Способ навигации летательных аппаратов



Способ навигации летательных аппаратов
Способ навигации летательных аппаратов

Владельцы патента RU 2681303:

Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (RU)
Федеральное государственное унитарное предприятие "Российский федеральный ядерный центр - Всероссийский научно-исследовательский институт экспериментальной физики" (ФГУП "РФЯЦ-ВНИИЭФ") (RU)

Изобретение относится к области радиолокационной техники и может быть использовано при построении радиолокаторов рельефометрических систем, предназначенных для определения местоположения летательных аппаратов. Технический результат изобретения - повышение быстродействия радиолокационных рельефометрических систем, позволяющее обеспечивать работоспособность навигационной системы при движении летательного аппарата с повышенными скоростями и на более низких высотах, а также повышение их разрешающей способности по дальности, скрытности и помехоустойчивости. Указанный результат достигается за счет излучения радиоволн в направлении земной поверхности и последующего приема отраженных радиоволн, при этом радиоволны излучают в виде сверхкороткого импульса по одному широкому лучу, отраженные радиоволны принимают по нескольким узким лучам и определяют наклонные дальности летательного аппарата до земной поверхности по задержке сигналов лучей относительно излучаемого сверхкороткого импульса, причем по широкому лучу излучают весь спектр сверхкороткого импульса, а по узким лучам принимают участки спектра отраженного сверхкороткого импульса так, что спектральные полосы узких лучей не перекрывают друг друга, а в сумме перекрывают весь спектр излучаемого сверхкороткого импульса. 1 з.п. ф-лы, 6 ил.

 

Изобретение относится к области радиолокационной техники и может быть использовано при построении радиолокаторов рельефометрических систем (РРС), предназначенных для определения местоположения летательных аппаратов (ЛА) в соответствии с корреляционно-экстремальным принципом навигации [Ржевкин, В.А. Автономная навигация по картам местности / В.А. Ржевкин // Зарубежная радиоэлектроника. - 1981. - №10. - С. 3-28].

Реализация данного принципа заключается в составлении текущей карты местности (ТКМ) по данным измерений параметров мерного участка подстилающей поверхности однолучевым или многолучевым радиолокатором с последующим сравнением ТКМ с эталонной картой местности (ЭКМ), находящейся на борту ЛА до начала его движения. Вычисляют сигнал коррекции местоположения ЛА на основе анализа различий (взаимных смещений) ЭКМ и ТКМ мерного участка. Управляют движением ЛА путем коррекции его местоположения.

Известен способ навигации ЛА [Патент 2284544 РФ, МПК G01S 5/02 (2006.01) G01C 21/20 (2006.01). Способ навигации летательных аппаратов / Хрусталев А.А., Кольцов Ю.В., Рындык А.Г., Плужников А.Д., Потапов Н.Н., Егоров С.Н.; заявители и патентообладатели Госкорпорация «Росатом», ФГУП «ФНПЦ НИИИС им. Ю.Е. Седакова». - №2005116497/09; заявлено 30.05.05; опубликовано 27.09.06, Бюл. №27] на основе РРС с использованием радиоволн, излучающихся последовательно в виде нескольких лучей, выбранный за аналог.

Недостатки аналога следующие:

- низкие быстродействие и точность определения текущего местоположения ЛА в процессе его движения над мерным участком, включая движение с повышенными скоростями;

- ограничение минимальных высот полета ЛА над мерным участком.

Причиной первого недостатка является последовательный переход излучения и приема радиоволн с одного луча на другой луч, при котором за время излучения и приема по одному лучу ЛА перемещается относительно отражающей поверхности и в результате при излучении и приеме радиоволн по другим лучам пятно засветки, дальность до которого определяется, оказывается смещено вперед по курсу полета ЛА. Это приводит к зависимости точности определения текущего местоположения ЛА от скорости его движения и длительности излучаемых радиоволн. Следовательно, повышение точности за счет увеличения количества лучей ограничено допустимым временем измерения дальности при движении над мерным участком поверхности.

Причиной второго недостатка является наличие «мертвой» зоны РРС, величина которой определяется длительностью излучаемых в каждом луче радиоволн, а также суммарным временем перехода РРС как из режима излучения радиоволн в режим приема отраженных радиоволн в пределах одного луча, так и перехода с одного луча на другой.

Таким образом, последовательный переход излучения и приема радиоволн с одного луча на другой луч ограничивает быстродействие приведенного способа навигации, а также возможность повышения точности определения местоположения ЛА за счет увеличения количества лучей. При полете ЛА с повышенными скоростями возрастает вероятность ошибки определения местоположения ЛА над мерным участком.

