способу использовали нормализованное молоко коровье 6%-ное, 3,2%-ной, или 2,5%-ной, или 1,5%-ной жирности. Технология производства предусматривала следующие этапы: подогрев до 40-41°C, заквашивание, внесение нанокапсул иодида калия, сквашивание, перемешивание, охлаждение и розлив.

Способ поясняется следующими примерами, иллюстрирующими способ получения 1000 мл кефира с введенной в него наноструктурированной добавкой.

ПРИМЕР 1

В подготовленную для заквашивания молочную смесь объемом 1 л 6%-ной жирности вводят 0,5 г активированной закваски для кефира (Lactococcus lactis, Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacilus helveticus, Propionibacterium freudenreichii ssp. shermanii), а затем вводят 40 мг иодида калия в конжаковой камеди в качестве наноструктурированной добавки, сквашивают в течение 8 ч, причем спустя 3 ч после начала заквашивания смесь перемешивают. Перемешивание второй раз осуществляют за час до окончания процесса заквашивания, после чего охлаждают до температуры 6°C и разливают.

ПРИМЕР 2

В подготовленную для заквашивания молочную смесь объемом 1 л 3,2%-ной жирности вводят 0,5 г активированной закваски для кефира (Lactococcus lactis, Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacilus helveticus, Propionibacterium freudenreichii ssp. shermanii), а затем вводят 40 мг иодида калия в конжаковой камеди в качестве наноструктурированной добавки, сквашивают в течение 8 ч, причем спустя 3 ч после начала заквашивания смесь перемешивают. Перемешивание второй раз осуществляют за час до окончания процесса заквашивания, после чего охлаждают до температуры 6°C и разливают.

ПРИМЕР 3

В подготовленную для заквашивания молочную смесь объемом 1 л 2,5%-ной жирности вводят 0,5 г активированной закваски для кефира (Lactococcus lactis, Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacilus helveticus, Propionibacterium freudenreichii ssp. shermanii), а затем вводят 40 мг иодида калия в конжаковой камеди в качестве наноструктурированной добавки, сквашивают в течение 8 ч, причем спустя 3 ч после начала заквашивания смесь перемешивают. Перемешивание второй раз осуществляют за час до окончания процесса заквашивания, после чего охлаждают до температуры 6°C и разливают.

ПРИМЕР 4

В подготовленную для заквашивания молочную смесь объемом 1 л 1,5%-ной жирности вводят 0,5 г активированной закваски для кефира (Lactococcus lactis, Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacilus helveticus, Propionibacterium freudenreichii ssp. shermanii), а затем вводят 40 мг иодида калия в конжаковой камеди в качестве наноструктурированной добавки, сквашивают в течение 8 ч, причем спустя 3 ч после начала заквашивания смесь перемешивают. Перемешивание второй раз осуществляют за час до окончания процесса заквашивания, после чего охлаждают до температуры 6°C и разливают.

ПРИМЕР 5

В подготовленную для заквашивания молочную смесь объемом 1 л 6%-ной жирности вводят 0,5 г активированной закваски для кефира (Lactococcus lactis, Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacilus helveticus, Propionibacterium freudenreichii ssp. shermanii), а затем вводят 40 мг иодида калия в высокоэтерифицированной яблочном пектине в качестве наноструктурированной добавки, сквашивают в течение 8 ч, причем спустя 3 ч после начала заквашивания смесь перемешивают. Перемешивание второй раз осуществляют за час до окончания процесса заквашивания, после чего охлаждают до температуры 6°C и разливают.

ПРИМЕР 6

В подготовленную для заквашивания молочную смесь объемом 1 л 3,2%-ной жирности вводят 0,5 г активированной закваски для кефира (Lactococcus lactis, Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacilus helveticus, Propionibacterium freudenreichii ssp. shermanii), а затем вводят 40 мг иодида калия в высокоэтерифицированном яблочном пектине в качестве наноструктурированной добавки, сквашивают в течение 8 ч, причем спустя 3 ч после начала заквашивания смесь перемешивают. Перемешивание второй раз осуществляют за час до окончания процесса заквашивания, после чего охлаждают до температуры 6°C и разливают.

