Способ термической обработки горячекатаного рулонного проката из легированных доэвтектоидных сталей

Изобретение относится к области металлургии, конкретно к термической обработке горячекатаного рулонного проката из легированных доэвтектоидных сталей типа 50ХГФА, предназначенного для изготовления нажимных пружин сцепления. Для обеспечения требуемых механических свойств и микроструктурных характеристик проката, стабильных и однородных по длине, прокат подвергают трехцикличному отжигу, при этом нагрев проката в каждом цикле ведут со скоростью 20-60°C/ч до температуры Ac1+(10-40)°C, выдерживают в течение 10-20 часов, охлаждают со скоростью 20-40°C/ч до температуры Ar1-(10-40)°C, выдерживают при данной температуре в течение времени τ=(m+5)×К, где m - масса максимального рулона в стопе, т, К=1,30-2,0 - эмпирический коэффициент, полученный опытным путем, и охлаждают. 1 табл.

 

Изобретение относится к области металлургии, конкретно к термической обработке рулонного горячекатаного проката из легированных доэвтектоидных сталей типа 50ХГФА, предназначенного для изготовления нажимных пружин сцепления.

Горячекатаный прокат, предназначенный для изготовления нажимных пружин сцепления, должен отвечать определенным требованиям по механическим свойствам (по твердости) и микроструктурным характеристикам: НВ - не более 207, доля зернистого перлита должна быть не менее 80% и пластинчатого перлита не более 20%.

Известен способ термической обработки проката из доэвтектоидных сталей, включающий горячую пластическую деформацию, охлаждение со скоростью больше критической до температуры 700-500°C, изотермическую выдержку при этой температуре в течение 20-60 мин и отжиг. Причем отжиг проката производят при температуре 730-760°C (Авторское свидетельство СССР №829687, МПК C21D 1/02, опубл. 1981 г.).

Недостаток известного способа состоит в том, что он не сможет обеспечить требуемые свойства в части твердости, а изотермическая выдержка в течение 20-60 мин недостаточна для прогрева и тем более протекания фазовых превращений по всей толщине рулона.

Наиболее близким аналогом к предлагаемому изобретению является способ термоциклической обработки углеродистых сталей, включающий многократные нагревы выше Ас1 и охлаждение ниже Ас1, согласно которому для повышения вязкости и сокращения длительности обработки конструкционных сталей нагрев производят до 750-780°C со скоростью 70-150°C/мин, а охлаждение ведут до 670-690°C со скоростью 150-220°C/мин, а затем в воде (Авторское свидетельство №440424, МПК C21D 1/00, опубл. 1974 г.).

Недостаток известного способа состоит в том, что подобранная обработка позволяет получить структуру с высокой степенью дисперсности, однако при этом за счет высокой скорости охлаждения повышаются прочностные свойства и твердость металла.

Техническим результатом предлагаемого изобретения является повышение выхода годного горячекатаного рулонного проката за счет обеспечения требуемых механических свойств и микроструктурных характеристик, стабильных и однородных по длине полосы, и, как следствие, повышается износостойкость и ресурс будущей детали.

Технический результат достигается тем, что в предлагаемом способе термической обработки горячекатаного рулонного проката из легированных доэвтектоидных сталей, включающем нагрев, выдержку при температуре нагрева и охлаждение, согласно изобретению прокат подвергают трехцикличному отжигу, при этом нагрев проката одного цикла ведут со скоростью 20-60°C/ч до температуры Ас1+(10-40)°C, выдерживают в течение 10-20 часов, охлаждают со скоростью 20÷40°C/ч до температуры Ar1-(10-40)°C, выдерживают при данной температуре в течение времени

где m - масса максимального рулона в стопе, т,

К=1,3-2,0 - эмпирический коэффициент, полученный опытным путем.

Сущность изобретения заключается в следующем. На низкую твердость и высокую долю зернистого перлита влияет способ термической обработки. Циклическая термическая обработка основывается на явлении трехкратного медленного нагрева и охлаждения, обеспечивающем трехкратное протекание фазового превращения как при нагреве, так и при охлаждении. Фазовый переход влияет на кристаллизационные процессы, протекающие в материалах, а трехкратность процесса фазового превращения приводит к постоянной его стабилизации и, как следствие, стабилизации температур начала и конца фазовых процессов.

Нагрев при скорости менее 20°C/ч не целесообразен, так как не обоснованно увеличивает время процесса термоциклирования и ведет к дополнительным энергозатратам.

