Способ гидроочистки углеводородного сырья

Изобретение относится к способу гидроочистки углеводородного сырья, заключающемуся в превращении углеводородного сырья с высоким содержанием серы и азота в присутствии катализатора, который содержит, мас. %: [Co(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2] 33,0-43,0; бор в форме поверхностных соединений, соединений, характеризующихся полосами поглощения 930-1040, 1230, 1385-1450 и 3695 см-1 в ИК-спектрах - 0,4-1,6%, носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 5,0-25,0; натрий - не более 0,03; γ-Al2O3 - остальное. Также изобретение относится к способу гидроочистки углеводородного сырья в присутствии сульфидированного катализатора, который содержит, мас. %: Мо - 10,0-14,0; Со - 3,0-4,3; S - 6,7-9,4; бор в форме поверхностных соединений, соединений, характеризующихся полосами поглощения 930-1040, 1230, 1385-1450 и 3695 см-1 в ИК-спектрах - 0,5-2,0; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 5,0-25,0; натрий - не более 0,03; γ-Al2O3 - остальное. Технический результат заключается в получении нефтепродуктов с низким остаточным содержанием серы и азота при гидроочистке углеводородного сырья. 2 н. и 8 з.п. ф-лы, 2 табл., 7 пр.

 

Изобретение относится к каталитическим способам получения малосернистых и малоазотистых нефтепродуктов из углеводородного сырья с высоким содержанием серы и азота.

В настоящее время российские нефтеперерабатывающие заводы перешли к производству моторных топлив, по остаточному содержанию серы соответствующих новым российским и европейским стандартам [ГОСТ Р 52368-2005 (ЕН 590-2004). Топливо дизельное ЕВРО. Технические условия; ГОСТ Р 51866-2002 (ЕН 228-1999). Бензин неэтилированный]. Малосернистые дизельные топлива производят на установках каталитической гидроочистки соответствующих прямогонных и смесевых фракций. Товарные бензины получают смешением бензиновых фракций различных процессов, при этом основное количество серы поступает в компаундированные бензины вместе с бензином каталитического крекинга. Содержание серы в бензинах каталитического крекинга напрямую зависит от ее содержания в исходном сырье каталитического крекинга - гидроочищенных вакуумных газойлях. Соответственно для получения малосернистых бензинов каталитического крекинга, пригодных для получения компаундированных бензинов Евро-5, необходимо, чтобы содержание серы в сырье каталитического крекинга не превышало 300 ppm [Капустин В.М., Гуреев А.А. Технологии переработки нефти. Ч. 2. Деструктивные процессы. М., КолосС, 2007, 334 с]. Содержание азота в моторных топливах и не регламентируется, однако известно, что органические соединения азота оказывают сильное отрицательное влияние на активность катализаторов в превращении органических соединений серы при гидроочистке.

В связи с этим, чрезвычайно актуальной задачей является создание новых процессов получения малосернистых и малоазотистых нефтепродуктов, позволяющих далее получать моторные топлива, по содержанию серы, соответствующие стандарту Евро-5.

Существующие заводские установки гидроочистки работают в достаточно узком интервале температур, расходов и давлений. Так, для глубокой гидроочистки дизельных топлив обычно давление не превышает 4,0 МПа, расход сырья 1-2 ч-1, объемное отношение водород/сырье 300-500 нм33; для гидроочистки вакуумных газойлей используется давление 4,5-7,0 МПа, расход сырья 1,0-1,5 ч-1, объемное отношение водород/сырье 400-600 нм33. Стартовая температура процесса гидроочистки не может выбираться в широких пределах и должна быть как можно ниже, поскольку от нее зависит скорость дезактивации и межрегенерационный пробег катализатора. Таким образом, основным инструментом, который позволяет изменять количество серы и азота в получаемых продуктах без существенных изменений условий процесса гидроочистки и реконструкции установок, являются характеристики используемых катализаторов, из которых наиболее важной является каталитическая активность.

Известны различные способы гидроочистки углеводородного сырья, в том числе и сложные многоступенчатые процессы с высоким давлением водородсодержащего газа или процессы с многослойной загрузкой различных катализаторов, однако основным недостатком для них является высокое остаточное содержание серы и азота в получаемых продуктах, обусловленное низкой активностью используемых катализаторов.

Чаще всего процессы гидрообессеривания нефтяного сырья проводят в присутствии катализаторов, содержащих оксиды кобальта и молибдена, нанесенные на оксид алюминия. Так, известен способ каталитической гидроочистки нефтяного сырья [РФ 2192923, B01J 27/188, C10G 45/08, 20.10.2002]. Процесс проводят при 200-480°С при давлении 0,5-20 МПа при расходе сырья 0,05-20 ч-1 и расходе водорода 100-3000 л/л сырья, при этом используют катализатор на основе оксида алюминия, который содержит в пересчете на содержание оксида, мас. %: 2-10 оксида кобальта СоО, 10-30 оксида молибдена MoO3 и 4-10 оксида фосфора Р2О5, с площадью поверхности по методу БЭТ в интервале 100-300 м2/г и средним диаметром пор в интервале 8-11 нм.

Известен способ гидрообессеривания нефтяного сырья [Заявка на патент РФ №2002124681, C10G 45/08, B01J 23/887, 2004.05.10], где процесс гидроочистки ведут при температуре 310-340°С, давлении 3,0-5,0 МПа, при соотношении водород/сырье 300-500 нм33 и объемной скорости подачи сырья 1,0-4,0 ч-1, при этом используют катализатор, содержащий в своем составе оксид кобальта, оксид молибдена и оксид алюминия, отличающийся тем, что он имеет соотношение компонентов, мас. %: оксид кобальта 3,0-9,0, оксид молибдена 10,0-24,0 мас. %, оксид алюминия - остальное, удельную поверхность 160-250 м2/г, механическую прочность на раздавливание 0,6-0,8 кг/мм2. Основным недостатком такого способа проведения процесса гидроочистки является высокое содержание серы в получаемых продуктах.