ПРИМЕР 7

В подготовленную для заквашивания молочную смесь объемом 1 л 2,5%-ной жирности вводят 0,5 г активированной закваски для кефира (Lactococcus lactis, Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacilus helveticus, Propionibacterium freudenreichii ssp. shermanii), а затем вводят 40 мг иодида калия в высокоэтерифицированном яблочном пектине в качестве наноструктурированной добавки, сквашивают в течение 8 ч, причем спустя 3 ч после начала заквашивания смесь перемешивают. Перемешивание второй раз осуществляют за час до окончания процесса заквашивания, после чего охлаждают до температуры 6°C и разливают.

ПРИМЕР 8

В подготовленную для заквашивания молочную смесь объемом 1 л 1,5%-ной жирности вводят 0,5 г активированной закваски для кефира (Lactococcus lactis, Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacilus helveticus, Propionibacterium freudenreichii ssp. shermanii), а затем вводят 40 мг иодида калия в высокоэтерифицированном яблочном пектине в качестве наноструктурированной добавки, сквашивают в течение 8 ч, причем спустя 3 ч после начала заквашивания смесь перемешивают. Перемешивание второй раз осуществляют за час до окончания процесса заквашивания, после чего охлаждают до температуры 6°C и разливают.

ПРИМЕР 9

В подготовленную для заквашивания молочную смесь объемом 1 л 6%-ной жирности вводят 0,5 г активированной закваски для кефира (Lactococcus lactis, Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacilus helveticus, Propionibacterium freudenreichii ssp. shermanii), а затем вводят 40 мг иодида калия в высокоэтерифицированной цитрусовом пектине пектине в качестве наноструктурированной добавки, сквашивают в течение 8 ч, причем спустя 3 ч после начала заквашивания смесь перемешивают. Перемешивание второй раз осуществляют за час до окончания процесса заквашивания, после чего охлаждают до температуры 6°C и разливают.

ПРИМЕР 10

В подготовленную для заквашивания молочную смесь объемом 1 л 3,2%-ной жирности вводят 0,5 г активированной закваски для кефира (Lactococcus lactis, Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacilus helveticus, Propionibacterium freudenreichii ssp. shermanii), а затем вводят 40 мг иодида калия в высокоэтерифицированном цитрусовом пектине в качестве наноструктурированной добавки, сквашивают в течение 8 ч, причем спустя 3 ч после начала заквашивания смесь перемешивают. Перемешивание второй раз осуществляют за час до окончания процесса заквашивания, после чего охлаждают до температуры 6°C и разливают.

ПРИМЕР 11

В подготовленную для заквашивания молочную смесь объемом 1 л 2,5%-ной жирности вводят 0,5 г активированной закваски для кефира (Lactococcus lactis, Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacilus helveticus, Propionibacterium freudenreichii ssp. shermanii), а затем вводят 40 мг иодида калия в высокоэтерифицированном цитрусовом пектине в качестве наноструктурированной добавки, сквашивают в течение 8 ч, причем спустя 3 ч после начала заквашивания смесь перемешивают. Перемешивание второй раз осуществляют за час до окончания процесса заквашивания, после чего охлаждают до температуры 6°C и разливают.

ПРИМЕР 12

В подготовленную для заквашивания молочную смесь объемом 1 л 1,5%-ной жирности вводят 0,5 г активированной закваски для кефира (Lactococcus lactis, Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacilus helveticus, Propionibacterium freudenreichii ssp. shermanii), а затем вводят 40 мг иодида калия в высокоэтерифицированном цитрусовом пектине в качестве наноструктурированной добавки, сквашивают в течение 8 ч, причем спустя 3 ч после начала заквашивания смесь перемешивают. Перемешивание второй раз осуществляют за час до окончания процесса заквашивания, после чего охлаждают до температуры 6°C и разливают.