Нагрев со скоростью более 60°C/ч и охлаждение со скоростью более 40°C/ч, будут создавать условия ускоренного режима термообработки, при этом стабилизация фазовых превращений не сможет пройти полностью, что приведет за собой к неоднородности в структуре, к низкой доле зернистого перлита или даже полным его отсутствием.

Повышение температуры нагрева выше Ас1+40°C и температуры охлаждения выше Ar1-10°C не обеспечивает получение структуры зернистого перлита, так как при этом происходит полное растворение карбидов и образования гомогенного аустенита, распадающегося при последующем охлаждении с образованием пластинчатого перлита.

Понижение температуры нагрева ниже Ac1+10°C и температуры охлаждения ниже Ar1-40°C приведет к тому, что фазовое превращение при нагреве будет проходить не до конца, и для стабилизации процесса понадобится большее количество циклов. Замедляется скорость растворения перлита в аустените.

Проведение циклической термообработки с количеством циклов более трех значительно снизит производительность процесса, приведет к дополнительным энергозатратам.

Проведение циклической термообработки с количеством циклов менее трех не приведет к необходимой доле зернистого перлита по всему сечению проката.

Изотермическая выдержка при температуре нагрева менее 10 часов не обеспечивает прогрев по всей толщине рулона, что в свою очередь отразится и на неоднородности структуры (низкой доле зернистого перлита или совсем полным его отсутствием) и повышением твердости металлопроката, не удовлетворяющих требованиям.

Использование изотермической выдержки при температуре нагрева выше 20 часов приведет к дополнительным энергозатратам.

Экспериментально установлено, что если время выдержки при термической обработке менее рассчитанного по формуле τ=(m+5)×К, то процесс зернистости перлита не происходит по всей толщине садки рулона, микроструктура получается неоднородная, твердость высокая. Выход годного тем самым снижается.

Увеличение времени выдержки свыше рассчитанного по формуле τ=(m+5)×К приводит к увеличению затрат на производстве.

Также установлено, что значение коэффициента К зависит от массы рулона.

Предлагаемая циклическая термообработка позволяет получить равномерную однородную структуру со стабилизированными фазами, с долей зернистого перлита не менее 80%.

Примеры реализации способа:

Термоциклическую обработку рулонного проката из стали 50ХГФА толщиной 4,6 мм осуществляли в колпаковой печи с азотной защитной атмосферой. Рулонный прокат со скоростью Vнаг. нагревали до температуры Тотж.1, выдерживали при этой температуре в течение времени τ1, далее со скоростью Vохл. охлаждали до Тотж.2 и снова выдерживали в течение времени τ2. Таким образом, провели еще по 1-2 цикла нагрева и охлаждения. Параметры термической обработки и характеристики проката представлены в таблице 1.

Из таблицы 1 видно, что при реализации предложенного способа (варианты №3-№4) достигается увеличение выхода годного за счет понижения твердости, увеличения процентного содержания зернистого перлита, равномерно распределенного по всему сечению проката и по длине полосы.

В случае запредельных значений заявленных параметров (варианты №1, 2 и 5) достигнут более высокий уровень твердости и меньшее количество или полное отсутствие зернистого перлита.

Способ термической обработки горячекатаного рулонного проката из легированных доэвтектоидных сталей, включающий нагрев, выдержку при температуре нагрева и охлаждение, отличающийся тем, что прокат подвергают трехцикличному отжигу, при этом нагрев проката в каждом цикле ведут со скоростью 20-60°С/ч до температуры Ас1+(10-40)°С, выдерживают в течение 10-20 часов, охлаждают со скоростью 20-40°С/ч до температуры Ar1-(10-40)°С, выдерживают при данной температуре в течение времени τ=(m+5)×К,

где m - масса максимального рулона в стопе, т,

К=1,3-2,0 - эмпирический коэффициент, полученный опытным путем.



 

Похожие патенты:

Изобретение относится к области металлургии, а именно к горячепрессованному стальному листовому изделию. Изделие имеет химический состав, включающий, мас.%: C: от 0,10 до 0,24, Si: от 0,001 до 2,0, Mn: от 1,2 до 2,3, растворимый Al: от 0,001 до 1,0, Ti: от 0,060 до 0,20, P: 0,05 или менее, S: 0,01 или менее, N: 0,01 или менее, Nb: от 0 до 0,20, V: от 0 до 0,20, Cr: от 0 до 1,0, Mo: от 0 до 0,15, Cu: от 0 до 1,0, Ni: от 0 до 1,0, Ca: от 0 до 0,01, Mg: от 0 до 0,01, РЗМ: от 0 до 0,01, Zr: от 0 до 0,01, B: от 0 до 0,005, Bi: от 0 до 0,01, остаток: Fe и примеси.
Изобретение относится к формированию создающего растягивающее напряжение бесхромового покрытия на листе текстурованной электротехнической стали, позволяющего достичь одновременно превосходного сопротивления влагопоглощению и высокого эффекта снижения потерь в железе, получаемого за счет создания достаточного напряжения, при использовании недорогого источника Ti вместо дорогостоящего хелата Ti.

