Способ калибровки энкодеров рычажной системы экзоскелета

Изобретение относится к робототехнике и может быть использовано при калибровке энкодеров рычажных систем экзоскелетов. Согласно изобретению рычажную систему экзоскелета приводят в произвольное положение, в котором фактические углы поворота рассчитывают путем решения обратной задачи кинематики. Техническим результатом изобретения является уменьшение количества и сложности оборудования, необходимого для калибровки энкодеров рычажной системы экзоскелета, не имеющего приводов. 2 ил.

 

Изобретение относится к робототехнике и может быть использовано при калибровке энкодеров рычажных систем экзоскелетов.

Известен способ калибровки и определения смещения углового энкодера относительно ротора электромотора, защищенный патентом US 9641108 B2, кл. H02P 6/16, G01R 23/00, 2017 г., заключающийся в том, что ротор электромотора устанавливают в известное положение путем возбуждения его обмоток, считывают показания энкодера в данном положении, вычисляют калибровочную поправку как разность между показаниями энкодера и фактическим углом поворота ротора, записывают калибровочную поправку в память электронного энкодера.

Существенными признаками аналога, совпадающими с признаками заявляемого изобретения, являются вычисление калибровочной поправки и запись калибровочной поправки в память электронного энкодера.

Недостатком данного способа является необходимость применения специализированного оборудования для установки оси, контролируемой калибруемым энкодером, в положение с заранее известным углом поворота.

Наиболее близким по технической сущности к заявляемому способу (прототипом) является способ калибровки угловых энкодеров роботизированных манипуляторов, защищенный патентом US 9427872 B1, МПК B25J 9/00, B25J 9/16, G01D 5/26, G01D 5/244, 2016 г., заключающийся в том, что сегмент манипулятора, положение которого контролируется энкодером, с помощью привода (актуатора) сначала устанавливают в одно из граничных положений, затем с известным шагом изменяют его фактический угол и считывают соответствующие показания энкодера, вычисляют калибровочную поправку, записывают калибровочную поправку в память электронного энкодера.

Существенными признаками прототипа, совпадающими с признаками заявляемого изобретения, являются вычисление калибровочной поправки и запись калибровочной поправки в память электронного энкодера.

Недостатком данного способа является необходимость установки сегмента манипулятора в ряд положений с заранее известными углами поворота, что требует наличия приводов, подключаемых к рычажной системе манипулятора, или специализированного оборудования.

Техническим результатом изобретения является уменьшение количества и сложности оборудования, необходимого для калибровки энкодеров рычажной системы экзоскелета, не имеющего приводов.

Для достижения технического результата в способе калибровки энкодеров, включающем вычисление калибровочной поправки и запись калибровочной поправки в память электронного энкодера, для вычисления калибровочной поправки дополнительно фиксируют основание экзоскелета на стенде, расположенном рядом с операционным столом, раз выполняют измерения, включающие приведение рычажной системы экзоскелета в произвольное положение на операционном столе, запись показаний -го энкодера , , где - количество энкодеров, - номер измерения, измерение декартовых координат узловых точек рычажной системы экзоскелета, вычисление фактических углов поворота энкодеров в кинематических парах рычажной системы экзоскелета путем решения обратной задачи кинематики на основе декартовых координат узловых точек рычажной системы экзоскелета, для каждого -го энкодера находят свободный член линейной зависимости показаний энкодеров от фактических углов поворота :

методом наименьших квадратов на основе пар записанных показаний энкодеров и фактических углов поворота , принимают калибровочную поправку равной свободному члену .

Теоретическое доказательство наличия причинно-следственной связи между заявляемыми признаками и достигаемым техническим результатом заключается в следующем.

Для измерения углов поворота в рычажной системе экзоскелета могут применяться энкодеры. При использовании экзоскелета для захвата движений человека необходимо соответствие начал отсчета углов поворота в энкодерах и начал отсчета углов поворота в используемой кинематической модели рычажной системы экзоскелета. Данное соответствие может быть достигнуто путем прецизионного монтажа энкодеров. Более простым способом является монтаж энкодеров с произвольной ориентацией начала отсчета угла поворота и их последующая калибровка. Обозначим углы поворота относительно начал отсчета кинематической модели рычажной системы экзоскелета как фактические. Задачей калибровки является определение показаний энкодеров, соответствующих нулевым значениям фактических углов поворота и запись этой калибровочной поправки в память электронных энкодеров.

Калибровочная поправка может быть определена как разность между показаниями энкодера и фактическими углами поворота. Для этого можно привести рычажную систему экзоскелета в положение с известными фактическими углами поворота, как это сделано в прототипе, либо измерить фактические углы поворота с помощью приборов прямого измерения. Использование обоих вариантов затруднено сложной конструкцией рычажной системы экзоскелета и отсутствием приводов, поэтому требует применения сложного специализированного оборудования.