Наиболее близким к предлагаемому техническому решению является способ [РФ №2626400, C10G 45/08, B01J 31/22, 09.11.2016], заключающийся в том, что гидроочистку проводят при температуре 340-400°С, давлении 4,5-9,0 МПа, расходе сырья 0,5-1,5 ч-1, объемном отношение водород/сырье 400-800 нм33 в присутствии катализатора, который содержит, мас. %: [Со(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2] 33,0-43,0; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al2BO6 со структурой норбергита - 5,0-25,0; натрий - не более 0,03; γ-Al2O3 - остальное. При этом катализатор имеет удельную поверхность 130-180 м2/г, объем пор 0,35-0,65 см3/г, средний диаметр пор 7-12 нм, и представляет собой частицы с сечением в виде круга, трилистника или четырехлистника с диаметром описанной окружности 1,0-1,6 мм и длиной до 20 мм.

Общим недостатком для прототипа и всех вышеперечисленных процессов гидроочистки является высокое остаточное содержание серы и азота в получаемых продуктах, обусловленное низкой активностью используемых катализаторов.

Изобретение решает задачу создания улучшенного способа гидроочистки углеводородного сырья, характеризующегося низким содержанием серы и азота в получаемых продуктах при достаточно мягких условиях проведения процесса.

Технический результат - использование катализатора гидроочистки, который имеет оптимальный химический состав, обеспечивает повышенную активность катализатора в реакциях обессеривания и деазотирования, что позволяет достичь пониженных содержаний серы и азота в продуктах по сравнению с прототипом.

Задача решается проведением процесса гидроочистки углеводородного сырья с высоким содержанием серы и азота при температуре 340-400°С, давлении 3,5-9,0 МПа, весовом расходе сырья 1,0-2,5 ч-1, объемном отношении водород/сырье 300-500 м33 в присутствии катализатора, содержащего, мас. %: [Со(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2] 33,0-43,0%; бор в форме поверхностных соединений - 0,4-1,6%, носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 5,0-25,0; натрий - не более 0,03; γ-Al2O3 - остальное. Катализатор содержит бор в форме двух различных типов химических соединений - входящий в состав носителя борат алюминия Al3BO6 со структурой норбергита, представляющий собой частицы с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 А, с углом между ними 53.8° и бор в форме поверхностных соединений, характеризующихся полосами поглощения 930-1040, 1230, 1385-1450 и 3695 см-1 в ИК-спектрах. Катализатор содержит сильные Бренстедовские кислотные центры (БКЦ), определенные методом ИК из данных низкотемпературной адсорбции СО, 2-6 мкмоль/г (РА (сродство к протону) = 1180-1200 кДж/моль) и Бренстедовские кислотные центры средней силы, 30-60 мкмоль/г (РА = 1250-1260 кДж/моль). Катализатор имеет удельную поверхность 130-180 м2/г, объем пор 0,35-0,65 см3/г, средний диаметр пор 7-14 нм, и представляет собой частицы с сечением в виде круга, трилистника или четырехлистника с диаметром описанной окружности 1,0-1,6 мм и длиной до 20 мм, после сульфидирования он содержит, мас. %: Мо - 10,0-14,0; Со - 3,0-4,3; S - 6,7-9,4; бор в форме поверхностных соединений - 0,5-2,0; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 5,0-25,0; натрий - не более 0,03; γ-Al2O3 - остальное.

Основным отличительным признаком предлагаемого способа гидроочистки углеводородного сырья по сравнению с прототипом является то, что процесс гидроочистки проводят при температуре 340-400°С, давлении 3,5-9,0 МПа, массовом расходе сырья 1,0-2,5 ч-1, объемном отношении водород/сырье 300-500 м33 в присутствии катализатора, содержащего, мас. %: [Со(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2] 33,0-43,0%; бор в форме поверхностных соединений - 0,4-1,6%, носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 5,0-25,0; натрий - не более 0,03; γ-Al2O3 - остальное. Такой химический состав катализатора обеспечивает его максимальную активность в реакциях обессеривания.

Вторым отличительным признаком предлагаемого способа гидроочистки является то, что используемый катализатор содержит бор в форме двух различных типов химических соединений - входящий в состав носителя борат алюминия Al3BO6 со структурой норбергита, представляющий собой частицы с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 А, с углом между ними 53.8° и бор в форме поверхностных соединений, характеризующихся полосами поглощения 930-1040, 1230, 1385-1450 и 3695 см-1 в ИК-спектрах. Наличие в катализаторе бората алюминия Al3BO6 способствует достижению текстурных характеристик катализатора, обеспечивающих доступ всех подлежащих превращению молекул сырья к активному компоненту. Наличие в катализаторе поверхностных соединений бора способствует повышению дисперсности активного компонента, что обеспечивает увеличение активности в реакциях обессеривания и деазотирования.

Третьим отличительным признаком предлагаемого способа по сравнению с прототипом является то, что поверхностные соединения бора обеспечивают повышение кислотности катализатора за счет образования сильных Бренстедовских кислотных центров, определенных методом ИК из данных низкотемпературной адсорбции СО, 2-6 мкмоль/г (РА (сродство к протону) = 1180-1200 кДж/моль) и Бренстедовских кислотных центров средней силы, 30-60 мкмоль/г (РА = 1250-1260 кДж/моль). Такие кислотные центры обеспечивают снижение содержания азота в продуктах гидроочистки.

Технический эффект предлагаемого способа гидроочистки углеводородного сырья складывается из следующих составляющих:

1. Проведение гидроочистки в присутствии катализатора, в составе которого одновременно содержатся два различных типа соединений бора: борат алюминия Al3BO6 со структурой норбергита и поверхностные соединения бора, характеризующиеся полосами поглощения 930-1040, 1230, 1385-1450 и 3695 см-1 в ИК-спектрах. Борат алюминия Al3BO6, представляющий собой частицы с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 А, с углом между ними 53.8° входит в состав носителя и способствует достижению текстурных характеристик носителя и катализатора, обеспечивающих доступ всех подлежащих превращению молекул сырья к активному компоненту. Поверхностные соединения бора, способствуют повышению дисперсности частиц активного компонента и ослаблению его связи с носителем, что обеспечивает повышение активности в целевых реакциях гидроочистки.

