Способ оценки состава биопленок грамположительных бактерий

Изобретение относится к медицине, а именно к микробиологии, инфекционным болезням, дезинфектологии, и может быть использовано для изучения действия факторов на биопленку и биопленкообразующую способность грамположительных микроорганизмов. Способ оценки состава биопленок грамположительных бактерий, сформированных в полистироловых планшетах, осуществляют с помощью 0,1% водного раствора генцианвиолета с его экстракцией спиртом и фотометрированием проб при длине волны 560 нм, при этом окраску генцианвиолетом осуществляют в течение 5 минут с последующей фиксацией красителя в бактериальных клетках раствором Люголя, растворяют окрашенные продукты 70% спиртом: компоненты матрикса в течение 1 минуты, совокупной биопленки в течение 15 минут, после чего оценивают состав биопленок по формулам М=(ОПбв / ОП15) × 100; Кб=100-М, где М - доля матрикса, %; Кб - доля клеточной составляющей, %; ОПбв - оптическая плотность проб, когда спирт для растворения окрашенного продукта выдерживают не более 1 минуты; ОП15 - оптическая плотность проб, когда спирт для растворения окрашенного продукта выдерживают 15 минут. Способ позволяет отдифференцировать клеточную составляющую и матрикс биопленки, при сокращении времени исследования. 3 пр.

 

Изобретение относится к медицине, а именно к микробиологии, инфекционным болезням, дезинфектологии и может быть использовано для изучения действия факторов на биопленку и биопленкообразующую способность грамположительных микроорганизмов.

Биопленки - высокоорганизованные, подвижные, непрерывно изменяющиеся гетерогенные сообщества микроорганизмов, состоящие, как правило, из клеточной части и, преимущественно полисахаридного, матрикса, обеспечивающего защиту от неблагоприятных внешних факторов, в том числе эффекторов иммунитета и антибиотиков, снижая эффективность антибиотикотерапии в десятки раз (Сидоренко С.В. и соавт., 2017). Существующие методы визуализации биопленки не предусматривают дифференцированной окраски ее компонентов, т.к. нет возможности установить субстрат, окрашиваемый генцианвиолетом, поскольку этот краситель может формировать комплексы как с внутриклеточными, так и внеклеточными структурами. Такой подход не позволяет адекватно оценивать антибиопленочные эффекты препаратов, в то время как результаты изучения взаимодействия лекарственных средств с компонентами биопленки могут обеспечивать их наиболее корректный выбор.

Известен способ оценки биопленокоообразующей способности микроорганизмов при 45-минутной экспозиции в 0,1% водном растворе генцианвиолета с последующей его экстракцией спиртом в течение 45 минут [Карпова Т.Н., Дронина Ю.Е., Алексеева Н.В., Романова Ю.М., Тартаковский И.С. Формирование биопленок Legionella spp. в эксперименте // Журн. микробиол. - 2008. - №1. - С. 1-7.].

Недостатки прототипа: недостаточная точность способа из-за отсутствия возможности дифференцировки компонентов биопленки, длительность процедуры.

Технический результат: повышение информативности способа за счет дифференцировки клеточной составляющей и матрикса биопленки, сокращение времени процедуры.

Сущность метода заключается в том, что для оценки компонентного состава биопленок используют двухэтапный подход, позволяющий на первом этапе оценить долю матрикса, а на втором - ее клеточные и экстрацеллюлярные (внеклеточные) компоненты в совокупности. Такой дифференцированный анализ дает возможность определять точки действия лекарственных препаратов и повышать терапевтический эффект за счет комбинации лекарственных средств, с различными мишенями действия.

Способ осуществляют следующим образом:

Биопленки исследуемых культур формируют в плоскодонных микротитрационных планшетах традиционным способом, подготавливая не менее 5 повторностей на каждый вариант эксперимента. Далее в планшет вносят 0,1%-водный раствор генцианвиолета на 5 минут, а затем раствор Люголя на 2 минуты. По окончании окраски планшеты промывают забуференным раствором и высушивают на воздухе, предохраняя их от попадания солнечных лучей. В таком состоянии планшеты можно хранить.

На первом этапе часть лунок (не менее 5) заливают 70% спиртом и сразу же переносят элюат в новую планшету.