ПРИМЕР 13

В подготовленную для заквашивания молочную смесь объемом 1 л 6%-ной жирности вводят 0,5 г активированной закваски для кефира (Lactococcus lactis, Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacilus helveticus, Propionibacterium freudenreichii ssp. shermanii), а затем вводят 40 мг иодида калия в низкоэтерифицированной яблочном пектине в качестве наноструктурированной добавки, сквашивают в течение 8 ч, причем спустя 3 ч после начала заквашивания смесь перемешивают. Перемешивание второй раз осуществляют за час до окончания процесса заквашивания, после чего охлаждают до температуры 6°C и разливают.

ПРИМЕР 14

В подготовленную для заквашивания молочную смесь объемом 1 л 3,2%-ной жирности вводят 0,5 г активированной закваски для кефира (Lactococcus lactis, Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacilus helveticus, Propionibacterium freudenreichii ssp. shermanii), а затем вводят 40 мг иодида калия в низкоэтерифицированном яблочном пектине в качестве наноструктурированной добавки, сквашивают в течение 8 ч, причем спустя 3 ч после начала заквашивания смесь перемешивают. Перемешивание второй раз осуществляют за час до окончания процесса заквашивания, после чего охлаждают до температуры 6°C и разливают.

ПРИМЕР 15

В подготовленную для заквашивания молочную смесь объемом 1 л 2,5%-ной жирности вводят 0,5 г активированной закваски для кефира (Lactococcus lactis, Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacilus helveticus, Propionibacterium freudenreichii ssp. shermanii), а затем вводят 40 мг иодида калия в низкоэтерифицированном яблочном пектине в качестве наноструктурированной добавки, сквашивают в течение 8 ч, причем спустя 3 ч после начала заквашивания смесь перемешивают. Перемешивание второй раз осуществляют за час до окончания процесса заквашивания, после чего охлаждают до температуры 6°C и разливают.

ПРИМЕР 16

В подготовленную для заквашивания молочную смесь объемом 1 л 1,5%-ной жирности вводят 0,5 г активированной закваски для кефира (Lactococcus lactis, Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacilus helveticus, Propionibacterium freudenreichii ssp. shermanii), а затем вводят 40 мг иодида калия в низкоэтерифицированном яблочном пектине в качестве наноструктурированной добавки, сквашивают в течение 8 ч, причем спустя 3 ч после начала заквашивания смесь перемешивают. Перемешивание второй раз осуществляют за час до окончания процесса заквашивания, после чего охлаждают до температуры 6°C и разливают.

ПРИМЕР 17

В подготовленную для заквашивания молочную смесь объемом 1 л 6%-ной жирности вводят 0,5 г активированной закваски для кефира (Lactococcus lactis, Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacilus helveticus, Propionibacterium freudenreichii ssp. shermanii), а затем вводят 40 мг иодида калия в низкоэтерифицированной цитрусовом пектине пектине в качестве наноструктурированной добавки, сквашивают в течение 8 ч, причем спустя 3 ч после начала заквашивания смесь перемешивают. Перемешивание второй раз осуществляют за час до окончания процесса заквашивания, после чего охлаждают до температуры 6°C и разливают.

ПРИМЕР 18

В подготовленную для заквашивания молочную смесь объемом 1 л 3,2%-ной жирности вводят 0,5 г активированной закваски для кефира (Lactococcus lactis, Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacilus helveticus, Propionibacterium freudenreichii ssp. shermanii), а затем вводят 40 мг иодида калия в низкоэтерифицированном цитрусовом пектине в качестве наноструктурированной добавки, сквашивают в течение 8 ч, причем спустя 3 ч после начала заквашивания смесь перемешивают. Перемешивание второй раз осуществляют за час до окончания процесса заквашивания, после чего охлаждают до температуры 6°C и разливают.