Известен способ автономной навигации ЛА [Патент 2598000 РФ, МПК G01S 13/91 (2006.01). Способ автономной навигации летательных аппаратов / Кашин А.В., Хрусталев А.А., Кунилов А.Л., Ивойлова М.М.; заявители и патентообладатели Госкорпорация «Росатом», ФГУП «ФНПЦ НИИИС им. Ю.Е. Седакова». - 2015154920/07; заявлено 21.12.15; опубликовано 20.09.16, Бюл. №26], позволяющий повысить быстродействие навигации ЛА и точность определения его местоположения при движении над мерным участком, выбранный за прототип.

Данный способ навигации ЛА поясняют рисунки, приведенные на фиг. 1, фиг. 2 и фиг. 3. Реализация способа заключается в определении наклонных дальностей ЛА до земной поверхности по нескольким лучам, в каждом из которых излучают и принимают радиоволны в виде последовательности радиоимпульсов (фиг. 2), начальные фазы которых модулированы М-последовательностью (МП), ортогональной модулирующим М-последовательностям радиоволн в других лучах, при этом радиоволны излучают одновременно на общей для всех лучей частоте. Лучи радиоволн излучают и принимают, как показано на фиг. 1, следующим образом. Луч 1 направлен вертикально вниз, перпендикулярно плоскости исследуемой поверхности (фиг. 1, поз. 1), луч 2 располагается слева от луча 1 по направлению движения ЛА (фиг. 1, поз. 2), а луч 3 - справа (фиг. 1, поз. 3), причем все лучи располагают в одной вертикальной плоскости. Отраженные волны разделяют по лучам и определяют наклонные дальности корреляционным способом с использованием модулирующих М-последовательностей в качестве опорных функций (фиг. 3) или способом согласованной фильтрации с использованием модулирующих М-последовательностей в качестве весовых коэффициентов. По данным о наклонных дальностях составляют ТКМ мерного участка и сравнивают ее с ЭКМ занесенной в бортовую аппаратуру перед движением ЛА. Точность определения текущего местоположения ЛА может быть повышена за счет увеличения количества используемых лучей.

В результате способ навигации прототипа позволяет получать информацию, необходимую для определения текущего местоположения ЛА и управления его движением, за время излучения и приема радиоволн по одному лучу, а не за суммарное время излучения и приема радиоволн по всем лучам, как это сделано в аналоге.

Недостатки прототипа следующие:

- невысокая разрешающая способность по дальности;

- недостаточное быстродействие данного способа, ограничивающее скорость полета ЛА.

Причиной первого недостатка является отсутствие практической возможности формирования парциальных радиоимпульсов длительностью менее 1-2 наносекунд.

Причиной второго недостатка является большое количество импульсов в излучаемой последовательности, необходимое для обеспечения лучших корреляционных свойств при разделении сигналов лучей и отсутствие практической возможности уменьшения длительности и периода следования парциальных импульсов менее 1-2 наносекунд.

Техническим результатом предлагаемого изобретения является повышение быстродействия радиолокационных рельефометрических систем, позволяющее обеспечивать работоспособность навигационной системы при движении летательного аппарата с повышенными скоростями и на более низких высотах, а также повышение их разрешающей способности по дальности.

Технический результат достигается тем, что в способе навигации летательных аппаратов, включающем определение наклонных дальностей летательного аппарата до земной поверхности, заключающемся в излучении радиоволн в направлении земной поверхности и последующем приеме отраженных радиоволн, радиоволны излучают в виде сверхкороткого импульса по одному широкому лучу, отраженные радиоволны принимают по нескольким узким лучам и определяют наклонные дальности летательного аппарата до земной поверхности по задержке сигналов лучей относительно излучаемого сверхкороткого импульса, причем по широкому лучу излучают весь спектр сверхкороткого импульса, а по узким лучам принимают участки спектра отраженного сверхкороткого импульса так, что спектральные полосы узких лучей не перекрывают друг друга, а в сумме перекрывают весь спектр излучаемого сверхкороткого импульса.

Технический результат достигается тем, что узкие лучи в пространстве не пересекаются.

Предлагаемый способ навигации ЛА и способ навигации ЛА выбранный за прототип поясняют рисунки, приведенные на фиг. 1-6.

Фигура 1. Схема расположения лучей РРЛ относительно мерного участка земной поверхности при излучении и приеме отраженных волн по 3-м лучам.