2. Проведение гидроочистки углеводородного сырья в присутствии катализатора, содержащего сильные Бренстедовские кислотные центры, определенные методом ИК из данных низкотемпературной адсорбции СО, 2-6 мкмоль/г (РА (сродство к протону) = 1180-1200 кДж/моль) и Бренстедовские кислотные центры средней силы, 30-60 мкмоль/г (РА = 1250-1260 кДж/моль) обеспечивает максимальное удаление из сырья соединений азота, что приводит к увеличению степени обессеривания.

3. Использование в процессе гидроочистки улучшенного катализатора, позволяет получать нефтепродукты с пониженным содержанием серы и азота по сравнению с прототипом.

Описание предлагаемого технического решения

Гидроочистку прямогонного дизельного топлива, содержащего 0,37% серы, 250 ppm азота, имеющего плотность 0,86 г/см3, интервал кипения 210-360°С, Т95 - 356°С, проводят при объемной скорости подачи сырья - 2,5 ч-1, соотношении Н2/сырье = 500 нм3 Н23 сырья, давлении 3,8 МПа, температуре 350°С, а гидроочистку вакуумного газойля (2,5% серы, 1500 ppm азота, к.к. 560°С) проводят при 375°С, давлении 7,0 МПа, массовом расходе вакуумного газойля 0,85 ч-1, объемном отношении водород/сырье 500 в присутствии катализатора, который содержит, мас. %: [Со(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2] 33,0-43,0; бор в форме поверхностных соединений - 0,4-1,6%, носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 5,0-25,0; натрий - не более 0,03; γ-Al2O3 - остальное, при этом в используемом катализаторе бор содержится в форме двух различных типов химических соединений - входящий в состав носителя борат алюминия Al3BO6 со структурой норбергита, представляющий собой частицы с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 А, с углом между ними 53.8° и бор в форме поверхностных соединений, характеризующихся полосами поглощения 930-1040, 1230, 1385-1450 и 3695 см-1 в ИК-спектрах. Катализатор содержит сильные Бренстедовские кислотные центры (БКЦ), определенные методом ИК из данных низкотемпературной адсорбции СО, 2-6 мкмоль/г (РА (сродство к протону) = 1180-1200 кДж/моль) и Бренстедовские кислотные центры средней силы, 30-60 мкмоль/г (РА = 1250-1260 кДж/моль). Катализатор имеет удельную поверхность 130-180 м2/г, объем пор 0,35-0,65 см3/г, средний диаметр пор 7-14 нм, и представляет собой частицы с сечением в виде круга, трилистника или четырехлистника с диаметром описанной окружности 1,0-1,6 мм и длиной до 20 мм.

Сущность изобретения иллюстрируется следующими примерами

Пример 1. Согласно известному решению [Пат. РФ №2626400].

Сначала готовят носитель, для чего 150 г продукта термической активации гидраргиллита измельчают на планетарной мельнице до частиц размером в пределах 20-50 мкм. Далее порошок гидратируют при перемешивании и нагревании в растворе азотной кислоты с концентрацией 0,5%. Затем суспензию на воронке с бумажным фильтром промывают дистиллированной водой до остаточного содержания натрия в порошке не более 0,03%. Отмытую и отжатую лепешку переносят в автоклав, в который добавляют раствор 2,3 г борной кислоты в 1 л 1,5%-ного раствора азотной кислоты, имеющий рН 1,4. Автоклав нагревают до 150°С и выдерживают 12 ч. Далее автоклав охлаждают до комнатной температуры и проводят сушку полученной суспензии на распылительной сушилке при температуре воздуха на входе в сушилку 155°С и непрерывном перемешивании суспензии, высушенный порошок собирают в приемной емкости сушилки. Навеску 150 г порошка помещают в корыто смесителя с Z-образными лопастями, пептизируют 2,5%-ным водным раствором аммиака, после чего экструдируют при давлении 60,0 МПа, через фильеру, обеспечивающую получение частиц с сечением в виде трилистника с диаметром описанной окружности 1,6 мм. Сформованные гранулы сушат при температуре 120°С и прокаливают при температуре 550°С. В результате получают носитель, содержащий, мас. %: борат алюминия Al3BO6 со структурой норбергита - 5,0; натрий - 0,03; γ-Al2O3 - остальное.

Далее готовят раствор биметаллического комплексного соединения [Со(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2], для чего в 100 мл дистиллированной воды при перемешивании последовательно растворяют 73,3 г лимонной кислоты C6H8O7; 89,87 г парамолибдата аммония (NH4)6Mo7O24×4H2O и 30,1 г кобальта (II) углекислого основного водного СоСО3⋅mCo(ОН)2⋅nH2O. После полного растворения всех компонентов, добавлением дистиллированной воды объем раствора доводят до 200 мл. 100 г полученного носителя пропитывают по влагоемкости 67 мл раствора биметаллического комплексного соединения [Со(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2] при 20°С в течение 60 минут. Затем катализатор сушат на воздухе при 100°С.

Катализатор содержит, мас. %: [Co(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2] - 38,4%; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 5,0; натрий - 0,03; γ-Al2O3 - остальное.

Катализатор имеет удельную поверхность 150 м2/г, объем пор 0,55 см3/г, средний диаметр пор 13 нм, и представляет собой частицы с сечением в виде трилистника с диаметром описанной окружности 1,6 мм и длиной до 20 мм. Входящий в состав катализатор борат алюминия Al3BO6 со структурой норбергита представляет собой частицы с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 А, с углом между ними 53.8°.

Катализатор сушат на воздухе при 250°С 2 ч. Далее проводят запись ИК-спектров, которые регистрировали на спектрометре Shimadzu FTIR-8300 в спектральном диапазоне 700-6000 см-1 с разрешением 4 см-1, проводили 300 сканов для накопления сигнала. Данные ИК-спектроскопии приведены в таблице 1.