ПРИМЕР 19

В подготовленную для заквашивания молочную смесь объемом 1 л 2,5%-ной жирности вводят 0,5 г активированной закваски для кефира (Lactococcus lactis, Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacilus helveticus, Propionibacterium freudenreichii ssp. shermanii), а затем вводят 40 мг иодида калия в низкоэтерифицированном цитрусовом пектине в качестве наноструктурированной добавки, сквашивают в течение 8 ч, причем спустя 3 ч после начала заквашивания смесь перемешивают. Перемешивание второй раз осуществляют за час до окончания процесса заквашивания, после чего охлаждают до температуры 6°C и разливают.

ПРИМЕР 20

В подготовленную для заквашивания молочную смесь объемом 1 л 1,5%-ной жирности вводят 0,5 г активированной закваски для кефира (Lactococcus lactis, Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacilus helveticus, Propionibacterium freudenreichii ssp. shermanii), а затем вводят 40 мг иодида калия в низкоэтерифицированном цитрусовом пектине в качестве наноструктурированной добавки, сквашивают в течение 8 ч, причем спустя 3 ч после начала заквашивания смесь перемешивают. Перемешивание второй раз осуществляют за час до окончания процесса заквашивания, после чего охлаждают до температуры 6°C и разливают.

Физико-химические и органолептические показатели полученного кефира из молока представлены в таблице 1 и 2.

Таблица 1

Способ получения кефира, содержащего иодид калия, отличающийся тем, что в процессе заквашивания в получаемый продукт вводят наноструктурированную добавку, включающую иодид калия в конжаковой камеди или наноструктурированную добавку, включающую иодид калия в высоко- или низкоэтерифицированном яблочном или цитрусовом пектине.



 

Похожие патенты:

Изобретение относится к получению металлосодержащего органозоля, применяемого для послойной 3D печати изделия. В разреженной среде инертного газа распыляют мишень из металлического материала путем плазменного разряда магнетрона, обеспечивают осаждение распыленных металлических частиц в композицию на основе органического растворителя и стабилизатора на основе катионактивных термостабильных полимеров алкиламмониевых солей с образованием металлосодержащего органозоля.

Изобретение относится к измерительной технике и может быть использовано в зондовой сканирующей микроскопии и атомно-силовой микроскопии для диагностирования и исследования наноразмерных структур.

Изобретение относится к производству аморфных и нанокристаллических металлических сплавов путем сверхбыстрой закалки расплавов. Способ получения нанокристаллического магнитотвердого материала из сплава системы (Nd, Ho)-(Fe, Со)-В включает плавление сплава в тигле и выдавливание расплава через отверстие в тигле на поверхность вращающегося охлаждающего барабана с пропусканием постоянного электрического тока через струю жидкого металла и охлаждающий барабан.

Использование: для создания РНЕМТ транзисторов. Сущность изобретения заключается в том, что наноразмерная структура с нанонитями из атомов олова, встроенными в кристалл GaAs включает монокристаллическую полуизолирующую вицинальную подложку GaAs (100) с углом разориентации 0.3°÷0.4° в направлении типа <011>, буферный нелегированный слой GaAs, дельта-легированный оловом слой и контактный легированный кремнием слой GaAs, дополнительно добавлен канальный слой InGaAs, спейсерный слой AlGaAs и барьерный слой AlGaAs, а двухмерный электронный газ, находящийся в канальном слое InGaAs, модулирован в виде квазиодномерных каналов.