Изобретение относится к области металлургии, в частности к производству толстого листа из низколегированной дисперсионно-твердеющей стали. Для обеспечения комплекса свойств, соответствующих классам прочности К60-К65, получают лист толщиной до 52 мм с уровнем прочности не менее 590 МПа, выполненный из стали, содержащей, мас.%: углерод 0,04-0,07, кремний 0,20-0,35, марганец 0,70-1,30, алюминий 0,02-0,05, сера не более 0,005, фосфор не более 0,012, хром 0,20-0,45, никель 0,40-0,65, медь 0,90-1,35, титан 0,015-0,030, ниобий 0,02-0,05, ванадий 0,02-0,06, суммарное содержание элементов ванадий, ниобий, титан не более 0,16; азот не более 0,01, железо и примеси остальное с углеродным эквивалентом (CEIIW) не более 0,45%.

Изобретение относится к области металлургии. Для повышения прочности на растяжение и ударной вязкости при низких температурах горячештампованная деталь имеет химический состав, мас.%: С 0,120-0,400, Si 0,005-2,000, Mn, или Cr, или оба из них: в совокупности 1,00-3,00, Al 0,005-0,100, B 0,0003-0,0020, P не более 0,030, S не более 0,0100, О не более 0,0070, N не более 0,0070, Ti 0-0,100, Nb 0-0,100, V 0-0,100, Ni 0%-2,00, Cu 0-2,00, Mo 0-0,50, Ca, или редкоземельный металл (REM), или оба из них: в совокупности 0-0,0300, Fe и примеси - остальное и структуру, представленную: долей участков мартенсита, или бейнита, или обоих из них: в совокупности не менее 95%, коэффициентом покрытия границы бывших аустенитных зерен карбидами на основе железа: не более 80%, и численной плотностью карбидов на основе железа в бывших аустенитных зернах: не менее 45/мкм2.

Настоящее изобретение относится к точечному сварному соединению, сборке двух стальных листов, способу изготовления точечного сварного соединения, детали кузова автомобиля и кузову автомобиля.

Изобретение относится к области металлургии, а именно к гальванизированному горячим погружением и легированному стальному листу, используемому в автомобилестроении.

Изобретение относится к области металлургии, в частности к изготовлению листа, который используют в автомобильной промышленности. Для обеспечения необходимого уровня ВН-эффекта и способности к раздаче отверстия при сохранении механических свойств, присущего классу прочности 780 МПа феррито-мартенситной стали способ включает выплавку стали, содержащей, мас.%: С 0,10-0,15, Si 0,10-0,40, Mn 1,8-2,4, Cr 0,20-0,40, Mo 0,10-0,40, Al 0,02-0,08, P не более 0,02, S не более 0,02, Fe и неизбежные примеси, горячую прокатку при температуре начала от 1050 до 1200°C и конца 800-890°C, смотку листа в рулон при 580-650°C, холодную прокатку с суммарным обжатием 45-70% на толщину 0,9-1,5 мм и термическую обработку в агрегате непрерывного действия путем нагрева до температуры отжига 730-790°C, выдержки, замедленного охлаждения до температур ниже Ar1, ускоренного охлаждения до 250-330°C и перестаривания при упомянутой температуре.

Изобретение относится к области металлургии. Для повышения прочности и пластичности листовую заготовку получают из стали, содержащей в мас.%: С от 0,15 до 0,5, Si от 0,2 до 3, Mn от 0,5 до 3, Р 0,05 или менее, S 0,05 или менее, Al от 0,01 до 1,В от 0,0002 до 0,01,N от 0,001 до 0,01 Ti в количестве, равном или более 3,4[N]+0,01 и равном или менее 3,4[N]+0,1, где [N] - содержание (мас.%) N в стали, железо и неизбежные примеси – остальное, причем средний диаметр эквивалентной окружности Ti-содержащих выделившихся включений, имеющих диаметр эквивалентной окружности 30 нм или менее, составляет 6 нм или менее, а количество Ti во включениях и общее количество Ti в стали удовлетворяет предписанному соотношению, нагревают заготовку до температуры от 900 до 1100°С, штампуют в пресс-форме, при этом в процессе формования её охлаждают со средней скоростью охлаждения 20ºС/с или более до температуры, равной или ниже на 100ºС температуры Bs начала бейнитного превращения и равной или большей, чем температура Ms начала мартенситного превращения, а после завершения формования полученное изделие охлаждают со средней скоростью охлаждения менее 20°С/с до температуры 200°С или менее.