На втором этапе другую часть лунок (не менее 5) так же заливают 70% спиртом и выдерживают 15 минут, после чего собирают элюат в новую планшету.

Все пробы фотометрируют при длине волны 560 нм.

Для вычисления доли матрикса и клеточной составляющей в составе биопленки используют формулу:

М=(ОПбв/ОП15)×100,

Кб=100-М, где

М - доля матрикса, %

Кб - доля клеточной составляющей, %

ОПбв - оптическая плотность проб, когда спирт для элюации выдерживали не более 1 минуты,

ОП15 - оптическая плотность проб, когда спирт для элюации выдерживали 15 минут.

Примеры конкретного выполнения

Пример 1. В планшеты с готовыми биопленками Staphylococcus aureus вносили 200 мкл 0,1%-водного раствора генцианвиолета на 5 минут. Окрашивание проводили в темноте. После инкубации краситель из планшета сливали и однократно промывали. Затем вносили 200 мкл раствора Люголя на 2 минуты. Завершали процедуру окраски - промывкой планшета и его высушиванием. После высушивания в лунки планшета вносили 200 мкл 70% раствора спирта. Часть лунок после внесения спирта тут же декантировали, перенося элюат в новую планшету для фотометрии, а вторую половину лунок выдерживали со спиртом не менее 15 минут. Фотометрирование проводили при 560 нм.

Штамм S. aureus АТСС 28922: ОПбв=0,310; ОП15=2,356; М=13,2%; Кб=86,8%. В составе биопленки, сформированной коллекционным штаммом удельный вес матрикса составляет 13,2%, а на клеточный компонент приходится 86,8%. Такое соотношение компонентов соответствует оптимальному для стафилококков уровню, что обусловлено адекватными условиями культивирования штамма.

Пример 2. Чтобы оценить влияние лизоцима на биопленкообразующую способность штамма Staphylococcus aureus АТСС 28922 при формировании биопленок в планшеты дополнительно вносили раствор лизоцима гидрохлорида в концентрации 1 мг/мл. На сформированные биопленки добавляли по 200 мкл 0,1%-водного раствора генцианвиолета на 5 минут. Окрашивание проводили в темноте. После инкубации краситель из планшета сливали и однократно промывали. Затем вносили 200 мкл раствора Люголя на 2 минуты. Завершали процедуру окраски - промывкой планшета и его высушиванием. После высушивания в лунки планшета вносили 200 мкл 70% раствора спирта. Часть лунок после внесения спирта тут же декантировали, перенося элюат в новую планшету для фотометрии, а вторую половину лунок выдерживали со спиртом не менее 15 минут. Фотометрирование проводили при 560 нм.

Штамм S. aureus АТСС 28922 после культивирования в присутствии лизоцима гидрохлорида: ОПбв=0,834; ОП15=2,559; М=32,6%; Кб=67,4%. В составе биопленки, сформированной коллекционным штаммом при действии лизоцима, удельный вес матрикса составляет 32,6%, а клеточный компонент - 67,4%, что связано с ингибирующим действием фермента на планктонные формы. Ответная реакция проявляется интенсификацией биопленкообразования за счет формирования защитного матрикса, что указывает на нецелесообразность использования лизоцима в терапии.

Пример 3. Для оценки действия цефазолина на биопленкообразующую способность штамма Staphylococcus aureus АТСС 28922 в лунки планшета дополнительно вносили раствор антибиотика в концентрации 50 мкг/мл. На готовые пленки S. aureus в планшеты вносили 200 мкл 0,1%-водного раствора генцианвиолета на 5 минут. Окрашивание проводили в темноте. После инкубации краситель из планшета сливали и однократно промывали. Затем вносили 200 мкл раствора Люголя на 2 минуты. Завершали процедуру окраски - промывкой планшета и его высушиванием. После высушивания в лунки планшета вносили 200 мкл 70% раствора спирта. Часть лунок после внесения спирта тут же декантировали, перенося элюат в новую планшету для фотометрии, а вторую половину лунок выдерживали со спиртом не менее 15 минут. Фотометрирование проводили при 560 нм.