Далее катализатор сульфидируют по одной из известных методик. В данном случае катализатор сульфидирован прямогонной дизельной фракцией, содержащей дополнительно 1,5 мас. % сульфидирующего агента - диметилдисульфида (ДМДС), при объемной скорости подачи сульфидирующей смеси 2 ч-1 и соотношении водород/сырье = 300 по следующей программе:

- сушка катализатора в реакторе гидроочистки в токе водорода при 140°С в течение 2 ч;

- смачивание катализатора прямогонной дизельной фракцией в течение 2 ч;

- подача сульфидирующей смеси и увеличение температуры до 240°С со скоростью подъема температуры 25°С/ч;

- сульфидирование при температуре 240°С в течение 8 ч (низкотемпературная стадия);

- увеличение температуры реактора до 340 С со скоростью подъема температуры 25°С/ч;

сульфидирование при температуре 340°С в течение 8 ч.

В результате получают катализатор, который содержит, мас. %: Мо - 12,5; Со - 3,85; S - 8,3; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 5,0; натрий - 0,03; γ-Al2O3 - остальное.

Далее проводят гидроочистку углеводородного сырья. Проводят гидроочистку дизельного топлива, содержащего 0,37% серы, 250 ppm азота, имеющего плотность 0,86 г/см3, интервал кипения 210-360°С, Т95 - 356°С. Условия гидроочистки: объемная скорость подачи сырья - 2,5 ч-1, соотношении Н2/сырье = 500 нм3 Н23 сырья, давление 3,8 МПа, температура 350°С.

Гидроочистку вакуумного газойля (2,5% серы, 1500 ppm азота, к.к. 560°С) проводят при 375°С, давлении 7,0 МПа, массовом расходе вакуумного газойля 0,85 ч-1 , объемном отношении водород/сырье 500.

Результаты гидроочистки углеводородного сырья приведены в таблице 2.

Примеры 2-7 иллюстрируют предлагаемое техническое решение.

Пример 2.

Сначала готовят носитель, аналогично примеру 1. В результате получают носитель, содержащий, мас. %: борат алюминия Al3BO6 со структурой норбергита - 5,0; натрий -0,03; γ-Al2O3 - остальное.

Далее готовят раствор, одновременно содержащий биметаллическое комплексное соединение [Со(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2] и борную кислоту, для чего в 100 мл дистиллированной воды при перемешивании и нагревании до 70°С последовательно растворяют 73,3 г лимонной кислоты C6H8O7; 89,87 г парамолибдата аммония (NH4)6Mo7O24×4Н2О, 30,1 г кобальта (II) углекислого основного водного СоСО3⋅mCo(ОН)2⋅nH2O. Далее температуру раствора поднимают до 90°С и растворяют в нем 44,63 г борной кислоты Н3ВО3. После полного растворения всех компонентов, добавлением нагретой до 90°С дистиллированной воды объем раствора доводят до 200 мл.

100 г полученного носителя пропитывают по влагоемкости 67 мл раствора биметаллического комплексного соединения [Со(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2] и борной кислоты при 90°С в течение 60 минут. Затем катализатор сушат на воздухе при 100°С.

Катализатор содержит, мас. %: [Со(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2] - 38,4; бор в форме поверхностных соединений - 1,6, носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 5,0; натрий - 0,03; γ-Al2O3 - остальное. Далее проводят запись ИК-спектров аналогично примеру 1. Данные ИК-спектроскопии приведены в таблице 1.

Катализатор имеет удельную поверхность 145 м2/г, объем пор 0,50 см3/г, средний диаметр пор 13 нм, и представляет собой частицы с сечением в виде трилистника с диаметром описанной окружности 1,6 мм и длиной до 20 мм.

Входящий в состав катализатор борат алюминия Al3BO6 со структурой норбергита представляет собой частицы с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 А, с углом между ними 53.8°.

Далее катализатор сульфидируют аналогично примеру 1. В результате получают катализатор, который содержит, мас. %: Мо - 12,5; Со - 3,85; S - 8,3; бор в форме поверхностных соединений - 2,0, носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 5,0; натрий - 0,03; γ-Al2O3 - остальное.

Проводят гидроочистку дизельного топлива и вакуумного газойля аналогично примеру 1. Результаты гидроочистки приведены в таблице 2.

Пример 3.

Готовят носитель по методике, близкой к примеру 2, с той разницей, что отмытую и отжатую лепешку переносят в автоклав, в который добавляют раствор 5,98 г борной кислоты в 1 литре 1,5%-ного раствора азотной кислоты. Остальные операции и загрузки компонентов при приготовлении носителя аналогичны примеру 2.

В результате получают носитель, содержащий мас. %: борат алюминия Al3BO6 со структурой норбергита - 12,0; натрий - 0,028; γ-Al2O3 - остальное.

Далее готовят раствор, одновременно содержащий биметаллическое комплексное соединение [Со(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2] и борную кислоту, для чего в 100 мл дистиллированной воды при перемешивании и нагревании до 70°С последовательно растворяют 73,3 г лимонной кислоты C6H8O7; 89,87 г парамолибдата аммония (NH4)6Mo7O24×4Н2О, 30,1 г кобальта (II) углекислого основного водного СоСО3⋅mCo(ОН)2⋅nH2O и 22,32 г борной кислоты Н3ВО3. После полного растворения всех компонентов, добавлением нагретой до 70°С дистиллированной воды объем раствора доводят до 200 мл.

100 г полученного носителя пропитывают при 70°С по влагоемкости 67 мл раствора биметаллического комплексного соединения [Со(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2] и борной кислоты. Затем катализатор сушат на воздухе при 100°С.

Катализатор содержит, мас. %: [Со(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2] - 38,4%; бор в форме поверхностных соединений - 0,8, носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 12,0; натрий - 0,028; γ-Al2O3 - остальное. Катализатор характеризуют методом ИК-спектроскопии аналогично примеру 1. Данные ИК-спектроскопии приведены в таблице 1.

Далее катализатор сульфидируют аналогично примеру 1. В результате получают катализатор, который содержит мас. %: Мо - 12,5; Со - 3,85; S - 8,3; бор в форме поверхностных соединений - 1,0; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 12,0; натрий - 0,028; γ-Al2O3 - остальное.

Проводят гидроочистку дизельного топлива и вакуумного газойля аналогично примеру 1. Результаты гидроочистки приведены в таблице 2.