Изобретение относится к области термомеханической обработки стального листа путем резания. Для предотвращения замедленного разрушения на поверхности среза листа и получения точности размера при изготовлении изделия из листа способ горячей режущей обработки с измельчением зерен поверхностного слоя включает стадии, в которых: нагревают и выдерживают стальной лист в диапазоне температур от Ас3 до 1400°С для получения аустенитной структуры стального листа, затем проводят режущую обработку стального листа при размещении стального листа на матрице и закаливают быстрым охлаждением подвергнутого режущей обработке стального листа, причем начальную температуру режущей обработки регулируют в диапазоне от Ar3 + 30°С до Ar3 + 140°С.

Изобретение относится к области металлургии, в частности к изготовлению листа, который используют в автомобильной промышленности. Для обеспечения необходимого уровня ВН-эффекта и способности к раздаче отверстия при сохранении механических свойств, присущего классу прочности 780 МПа феррито-мартенситной стали способ включает выплавку стали, содержащей, мас.%: С 0,09-0,14; Si 0,05-0,40; Mn 1,7-2,3; Cr 0,20-0,40; Mo 0,10-0,40; Al 0,02-0,08; Nb 0,01-0,04; P не более 0,02; S не более 0,02; Fe и неизбежные примеси, горячую прокатку при температуре начала от 1075 до 1250°C и заканчивают при 800-890°C, смотку листа в рулон при температуре не ниже 600°C, холодную прокатку с суммарным обжатием 45-70% на толщину 0,9-1,5 мм и термическую обработку в агрегате непрерывного действия путем нагрева до температуры отжига 720-780°C, выдержки, замедленного охлаждения до температур ниже Ar1, ускоренного охлаждения до 270-400°C и перестаривания при упомянутой температуре.

Изобретение относится к области металлургии, а именно к производству бесшовного трубного изделия, и может быть использовано в нефтяных и газовых скважинах. Бесшовное трубное изделие нефтегазопромыслового сортамента в виде трубки или трубы из высокопрочной нержавеющей стали имеет состав, мас.%: С 0,05 или менее, Si 0,5 или менее, Mn от 0,15 до 1,0, P 0,030 или менее, S 0,005 или менее, Сr от 15,5 до 17,5, Ni от 3,0 до 6,0, Мо от 1,5 до 5,0, Cu 4,0 или менее, W от 0,1 до 2,5, N 0,15 или менее, и остальное состоит из Fe и случайных примесей.

Изобретение относится к области металлургии. Для обеспечения высокой твердости в сочетании с высокой пластичностью предложен способ формирования и обработки стального изделия из высокопрочного и высокопластичного сплава, в частности, предназначенного для использования в качестве броневой плиты.
Изобретение относится к металлургии и машиностроению и может быть использовано для термической обработки сталей. Для повышения срока службы деталей машин и инструмента, изготовленных из легированных, низколегированных и углеродистых сталей, выполняют по меньшей мере два цикла нагрева под закалку до температуры гомогенизации аустенита и охлаждения со скоростью, обеспечивающей мартенситное превращение, и отпуск с нагревом со скоростью выше 50°С/сек до температуры не выше Ac1, причем в первом цикле нагрев осуществляется до температуры аустенизации с выдержкой до полной гомогенизации аустенита, во втором и последующих циклах осуществляется высокоскоростной нагрев под закалку со скоростью 50°С/сек без выдержки до температуры, обеспечивающей гомогенизацию аустенита, температура отпуска в каждом последующем цикле ниже, чем предыдущем.

Изобретение относится к области металлургии и может быть использовано при термообработке ответственных деталей верхнего строения пути: рельсов, остряковых и рамных рельсов.

Изобретение относится к области сварочного производства и может быть использовано при получении износостойких покрытий на деталях из углеродистых и низколегированных сталях, работающих в условиях абразивного износа.

Изобретение относится к способу лазерного упрочнения полой металлической заготовки. Посредством локального переплава, механической и химической обработкой подготавливают заготовку необходимых размеров в диапазоне (длина×радиус×толщина) от 100×10×2 мм до 1000×1000×12 мм из перлитных, бейнитных или мартенситных закаливающихся сталей марок 30ХГСА, 35ХГСА и пр.