Фигура 2. Сигнал одного из лучей в виде последовательности фазоманипулированных радиоимпульсов.

Фигура 3. Графики корреляционных функций огибающей принимаемого суммарного сигнала 3-х лучей и опорных последовательностей МП1 (а), МП2 (б), МП3 (в).

Фигура 4. Схема расположения лучей РРС относительно мерного участка земной поверхности при излучении радиоволн по одному широкому лучу и приеме отраженных волн по 3-м лучам.

Фигура 5. Излучаемый РРС сверхкороткоимпульсный сигнал - временная форма (а), спектральная форма (б).

Фигура 6. Принимаемые РРС широкополосные сигналы - временные формы (а-в), спектральные формы (г).

Реализации предлагаемого способа навигации рассматривается на примере приема радиоволн по 3-м лучам. Радиоволны излучают, как показано на фиг. 4, по лучу 4, направленному в плоскости, ортогональной направлению движения и подстилающей поверхности, и имеющем пятно засветки на подстилающей поверхности, перекрывающее сечения лучей 1-3 в плоскости этой поверхности. Прием радиоволн осуществляется, как показано на фиг. 4, по лучам 1-3 следующим образом. Луч 1 направлен вертикально вниз, перпендикулярно плоскости исследуемой поверхности (фиг. 4, поз. 1), луч 2 располагается слева от луча 1 по направлению движения ЛА (фиг. 4, поз. 2), а луч 3 - справа (фиг. 4, поз. 3), причем все лучи располагают в одной вертикальной плоскости.

В направлении земной поверхности излучается (луч 4) сверхкороткий импульс (СКИ), отраженные радиоволны принимаются по узким лучам (лучи 1-3), каждый из которых настроен на определенный участок спектра отраженного СКИ так, что спектральные полосы всех используемых для приема лучей в сумме перекрывают весь спектр излучаемого СКИ (фиг. 5). Т.к. области лучей 1-3 не перекрываются в пространстве и размещены перпендикулярно плоскости исследуемой поверхности, а частотные полосы лучей 1-3 не перекрывают друг друга, наклонные дальности ЛА до земной поверхности можно определить по задержке сигналов лучей 1-3 относительно излучаемого СКИ (фиг. 6). Таким образом, в РЛ РРС осуществляется спектральное разделение принимаемых сигналов 3-х лучей.

Излучение по одному широкому лучу радиоволн в виде СКИ и их прием по нескольким узким лучам, каждый из которых имеет свой частотный диапазон, позволяют по сравнению с прототипом:

- обеспечить лучшую разрешающую способность РРС по дальности и снизить минимальную возможную высоту полета ЛА над мерным участком за счет малой длительности СКИ;

- повысить быстродействие навигационной системы, что позволяет обеспечить ее работоспособность при движении ЛА с повышенными скоростями;

- повысить точность определения местоположения ЛА за счет возможности увеличения количества используемых для приема лучей при расширении частотного спектра излучаемого сигнала;

- получать радиолокационное изображение подстилающей поверхности за счет разделения по времени принимаемых сигналов, отраженных от различающихся по высоте элементов поверхности.

Таким образом, предлагаемый способ навигации летательных аппаратов обладает рядом существенных преимуществ перед прототипом и аналогом.

1. Способ навигации летательных аппаратов, включающий определение наклонных дальностей летательного аппарата до земной поверхности, заключающийся в излучении радиоволн в направлении земной поверхности и последующем приеме отраженных радиоволн, отличающийся тем, что радиоволны излучают в виде сверхкороткого импульса по одному широкому лучу, отраженные радиоволны принимают по нескольким узким лучам и определяют наклонные дальности летательного аппарата до земной поверхности по задержке сигналов лучей относительно излучаемого сверхкороткого импульса, причем по широкому лучу излучают весь спектр сверхкороткого импульса, а по узким лучам принимают участки спектра отраженного сверхкороткого импульса так, что спектральные полосы узких лучей не перекрывают друг друга, а в сумме перекрывают весь спектр излучаемого сверхкороткого импульса.

2. Способ по п. 1, отличающийся тем, что узкие лучи в пространстве не пересекаются.



 

Похожие патенты:

Изобретение относится к области радиолокационной техники и может быть использовано при построении различных радиолокационных или аналогичных систем, предназначенных для навигации летательных аппаратов (ЛА) с использованием радиоволн путем определения местоположения и управления движением ЛА.

Изобретение относится к радиотехнике, а именно к области компенсации преднамеренных радиопомех с известными структурой и параметрами в навигационной аппаратуре потребителей глобальной навигационной спутниковой системы.