Пример 4.

Готовят носитель по методике, близкой к примеру 2, с той разницей, что отмытую и отжатую лепешку переносят в автоклав, в который добавляют раствор 14,63 г борной кислоты в 1 литре 1,5%-ного раствора азотной кислоты. Остальные операции и загрузки компонентов при приготовлении носителя аналогичны примеру 2.

В результате получают носитель, содержащий, мас. %: борат алюминия Al3BO6 со структурой норбергита - 25,0; натрий - 0,023; γ-Al2O3 - остальное.

100 г полученного носителя пропитывают по влагоемкости 67 мл раствора биметаллического комплексного соединения [Со(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2] и борной кислоты из примера 3. Затем катализатор сушат на воздухе при 200°С.

Катализатор содержит, мас. %: [Со(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2] - 38,4; бор в форме поверхностных соединений - 0,8; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 25,0; натрий - 0,023; γ-Al2O3 - остальное. Катализатор характеризуют методом ИК-спектроскопии аналогично примеру 1. Данные ИК-спектроскопии приведены в таблице 1.

Катализатор имеет удельную поверхность 180 м2/г, объем пор 0,55 см3/г, средний диаметр пор 7 нм, и представляет собой частицы с сечением в виде трилистника с диаметром описанной окружности 1,6 мм и длиной до 20 мм.

Входящий в состав катализатор борат алюминия Al3BO6 со структурой норбергита представляет собой частицы с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 А, с углом между ними 53.8°.

Далее катализатор сульфидируют аналогично примеру 1. В результате получают катализатор, который содержит мас. %: Мо - 12,5; Со - 3,85; S - 8,3; бор в форме поверхностных соединений - 1,0; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 25,0; натрий - 0,023; γ-Al2O3 - остальное.

Проводят гидроочистку дизельного топлива и вакуумного газойля аналогично примеру 1. Результаты гидроочистки приведены в таблице 2.

Пример 5.

Готовят носитель по примеру 3.

Готовят раствор биметаллического комплексного соединения [Со(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2], для чего в 100 мл дистиллированной воды при перемешивании последовательно растворяют 63,27 г лимонной кислоты C6H8O7; 77,58 г парамолибдата аммония (NH4)6Mo7O24×4H2O, 26,0 г кобальта (II) углекислого основного водного СоСО3⋅mCo(OH)2⋅nH2O и 11,16 г борной кислоты Н3ВО3. После полного растворения всех компонентов, добавлением дистиллированной воды объем раствора доводят до 200 мл.

100 г полученного носителя при комнатной температуре пропитывают по влагоемкости 67 мл раствора биметаллического комплексного соединения [Со(Н2О)2(C6H5O7)]2[Mo4O11(C6H5O7)2]. Затем катализатор сушат на воздухе при 120°С.

Катализатор содержит, мас. %: [Со(Н2О)2(C6H5O7)]2[Mo4O11(C6H5O7)2] - 32,7; бор в форме поверхностных соединений - 0,4; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 12,0; натрий - 0,028; γ-Al2O3 - остальное. Катализатор характеризуют методом ИК-спектроскопии аналогично примеру 1. Данные ИК-спектроскопии приведены в таблице 1.

Катализатор имеет удельную поверхность 180 м2/г, объем пор 0,65 см3/г, средний диаметр пор 14 нм, и представляет собой частицы с сечением в виде трилистника с диаметром описанной окружности 1,6 мм и длиной до 20 мм.

Входящий в состав катализатор борат алюминия Al3BO6 со структурой норбергита представляет собой частицы с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 А, с углом между ними 53.8°.

Далее катализатор сульфидируют аналогично примеру 1. В результате получают катализатор, который содержит, мас. %: Мо - 10,0; Со - 3,0; S - 6,7; бор в форме поверхностных соединений - 0,5; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 12,0; натрий - 0,028; γ-Al2O3 - остальное.

Проводят гидроочистку дизельного топлива и вакуумного газойля аналогично примеру 1. Результаты гидроочистки приведены в таблице 2.

Пример 6.

Готовят носитель по примеру 3, с той разницей, что формовочную пасту экструдируют при давлении 60,0 МПа, через фильеру, обеспечивающую получение частиц с сечением в виде круга диаметром 1,0 мм.

Готовят раствор биметаллического комплексного соединения [Со(Н2О)2(C6H5O7)]2[Mo4O11(C6H5O7)2], для чего в 100 мл дистиллированной воды при нагревании до 90°С и перемешивании последовательно растворяют 85,3 г лимонной кислоты C6H8O7; 104,53 г парамолибдата аммония (NH4)6Мо7О24×4Н2О и 35,05 г кобальта (II) углекислого основного водного СоСО3⋅mCo(OH)2⋅nH2O и 44,63 г борной кислоты Н3ВО3. После полного растворения всех компонентов, добавлением дистиллированной воды объем раствора доводят до 200 мл.

Далее используют пропитку носителя из избытка раствора. 100 г полученного носителя загружают в колбу, помещенную в водяную баню, нагретую до 90°С, в колбу приливают 200 мл раствора биметаллического комплексного соединения [Со(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2], также нагретого до 90°С. Пропитку продолжают в течение 20 мин при периодическом перемешивании, после чего избыток раствора отделяют от влажного катализатора. Затем катализатор сушат на воздухе при 200°С. Катализатор характеризуют методом ИК-спектроскопии аналогично примеру 1. Данные ИК-спектроскопии приведены в таблице 1.

Катализатор содержит, мас. %: [Со(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2] - 42,95%; бор в форме поверхностных соединений - 1,6; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 12,0; натрий - 0,028; γ-Al2O3 - остальное.

Катализатор имеет удельную поверхность 130 м2/г, объем пор 0,35 см3/г, средний диаметр пор 10 нм, и представляет собой частицы с сечением в виде круга с диаметром 1,0 мм и длиной до 20 мм.

Входящий в состав катализатор борат алюминия Al3BO6 со структурой норбергита представляет собой частицы с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 А, с углом между ними 53.8°.