Изобретение относится к составам смазочно-охлаждающих технологических средств (СОТС), в частности к концентратам смазочно-охлаждающих жидкостей (СОЖ), которые могут быть использованы в машиностроении при холодной обработке материалов резанием и деформированием.
Изобретение относится к золь-гель чернилам для струйной печати радужных голографических изображений на голографической бумаге или на микроэмбоссированной поверхности.
Изобретение относится к аналитической химии. Раскрыта сенсорная матрица интегральной схемы (100), содержащей полупроводниковую подложку (110); изолирующий слой (120) поверх упомянутой подложки; первый транзистор (140a) на упомянутом изолирующем слое, содержащий открытую функционализированную область (146a) канала между областью (142a) истока и областью стока (144) для восприятия аналита в среде; второй транзистор (140b) на упомянутом изолирующем слое, содержащий открытую область (146b) канала между областью (142b) истока и областью (144) стока для восприятия потенциала упомянутой среды; и генератор (150) напряжения смещения, проводящим образом связанный с полупроводниковой подложкой для подачи на упомянутые транзисторы напряжения смещения, при этом упомянутый генератор напряжения смещения является реагирущим на упомянутый второй транзистор.

Изобретение относится к способам стабилизации препарата наночастиц. Способ стабилизации препарата наночастиц включает стадии: а) очистки композиции с получением очищенной композиции, где очищенная композиция содержит по меньшей мере одну наночастицу, находящуюся в жидком носителе, где наночастица содержит ядро, включающее парамагнитный металл, представляющий собой железо, и оболочку, присоединенную к ядру, где оболочка содержит совокупность лигандов, включающую фосфат, фосфонат или их комбинацию и содержащую полиэтиленгликолевую (PEG) функциональную группу; б) добавления некоторого количества совокупности лигандов к очищенной композиции с получением препарата, где по меньшей мере часть добавленного количества лигандов остается не присоединенной к ядру, при этом лиганды оболочки и лиганды, добавленные к очищенной композиции, являются структурно-идентичными; и в) стерилизации препарата посредством автоклавирования.

Изобретение относится к нанотехнологиям. Способ получения n- и p-типов протонных полупроводников заключается в определении вида дефектов, их количества и энергии активации за счет измерения термостимулированных токов деполяризации и удельной электрической проводимости, при этом создается избыточная концентрация протонов и протонных дефектов при легировании кристаллических материалов кислотами типа HCl, HI, HF (с преимущественной Н+и H3O+проводимостью, то есть p-типа) или щелочами типа NH4OH (с преимущественной ОН- проводимостью, то есть n-типа) и определении вида, концентрации и величины энергии активации релаксаторов для более широкого набора кристаллических материалов, для чего образец термостатируется при определенной температуре, не превышающей температуру плавления, заполяризованный объект охлаждается без отключения электрического поля Еп до То=77 К и поляризованное состояние "замораживается".

Изобретение относится к технологии изготовления полупроводниковых приборов, в том числе солнечных фотоэлектрических элементов (СФЭ). Сущность способа состоит в следующем.
Изобретение относится к молочной промышленности. Пастеризуют очищенное и охлажденное обезжиренное молоко или очищенные и охлажденные сливки в количестве 810 кг.

Группа изобретений относится к кисломолочным смесям для грудных детей. Предложены: нетерапевтический способ повышения эффективности усвоения белка у человека возрастом от 0 до 36 месяцев, включающий введение пищевой композиции, включающей: белок в количестве 5-20% по весу, в расчете на сухой вес пищевой композиции, и в количестве 1,6-4,0 г на 100 ккал,неусваиваемые олигосахариды в количестве 0,5-20% по весу, в расчете на сухой вес пищевой композиции, по меньшей мере 10% по весу, в расчете на сухой вес пищевой композиции, включающей белок композиции, сброженной молочнокислыми бактериями, и 0,10-1,5% по весу смеси лактата и молочной кислоты, в расчете на сухой вес пищевой композиции, и где общее количество L-молочной кислоты и L-лактата составляет более 50% по весу, в расчете на общее количество молочной кислоты и лактата и пищевая композиция, включающая вышеперечисленные компоненты.

Изобретение относится к молочной промышленности и к области нанотехнологии. В процессе заквашивания в получаемый продукт вводят наноструктурированную добавку, включающую йодид калия в конжаковой камеди или йодид калия в высоко- или низкоэтерифицированном яблочном или цитрусовом пектине.