Изобретение относится к устройству ввода газа в тяжелый жидкий металл. Устройство состоит из электродвигателя (12), магнитной муфты (6), вала (1), заборной и рабочей частей устройства, корпуса (5) с отверстиями (9), нижнего вращающегося (2) и верхнего неподвижного (7) диска, кожуха (4), побудителя расхода (10) тяжелого жидкого металла, опорного узла вала (8) с, по меньшей мере, одним каналом (3).

Изобретение относится к многокамерной печи для вакуумной цементации и закалки отдельных обрабатываемых деталей, таких как зубчатые колеса, валы и кольца. Печь содержит три технологические камеры, выполненные в виде камеры нагрева, камеры цементации и диффузионной камеры, которые расположены одна поверх другой с образованием вертикальной компоновки.
Изобретение относится к области металлургии, в частности к термической обработке литых деталей железнодорожного подвижного состава в виде боковых рам тележек грузовых вагонов, изготовленных из сталей марок: 20 ГЛ, 20 ГФЛ, 20 ГТЛ.

Изобретение относится к области металлургии. Для получения желательной микроструктуры, имеющей улучшенные механические свойства, способ включает фазу активного охлаждения, на которой рельс быстро охлаждается от аустенитной температуры, а затем мягко охлаждается, чтобы поддерживать целевую температуру преобразования между определенными значениями обработки охлаждения, выполняемой посредством множества охлаждающих модулей (12.n), каждый охлаждающий модуль содержит множество средств распыления охлаждающей среды на рельс, причем способ отличается тем, что в течение фазы активного охлаждения каждое охлаждающее средство приводится в действие для управления скоростью охлаждения рельса, так что величина превращенного аустенита в рельсе не ниже чем 50% на поверхности рельса и не ниже чем 20% в сердцевине головки рельса.

Изобретение относится к области металлургии. Для улучшения эксплуатационных свойства режущего инструмента и деталей проводят химико-термическую обработку деталей в условиях акустического резонансного воздействия потоком сжатого воздуха путем нагрева до температуры от 150 до 450 С° и охлаждения деталей в газовой смеси, состоящей из воздуха и газообразных химических реагентов, при этом нагрев и охлаждение деталей осуществляют в резонаторной камере при давлении 1.5-4.5 атм и воздействии на детали циркулирующим потоком сжатого воздуха на резонансной частоте в диапазоне 500-5000 Гц, а концентрация газовых компонент по отношению к воздушной среде в камере составляет: по водороду: от 2 до 2.5%, по метану: от 10 до 25%, по азоту: от 15 до 25%, по аммиаку: от 15 до 45%. Обработку проводят в устройстве, содержащем герметичную цилиндрическую камеру, имеющую подъемную крышку, центробежный воздушный нагнетатель с двигателем, расположенный по центру камеры, размещенные внутри камеры аксиальные резонаторные камеры с щелевыми соплами, каждая из которых имеет нагреватель, заслонку щелевого сопла с приводом ее поворота для регулирования ширины отверстия для прохождения воздушного потока от упомянутого нагнетателя, воздуховоды для циркуляции воздушного потока от резонансных камер до нагнетателя, датчики акустической вибрации и температуры, блок управления с таймером, на вход которого поступают сигналы от упомянутых датчиков из каждой камеры, а к выходам его подключены двигатель воздушного нагнетателя, приводы заслонок, датчик давления, электроклапаны подачи и сброса давления в цилиндрической камере и подъемно-поворотное устройство для подъемной крышки, газовая камера, имеющая трубопровод со штуцерами и электромагнитными клапанами для подачи в нее воздуха и газообразных химических реагентов, а также датчики, определяющие концентрацию газообразных химических реагентов, при этом в зоне воздушного нагнетателя герметичной камеры размещен электромагнитный клапан подачи газовой смеси от газовой камеры, а датчик газовой камеры связан с упомянутым блоком управления. 2 н. и 3 з.п. ф-лы, 4 ил., 3 табл.

Изобретение относится к области металлургии, конкретно к термической обработке горячекатаного рулонного проката из легированных доэвтектоидных сталей типа 50ХГФА, предназначенного для изготовления нажимных пружин сцепления. Для обеспечения требуемых механических свойств и микроструктурных характеристик проката, стабильных и однородных по длине, прокат подвергают трехцикличному отжигу, при этом нагрев проката в каждом цикле ведут со скоростью 20-60°Cч до температуры Ac1+°C, выдерживают в течение 10-20 часов, охлаждают со скоростью 20-40°Cч до температуры Ar1-°C, выдерживают при данной температуре в течение времени τ×К, где m - масса максимального рулона в стопе, т, К1,30-2,0 - эмпирический коэффициент, полученный опытным путем, и охлаждают. 1 табл.

Наверх