Далее катализатор сульфидируют аналогично примеру 1. В результате получают катализатор, который содержит, мас. %: Мо - 14,0; Со - 4,3; S - 9,4; бор в форме поверхностных соединений - 2,0; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 12,0; натрий - 0,028; γ-Al2O3 - остальное.

Проводят гидроочистку дизельного топлива и вакуумного газойля аналогично примеру 1. Результаты гидроочистки приведены в таблице 2.

Пример 7.

Готовят носитель по примеру 3, с той разницей, что формовочную пасту экструдируют при давлении 60,0 МПа, через фильеру, обеспечивающую получение частиц с сечением в виде четырехлистника диаметром 1,6 мм.

Далее используют пропитку носителя из избытка раствора. 100 г полученного носителя загружают в колбу, помещенную в водяную баню, нагретую до 30°С, в колбу приливают 133 мл раствора биметаллического комплексного соединения [Со(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2] из примера 5, также нагретого до 30°С. Пропитку продолжают в течение 60 минут при периодическом перемешивании, после чего избыток раствора отделяют от влажного катализатора. Затем катализатор сушат на воздухе при 120°С.

Полученный катализатор содержит, мас. %: [Со(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2] - 35,9; бор в форме поверхностных соединений - 0,4; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 12,0; натрий - 0,028; γ-Al2O3 - остальное. Катализатор характеризуют методом ИК-спектроскопии аналогично примеру 1. Данные ИК-спектроскопии приведены в таблице 1.

Катализатор имеет удельную поверхность 175 м2/г, объем пор 0,6 см3/г, средний диаметр пор 14 нм, и представляет собой частицы с сечением в виде четырехлистника с диаметром описанной окружности 1,6 мм и длиной до 20 мм.

Входящий в состав катализатор борат алюминия Al3BO6 со структурой норбергита представляет собой частицы с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 А, с углом между ними 53.8°.

Далее катализатор сульфидируют аналогично примеру 1. В результате получают катализатор, который содержит мас. %: Мо - 11,7; Со - 3,6; S - 7,9; бор в форме поверхностных соединений - 0,5; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 12,0; натрий - 0,028; γ-Al2O3 - остальное.

Проводят гидроочистку дизельного топлива и вакуумного газойля аналогично примеру 1. Результаты гидроочистки приведены в таблице 2.

Таким образом, как видно из приведенных примеров, предлагаемый способ гидроочистки углеводородного сырья позволяет достичь значительно меньшего остаточного содержания серы и азота в продуктах гидроочистки по сравнению с прототипом.

1. Способ гидроочистки углеводородного сырья, заключающийся в превращении углеводородного сырья с высоким содержанием серы и азота в присутствии катализатора, отличающийся тем, что используемый катализатор содержит, мас. %: [Co(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2] 33,0-43,0; бор в форме поверхностных соединений, соединений, характеризующихся полосами поглощения 930-1040, 1230, 1385-1450 и 3695 см-1 в ИК-спектрах - 0,4-1,6%, носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 5,0-25,0; натрий - не более 0,03; γ-Al2O3 - остальное.

2. Способ по п. 1, отличающийся тем, что в используемом катализаторе бор содержится в форме двух различных типов химических соединений - входящий в состав носителя борат алюминия Al3BO6 со структурой норбергита, представляющий собой частицы с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 А, с углом между ними 53.8° и бор в форме поверхностных соединений.

3. Способ по п. 1, отличающийся тем, что используемый катализатор содержит сильные Бренстедовские кислотные центры (БКЦ), определенные методом ИК из данных низкотемпературной адсорбции СО, 2-6 мкмоль/г (РА (сродство к протону) = 1180-1200 кДж/моль) и Бренстедовские кислотные центры средней силы, 30-60 мкмоль/г (РА=1250-1260 кДж/моль).

4. Способ по п. 1, отличающийся тем, что используемый катализатор имеет удельную поверхность 130-180 м2/г, объем пор 0,35-0,65 см3/г, средний диаметр пор 7-14 нм и представляет собой частицы с сечением в виде круга, трилистника или четырехлистника с диаметром описанной окружности 1,0-1,6 мм и длиной до 20 мм.

5. Способ гидроочистки углеводородного сырья, заключающийся в превращении углеводородного сырья с высоким содержанием серы и азота в присутствии катализатора, отличающийся тем, что используют сульфидированный катализатор, который содержит, мас. %: Мо - 10,0-14,0; Со - 3,0-4,3; S - 6,7-9,4; бор в форме поверхностных соединений, соединений, характеризующихся полосами поглощения 930-1040, 1230, 1385-1450 и 3695 см-1 в ИК-спектрах - 0,5-2,0; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 5,0-25,0; натрий - не более 0,03; γ-Al2O3 - остальное.

6. Способ по п. 5, отличающийся тем, что катализатор сульфидируют прямогонной дизельной фракцией, содержащей дополнительно не менее 1,0 мас. % сульфидирующего агента - диметилдисульфида (ДМДС), при объемной скорости подачи сульфидирующей смеси не менее 2 ч-1 и объемном соотношении водород/сырье не более 300.

7. Способ по п. 5, отличающийся тем, что в используемом катализаторе бор содержится в форме двух различных типов химических соединений - входящий в состав носителя борат алюминия Al3BO6 со структурой норбергита, представляющий собой частицы с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 А, с углом между ними 53.8° и бор в форме поверхностных соединений.

8. Способ по п. 5, отличающийся тем, что используемый катализатор содержит сильные Бренстедовские кислотные центры (БКЦ), определенные методом ИК из данных низкотемпературной адсорбции СО, 2-6 мкмоль/г (РА (сродство к протону) = 1180-1200 кДж/моль) и Бренстедовские кислотные центры средней силы, 30-60 мкмоль/г (РА=1250-1260 кДж/моль).

9. Способ по п. 5, отличающийся тем, что используемый катализатор имеет удельную поверхность 130-180 м2/г, объем пор 0,35-0,65 см3/г, средний диаметр пор 7-14 нм и представляет собой частицы с сечением в виде круга, трилистника или четырехлистника с диаметром описанной окружности 1,0-1,6 мм и длиной до 20 мм.