Штамм S. aureus АТСС 28922 после культивирования. в присутствии цефазолина: ОПбв=0,189; ОП15=0,453; М=41,7%; Кб=58,3%. В составе биопленки, сформированной коллекционным штаммом при действии цефазолина, удельный вес матрикса увеличивается до 41,7%, а доля клеточного компонента существенно снижается. Полученный результат связан с действием антибиотика, который, как известно, ингибирует синтез основного вещества клеточной стенки стафилококков - пептидогликана. В результате этого число клеток в биопленке существенно снижается. Оставшиеся жизнеспособными клетки стафилококка, компенсаторно увеличивают продукцию веществ матрикса для защиты от антибиотика. В связи с этим, при использовании цефазолина необходимо дополнять терапевтическую схему препаратами (протеазы, липазы, нуклеазы), действие которых направлено на разрушение матрикса.

Положительный эффект заявляемого способа состоит в следующем: способ оценки компонентного состава биопленок грамположительных бактерий позволяет отдифференцировать внеклеточные вещества и структуры матрикса биопленки, окрашиваемые генцианвиолетом, обеспечивая получение дополнительной информации, способствующей повышению эффективности антимикробной терапии, при сокращении времени исследования.

Способ оценки состава биопленок грамположительных бактерий, сформированных в полистироловых планшетах, с помощью 0,1% водного раствора генцианвиолета с его экстракцией спиртом и фотометрированием проб при длине волны 560 нм, отличающийся тем, что окраску генцианвиолетом осуществляют в течение 5 минут с последующей фиксацией красителя в бактериальных клетках раствором Люголя, растворяют окрашенные продукты 70% спиртом: компоненты матрикса в течение 1 минуты, совокупной биопленки в течение 15 минут, после чего оценивают состав биопленок по формуле

М=(ОПбв/ОП15)×100, Кб=100-М, где

М - доля матрикса, %,

Кб - доля клеточной составляющей, %,

ОПбв - оптическая плотность проб, когда спирт для растворения окрашенного продукта выдерживают не более 1 минуты,

ОП15 - оптическая плотность проб, когда спирт для растворения окрашенного продукта выдерживают 15 минут.



 

Похожие патенты:

Изобретение относится к сельскому хозяйству и может быть использовано для оценки восприимчивости партий плодов к загару в садоводческих предприятиях, занимающихся хранением яблок.

Изобретение относится к акушерству, а именно к диагностике плацентарной недостаточности у беременных. Предложен способ ранней диагностики плацентарной недостаточности, включающий определение маркеров дисфункции эндотелия в сыворотке крови беременной.

Изобретение относится к медицине и касается способа определения длительного темпа наступления смерти, включающего проведение комплексных исследований биологического материала, взятого от трупа, в том числе морфологического, микро- и макроскопического исследования, анализ секционной картины, гистохимическое исследование.

Изобретение относится к аналитической химии, а именно для изучения различных биомолекул методом люминесцентной визуализации клеток и их компонент. Для этого используют флуоресцентный оптический ДНК сенсор, состоящий из подложки и адсорбированной на ней тонкой пленки комплекса ДНК-люминофор.
Изобретение относится к медицине, а именно к хирургии, анестезиологии и реаниматологии, и может быть использовано для выбора метода лечения острого деструктивного панкреатита (ОДП).

Изобретение относится к медицине, а именно к гепатологии, и может быть использовано для поддержания функционального состояния цирротически измененной печени у пациентов в листе ожидания трансплантации органа.

Изобретение относится к экологии и может быть использовано для оценки токсичности жидкостей-загрязнителей в водных объектах. Для этого культивируют одноклеточные водоросли в контакте с тестируемой жидкостью и освещают смесь лазером.

Изобретение относится к аналитической химии и может быть использовано для определения ртути в рыбе и рыбных продуктах. Для этого гомогенизируют мясо рыбы или рыбных продуктов и помещают образец в смесь 1% раствора перманганата калия, азотной, хлорной и серной кислот, деионизированной воды в соотношении 1:10:10:50:200.