Группа изобретений относится к пищевой промышленности. Продукт в сквашенном коровьем молоке в количестве 90% содержит биомассу консорциума штаммов лактобацилл, включающую штамм Lactobacillus helveticus NKJC, коллекционный №220, штамм Lactobacillus helveticus JCH, коллекционный №221 и штамм Lactobacillus casei KAA, коллекционный №223 в общем количестве лактобацилл 104-1010 КОЕ/мл при соотношении штаммов лактобацилл в КОЕ 2:1:1 и вяленые томаты с массовой долей воды 23-30% в количестве 10%, при вязкости 168±0,03 с, рН 4,87±0,01.

Изобретение относится к молочной промышленности. Способ включает введение в молочную основу на стадии заквашивания не менее 5 мкг на 100 мл готового продукта витамина D в виде нанокапсул, где в качестве ядра - витамин D, а оболочка выполнена из альгината натрия, или каррагинана, или геллановой камеди, или натрий карбоксиметилцеллюлозы, или конжаковой камеди.

Изобретение относится к молочной промышленности. Способ включает введение в молочную основу на стадии заквашивания не менее 5 мкг на 100 мл готового продукта витамина D в виде нанокапсул, где в качестве ядра - витамин D, а оболочка выполнена из альгината натрия, или каррагинана, или геллановой камеди, или натрий карбоксиметилцеллюлозы, или конжаковой камеди.

Изобретение относится к молочной промышленности. Подготавливают сырье, нормализуют, вносят в нормализованную смесь с м.д.ж.

Группа изобретений относится к молочной промышленности. Ферментированный молочный продукт содержит ферментированную молочную композицию и микрокапсулы окисляемого активного вещества, оболочка которых состоит из капсулирующей композиции, содержащей альгинат и аскорбил пальмитат.

Группа изобретений относится к молочной промышленности. Ферментированный молочный продукт содержит ферментированную молочную композицию и микрокапсулы окисляемого активного вещества, оболочка которых состоит из капсулирующей композиции, содержащей альгинат и аскорбил пальмитат.

Изобретение относится к молочной промышленности и области нанотехнологии. В процессе заквашивания в получаемый продукт вводят наноструктурированную добавку, включающую L-аргинин в альгинате натрия, или наноструктурированную добавку, включающую L-аргинин в высокоэтерифицированном или низкоэтерифицированном яблочном пектине, или наноструктурированную добавку, включающую L-аргинин в высокоэтерифицированном или низкоэтерифицированном цитрусовом пектине.

Изобретение относится к синтезу наноалмазов для использования в элементах оптической памяти для квантовых компьютеров высокой производительности. Способ включает подготовку углеродсодержащей смеси, ее размещение в камере высокого давления, инициирование в углеродсодержащей смеси интенсивной ударной волны, фильтрацию и сепарацию продуктов синтеза, при этом в качестве углеродсодержащей смеси выбирают смесь на основе предельных углеводородов гомологического ряда алканов с общей формулой CnH2n+2 с числом углеродных атомов 16 и выше, нагревают ее до температуры выше 300 K, пропускают через нее метан под давлением выше 0,1 МПа и формируют в углеродсодержащей смеси импульсный электрический разряд. Изобретение позволяет получать наноалмазы высокой чистоты, в частности без примеси азота, размером от 3 до 10 нм с улучшенными тепло- и электрофизическими свойствами. 1 ил.

Изобретение относится к молочной промышленности и к области нанотехнологии. В процессе заквашивания в получаемый продукт вводят наноструктурированную добавку, включающую иодид калия в конжаковой камеди или наноструктурированную добавку, включающую иодид калия в высоко- или низкоэтерифицированном яблочном или цитрусовом пектине. Изобретение обеспечивает профилактическую направленность продукта, стабилизацию структуры готового продукта, расширение ассортимента кисломолочных продуктов. 2 табл., 20 пр.

Наверх