10. Способ по 5, отличающийся тем, что гидроочистку проводят при температуре 340-400°C, давлении 3,5-9,0 МПа, массовом расходе сырья 1,0-2,5 ч-1, объемном отношении водород/сырье 300-500 м33, в качестве сырья гидроочистки используют нефтяные дистилляты с концом кипения до 570°C, содержащие до 3,5 мас. % серы и до 2000 ppm азота.



 

Похожие патенты:
Изобретение относится к способу удаления мышьяка из углеводородного сырья, по меньшей мере частично жидкого при температуре окружающей среды и атмосферном давлении, содержащему по меньшей мере следующие этапы: a) приводят в контакт углеводородное сырье, водород и первую поглощающую массу, содержащую подложку и по меньшей мере один металл M1 группы VIB и по меньшей мере два металла M2 и M3 группы VIII, где металл M1 является молибденом, металл M2 является кобальтом и металл M3 является никелем; b) приводят в контакт углеводородное сырье, водород и вторую поглощающую массу в форме сульфида, содержащую подложку и никель, причем вторая поглощающая масса содержит количество никеля в диапазоне от 5 до 50% по массе NiO, в расчете на суммарную массу второй поглощающей массы в форме оксида перед сульфированием.
Настоящее изобретение относится к катализатору гидродесульфирования, содержащему подложку, фосфор, по меньшей мере, один металл, выбранный из группы VIB, причем металлом группы VIB является молибден, и, по меньшей мере, один металл, выбранный из группы VIII периодической системы элементов, причем металлом группы VIII является кобальт, причем содержание металла группы VIB, выраженного в расчете на содержание оксидов, составляет от 6 до 25 вес.% от общего веса катализатора, содержание металла группы VIII, выраженное в расчете на содержание оксидов, составляет от 0,5 до 7 вес.% от общего веса катализатора, подложка содержит по меньшей мере 90 вес.% оксида алюминия, который получен из размешанного и экструдированного геля бемита, и причем плотность молибдена в катализаторе, выраженная в числе атомов молибдена на нм2 катализатора, составляет от 3 до 5, атомное соотношение Co/Mo составляет от 0,3 до 0,5, и атомное соотношение P/Mo составляет от 0,1 до 0,3, и удельная поверхность указанного катализатора составляет от 60 до 150 м2/г.

Изобретение относится к области нефтепереработки, а именно к разработке катализатора изодепарафинизации и способа получения низкозастывающих дизельных топлив зимних и арктического сортов с использованием разработанного катализатора.

Изобретение относится к катализаторам гидрокрекинга углеводородного сырья для получения низкосернистых керосиновых и дизельных фракций. Описан катализатор, который содержит одновременно молибден и вольфрам в форме биметаллических комплексных соединений [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2] и Ni(NH4)a[HbW2O5(C6H5O7)2], где: L и С6Н5О7 - частично депротонированная форма лимонной кислоты; х=0 или 2; y=0 или 1; а=0, 1 или 2; b=2-а; кремний в форме аморфного алюмосиликата, алюминий в форме γ-Al2O3 и аморфного алюмосиликата, при этом компоненты в катализаторе содержатся в следующих концентрациях, мас.

Изобретение относится к способу приготовления катализатора гидроочистки нефтяных фракций путем пропитки прокаленного алюмооксидного носителя водным раствором комплексных соединений фосфатов с активными компонентами Мо и Ni или Мо и Со.

Катализатор защитного слоя для процесса гидроочистки нефтяных фракций, содержащий, масс. %: оксид молибдена - 2,5-6,0, оксид кобальта или никеля - 1,0-3,0, оксид натрия - 0,9-1,2, оксид алюминия – остальное.

Изобретение относится к носителю для катализатора гидрирования углеводородных нефтепродуктов, катализатору, содержащему указанный носитель, способам получения носителя и к способу получения катализатора.

Изобретение относится к катализаторам защитного слоя, располагаемым перед основным катализатором гидроочистки углеводородного сырья. Описан катализатор, содержащий биметаллическое комплексное соединение [Ni(H2O)2]2[Mo4O11(C6H5O7)2] с концентрацией 5,3-7,9 мас.

Изобретение относится к способу одновременного получения по меньшей мере двух углеводородных фракций с низким содержанием серы из смеси углеводородов, начальная температура кипения которых составляет от 35 до 100°С, а конечная температура кипения составляет от 260 до 340°С, и имеющих общее содержание серы от 30 до 10000 м.д.
Изобретение относится к способу приготовления сульфидированного катализатора, содержащему стадии, на которых: (а) обрабатывают носитель катализатора одним или более компонентами металлов Группы VIB, одним или более компонентами металлов Группы VIII и соединением этоксилата простого эфира гликолевой кислоты в соответствии с формулой: R-(CH2)x-CH2-O-[-(CH2)2-O]m-CH2-COOH (I), в которой R представляет собой гидрокарбильную группу, содержащую от 5 до 20 атомов углерода, x составляет в диапазоне от 1 до 15, а m составляет в диапазоне от 1 до 10, и при этом молярное соотношение соединения (I) и содержания металлов Группы VIB и Группы VIII составляет от по меньшей мере 0,01:1 до 1:0,01; (b) высушивают обработанный носитель катализатора при температуре самое большее 200ºС с образованием высушенного пропитанного носителя; и (с) сульфидируют высушенный пропитанный носитель с получением сульфидированного катализатора.
Изобретение относится к способу удаления мышьяка из углеводородного сырья, по меньшей мере частично жидкого при температуре окружающей среды и атмосферном давлении, содержащему по меньшей мере следующие этапы: a) приводят в контакт углеводородное сырье, водород и первую поглощающую массу, содержащую подложку и по меньшей мере один металл M1 группы VIB и по меньшей мере два металла M2 и M3 группы VIII, где металл M1 является молибденом, металл M2 является кобальтом и металл M3 является никелем; b) приводят в контакт углеводородное сырье, водород и вторую поглощающую массу в форме сульфида, содержащую подложку и никель, причем вторая поглощающая масса содержит количество никеля в диапазоне от 5 до 50% по массе NiO, в расчете на суммарную массу второй поглощающей массы в форме оксида перед сульфированием.
Настоящее изобретение относится к катализатору гидродесульфирования, содержащему подложку, фосфор, по меньшей мере, один металл, выбранный из группы VIB, причем металлом группы VIB является молибден, и, по меньшей мере, один металл, выбранный из группы VIII периодической системы элементов, причем металлом группы VIII является кобальт, причем содержание металла группы VIB, выраженного в расчете на содержание оксидов, составляет от 6 до 25 вес.% от общего веса катализатора, содержание металла группы VIII, выраженное в расчете на содержание оксидов, составляет от 0,5 до 7 вес.% от общего веса катализатора, подложка содержит по меньшей мере 90 вес.% оксида алюминия, который получен из размешанного и экструдированного геля бемита, и причем плотность молибдена в катализаторе, выраженная в числе атомов молибдена на нм2 катализатора, составляет от 3 до 5, атомное соотношение Co/Mo составляет от 0,3 до 0,5, и атомное соотношение P/Mo составляет от 0,1 до 0,3, и удельная поверхность указанного катализатора составляет от 60 до 150 м2/г.