Группа изобретений относится к области диагностических тест-элементов. Диагностический тест-элемент для определения аналита, содержащегося в пробе крови, имеет тестовое поле, содержащее прозрачную пленку, нанесенный на прозрачную пленку по меньшей мере один детекторный слой и расположенный поверх детекторного слоя по меньшей мере один разделительный слой для отделения эритроцитов и кровяных пигментов от исследуемой пробы, причем по меньшей мере один разделительный слой содержит SiO2 в количестве от 1,0 до 1,6 г/м2 и твердые компоненты, включающие способствующий набуханию агент и по меньшей мере один рассеивающий свет пигмент, из насыщенной ими дисперсной системы, полученные диспергированием твердых компонентов в композиции покрытия, образующей разделительный слой.

Изобретение относится к области ветеринарии и животноводства и может быть использовано при искусственном осеменении для выявления генетически неполноценных сперматозоидов, их выбраковки и недопустимости использования для искусственного осеменения.

Предложенная группа изобретений относится к области медицины. Предложены способ и набор для обнаружения мутации Q61R в белке NRAS в образце опухолевой ткани человека.

Изобретение относится к области медицины, в частности к медицинской генетике и оториноларингологии, и предназначено для выявления мутаций гена GJB2, обуславливающих аутосомно-рецессивную глухоту 1А типа.

Изобретение относится к области медицины, в частности к онкогинекологии, и предназначено для неинвазивной диагностики серозных пограничных цистаденом и высокой степени злокачественности цистаденокарцином яичников.

Изобретение относится к области медицины и предназначено для оценки эффективности лечения лепры на основе идентификации жизнеспособных Mycobacterium leprae. Из биоптатов и скарификатов кожи выделяют ДНК/РНК.

Изобретение относится к биотехнологии и медицине, в частности к промышленной технологии получения ферментного препарата Коллализин® для использования в медицинских целях.

Группа изобретений относится к оптическому устройству, устройству детектирования и способу, использующему волновод, которые можно использовать в областях биозондирования и секвенирования нуклеиновых кислот.

Изобретение относится к области медицины. Предложен способ диагностики у детей астено-вегетативного синдрома в условиях экспозиции алюминием.

Изобретение относится к области биотехнологии, молекулярной биологии и медицины. Предложено применение по меньшей мере одной микроРНК, представляющей собой miR-124, в качестве биомаркера вирусной инфекции, или эффективности терапевтического лечения указанной вирусной инфекции.

Изобретение относится к технике исследования механических свойств материалов. Способ включает в себя подготовку стерильной плотной питательной среды (СППС, представляющей собой водный раствор с рН 7,2±0,3, содержащий 13-19 г/л агар-агара + 8-12 г/л сахарозы + 1,3-1,9 г/л NH4NO3 + 0,4-0,6 г/л KH2PO4 + 0,4-0,6 г/л NaH2PO4 + 0,6-0,8 г/л (NH4)2SO4 + 0,18-0,22 г/л Mg(NO3)2 + 0,05-0,07 г/л FeCl3 + 0,018-0,022 г/л CaCl2), подготовку плотной питательной среды с тестовыми микроорганизмами (МППС, состоящей из СППС с выращенной на ее поверхности сплошной колонией Rhodotorula sp.

Изобретение относится к области медицины, в частности к молекулярной онкологии, и предназначено для прогнозирования развития метастазов в печени у больных раком толстой кишки.

Изобретение относится к биотехнологии и к области молекулярной диагностики. Предложен набор для получения реакционной смеси для синтеза 3'-O-пропаргил-модифицированной нуклеиновой кислоты. Набор содержит по меньшей мере один дезоксинуклеотидтрифосфат (дНТФ), по меньшей мере один 3'-O-пропаргильный аналог нуклеотида и полимеразу, которая способна встраивать 3'-O-пропаргильный аналог нуклеотида в цепь целевой нуклеиновой кислоты. В одном варианте полимераза представляет собой полимеразу Thermococcus sp.9°N-7 и содержит по меньшей мере одну мутацию, выбранную из D141A, Е143А, Y409V и A485L. Изобретение позволяет получать модифицированные нуклеиновые кислоты, которые не существуют в природных биологических системах и имеют диапазон размеров, соответствующих ожидаемым длинам нуклеиновых кислот, комплементарных матрице. 8 з.п. ф-лы, 30 ил., 2 табл., 10 пр.
Наверх