Изобретение относится к технике связи и может использоваться в системах спутниковой связи. Технический результат состоит в обеспечении системы атмосферного мониторинга и измерении на основании обработки радионавигационных сигналов глобальной навигационной спутниковой системы.
Изобретение относится к области радиотехники – радионавигации и может быть использовано для калибровки имитаторов сигналов глобальных навигационных спутниковых систем (ГНСС) в части оценки значения систематической погрешности формирования беззапросной дальности (псевдодальности).

Изобретение относится к области носимых информационных терминальных устройств. Техническим результатом является создание носимого устройства, имеющего небольшой вес и размер, которое обеспечивает возможность получения и учета данных о движении тела с множества датчиков.

Изобретение относится к радиолокационным методам и предназначено для извлечения из доплеровских портретов воздушной цели (ВЦ) признака идентификации в виде пространственного размера ВЦ, оцененного по частотной протяженности доплеровского портрета (ДпП).

Изобретение относится к системам однопозиционной пеленгации источников радиоизлучения (ИРИ) и может быть использовано в системах и комплексах пассивной радиолокации и радиотехнической разведки наземного, воздушного и космического базирования.

Изобретение относится к технике связи и может использоваться как процессор для радиоприемника, который выполнен с возможностью обработки расширенного прямой последовательностью спектра (DS-SS-сигналы).

Изобретение относится к общей системе управления информацией о местоположении для подвижного объекта. Технический результат заключается в повышении эффективности обработки и поиска данных подвижного объекта с помощью информации о местоположении и метаданных.

Изобретение относится к области радиолокации и может быть использовано для калибровки радиолокационных станций (РЛС) с активной фазированной антенной решеткой (АФАР) с электронным сканированием в двух плоскостях по величине эффективной поверхности рассеяния (ЭПР).

Изобретения относятся к области радиолокации и могут быть использованы в комплексах, состоящих из радиолокационных модулей (РЛМ): радиолокационных станций или радиолокационных приемо-передающих модулей.

Изобретение относится к области навигации летательных аппаратов (ЛА), предназначено для обеспечения безопасности полетов ЛА путем использования системы автоматического зависимого наблюдения (АЗН) на борту ЛА.

Изобретение относится к радиолокации и может быть использовано в автоматизированных системах управления, построенных на принципах сетевой информационной структуры, в части, касающейся передачи и обмена радиолокационной информацией (РЛИ), в автоматизированной системе обработки и обмена радиолокационной информацией (АСОО РЛИ).

Изобретение относится к способу детектирования вращающегося колеса транспортного средства. Предложен способ детектирования вращающегося колеса (1) транспортного средства (2), характеризующийся тем, что детектируют колесо (1) путем оценки допплеровского сдвига частоты отраженного колесом (1) и возвращенного с допплеровским сдвигом измерительного луча (6), испускаемого детекторным блоком (5), мимо которого проходит указанное транспортное средство (2).

Изобретение относится к системам управления. Способ формирования сигнала управления для сопровождения цели заключается в том, что сигнал управления формируется по закону на основе динамических матриц внутренних связей систем, обобщенного вектора состояния системы и вектора сигналов управления.

Изобретение относится к области радиолокационной техники и может быть использовано при построении радиолокационных рельефометрических систем, предназначенных для определения местоположения летательных аппаратов (ЛА) с использованием радиоволн.

Изобретение относится к способу и устройству детектирования (обнаружения) вращающегося колеса транспортного средства, которое движется по проезжей части в направлении движения, и колеса которого, по меньшей мере, частично открыты сбоку.

Изобретение относится к способу и устройству обнаружения вращающегося колеса транспортного средства, которое движется по проезжей части в направлении движения и колеса которого, по меньшей мере, частично открыты сбоку.

Изобретение относится к области измерительной техники и может быть использовано для определения малых высот полета летательного аппарата. Достигаемый технический результат - расширение диапазона измеряемых высот летательного аппарата.

Изобретение относится к области обработки радиолокационной информации (РЛИ) и предназначено для формирования обобщенной картины воздушной обстановки, складывающейся в зоне ответственности пункта управления зенитного комплекса, по информации, поступающей от нескольких источников РЛИ.

Изобретение относится к области компьютерной техники и может быть использовано в автоматизированных системах для выполнения комплексных математических операций с целью выделения сигналов на фоне пассивных помех при групповой перестройке несущей частоты зондирующих импульсов.
Наверх