Изобретение относится к способу приготовления катализатора гидроочистки нефтяных фракций путем пропитки прокаленного алюмооксидного носителя водным раствором комплексных соединений фосфатов с активными компонентами Мо и Ni или Мо и Со.

Катализатор защитного слоя для процесса гидроочистки нефтяных фракций, содержащий, масс. %: оксид молибдена - 2,5-6,0, оксид кобальта или никеля - 1,0-3,0, оксид натрия - 0,9-1,2, оксид алюминия – остальное.

Изобретение относится к области производства катализаторов гидроочистки углеводородного сырья. Описан носитель для приготовления катализаторов, представляющий собой модифицированный γ-Al2O3, имеющий объем пор 0,3-0,95 см3/г, удельную поверхность 170-280 м2/г, средний диаметр пор 7-22 нм и механическую прочность 2,0-2,5 кг/мм.
Настоящее изобретение касается способа обработки каталитически активных формованных изделий, в частности, для повышения их механической прочности. Описан способ обработки каталитически активных формованных изделий, содержащих каталитически активный компонент и при необходимости материал носителя катализатора, включающий следующие стадии процесса: a) предоставление окончательно приготовленных каталитически активных формованных изделий, b) пропитку этих окончательно приготовленных каталитически активных формованных изделий пептизирующим вспомогательным средством в количестве жидкости, которое не превышает теоретическое влагопоглощение этих каталитически активных формованных изделий, c) термическую обработку пропитанных каталитически активных формованных изделий при температуре от 50°С до 250°С и d) прокаливание этих термически обработанных каталитически активных формованных изделий при температуре от 250°С до 600°С.

Изобретение относится к катализатору гидроочистки для обработки тяжелого углеводородного сырья, имеющего значительные концентрации ванадия, где упомянутый катализатор гидроочистки содержит: прокаленную частицу, содержащую совместно перемешанную смесь, приготовленную посредством совместного перемешивания неорганического оксидного порошка, порошка триоксида молибдена и частиц металла VIII группы и затем формования упомянутой совместно перемешанной смеси в частицу, которую прокаливают, чтобы тем самым получить упомянутую прокаленную частицу, где упомянутая прокаленная частица имеет такую структуру пор, что, по меньшей мере, 23% от общего объема пор упомянутой прокаленной частицы находится в виде пор упомянутой прокаленной частицы, имеющих диаметры пор больше чем 5000 ангстрем, и меньше чем 70% от общего объема пор упомянутой прокаленной частицы находится в виде пор упомянутой прокаленной частицы, имеющих диаметры пор в диапазоне от 70 до 250 , как измерено методом ртутной порометрии.

Настоящее изобретение относится к композиции селеносодержащего катализатора гидрообработки, к способу создания такой композиции, а также к использованию этой композиции в гидрообработке углеводородного сырья.

Изобретение относится к способу приготовления катализатора для глубокой гидроочистки нефтяных фракций. Способ включает пропитку алюмооксидного носителя раствором соединений металлов VIII, VI и V групп.

Изобретение относится способам получения малосернистых дизельных топлив. Описан способ проведения гидроочистки смесевых и прямогонных дизельных фракций с высоким содержанием серы при температуре 340-380°C, давлении 3,5-8,0 МПа, массовом расходе сырья 1,0-2,5 ч-1, объемном отношении водород/сырье 300-500 м3/м3 в присутствии гетерогенного катализатора, содержащего, мас.

Изобретение относится к катализатору реформинга углеводородов и диоксида углерода, включающему оксидный носитель, который содержит гексаалюминат в форме β''-алюмината и частицы металлического никеля.

Изобретение относится к способу гидроочистки углеводородного сырья, заключающемуся в превращении углеводородного сырья с высоким содержанием серы и азота в присутствии катализатора, который содержит, мас. : [Co2]2[Mo4O112] 33,0-43,0; бор в форме поверхностных соединений, соединений, характеризующихся полосами поглощения 930-1040, 1230, 1385-1450 и 3695 см-1 в ИК-спектрах - 0,4-1,6, носитель - остальное; при этом носитель содержит, мас. : борат алюминия Al3BO6 со структурой норбергита - 5,0-25,0; натрий - не более 0,03; γ-Al2O3 - остальное. Также изобретение относится к способу гидроочистки углеводородного сырья в присутствии сульфидированного катализатора, который содержит, мас. : Мо - 10,0-14,0; Со - 3,0-4,3; S - 6,7-9,4; бор в форме поверхностных соединений, соединений, характеризующихся полосами поглощения 930-1040, 1230, 1385-1450 и 3695 см-1 в ИК-спектрах - 0,5-2,0; носитель - остальное; при этом носитель содержит, мас. : борат алюминия Al3BO6 со структурой норбергита - 5,0-25,0; натрий - не более 0,03; γ-Al2O3 - остальное. Технический результат заключается в получении нефтепродуктов с низким остаточным содержанием серы и азота при гидроочистке углеводородного сырья. 2 н. и 8 з.п. ф-лы, 2 табл., 7 пр.

Наверх