До калибровки показания энкодеров и фактические углы поворота отличаются на постоянную величину, равную калибровочной поправке. Для ее определения в заявляемом способе для каждого энкодера предлагается определить коэффициенты линейного уравнения, описывающего зависимость между показаниями энкодеров и фактическими углами. Для этого рычажная система экзоскелета приводится в несколько различных положений. В каждом положении записываются показания энкодеров и декартовы координаты узловых точек рычажной системы экзоскелета. На основе декартовых координат узловых точек рычажной системы экзоскелета вычисляются фактические углы поворота в кинематических парах рычажной системы экзоскелета. Для каждого -го энкодера по полученным парам показаний энкодеров и фактических углов поворота определяется свободный член линейного уравнения зависимости вида:

где - показания энкодера,

- фактические углы,

- свободный член.

Значение свободного члена может быть определено с помощью метода наименьших квадратов. Значение является искомой калибровочной поправкой. После записи калибровочной поправки в память электронного энкодера, показания энкодера совпадают со значением фактических углов поворота.

Предлагаемый способ калибровки энкодеров рычажной системы экзоскелета (фиг. 1) заключается в том, что основание 1 экзоскелета фиксируют на стенде 2, расположенном рядом с операционным столом 3. Далее задают количество проводимых измерений . Затем для повторяют следующую последовательность действий:

1. Локтевое сочленение 5 и рабочее окончание 6 экзоскелета располагают в произвольных точках операционного стола.

2. Записывают соответствующие -му положению экзоскелета показания энкодеров , , где - число калибруемых энкодеров.

3. Измеряют декартовы координаты узловых точек рычажной системы экзоскелета.

4. Рассчитывают фактические углы поворота сочленений экзоскелета в -м положении на основе известных длин звеньев экзоскелета, декартовых координат рабочего окончания, локтевого и плечевого сочленений путем решения обратной задачи кинематики.

Для каждого -го энкодера находят свободный член линейной зависимости показаний энкодера от фактического угла поворота на основе рассчитанных значений фактических углов поворота и соответствующих им показаний энкодера методом наименьших квадратов. Пример определения значения по набору значений и для одного энкодера представлен на фиг. 2. Значение является искомой калибровочной поправкой. Вычисленную калибровочную поправку записывают в память электронного энкодера.

Калибровку энкодеров рычажной системы второй «руки» 7 экзоскелета выполняют аналогично.

Таким образом, заявляемое изобретение не требует оборудования для приведения рычажной системы экзоскелета в положение с известными фактическими углами и оборудования для прямого измерения углов. Фактически углы поворота кинематических пар, в которых установлены калибруемые энкодеры, определяются косвенно на основе известных длин звеньев рычажной системы экзоскелета и декартовых координат ее узловых точек.

На фиг. 1 приведено расположение основания 1 экзоскелета, стенда 2 для фиксации экзоскелета, операционного стола 3, плечевого сочленения 4, локтевого сочленения 5, рабочего окончания 6 и второй «руки» 7 экзоскелета.

На фиг. 2 приведена визуализация примера калибровки для энкодера, измеряющего ротацию плечевого звена рычажной системы экзоскелета. По оси абсцисс откладывается фактический угол поворота . По оси ординат откладываются показания энкодера . На координатной плоскости отложены точки , , соответствующие результатам косвенного измерения фактических углов и показаниям энкодера . Также приведен график уравнения зависимости между показаниями энкодера и фактическим углом .

В соответствии с предлагаемым способом осуществляют следующие действия над экзоскелетом, стендом, операционным столом и другими материальными объектами (фиг. 1):

1. Фиксируют основание 1 экзоскелета на стенде 2, расположенном рядом с операционным столом 3.

2. Выбирают количество проводимых измерений . Затем для повторяют следующую последовательность действий:

2.1. Перемещают рычажную систему экзоскелета в произвольное -е положение, путем перемещения локтевого сочленения 5 и рабочего окончания 6 экзоскелета в произвольные точки операционного стола.

2.2. Записывают соответствующие -му положению экзоскелета показания энкодеров , , где - число калибруемых энкодеров.

2.3. Измеряют декартовы координаты узловых точек рычажной системы экзоскелета.

2.4. Определяют углы поворота путем решения обратной задачи кинематики в -м положении манипулятора на основе известных длин звеньев экзоскелета, декартовых координат рабочего окончания и центров сочленений.

3. Для каждого -го энкодера:

3.1. Находят свободный член линейной зависимости показаний энкодера от фактических углов поворота на методом наименьших квадратов. Пример определения значения по набору значений и для одного энкодера представлен на фиг. 2.

3.2. Записывают коэффициент как калибровочную поправку в память электронного энкодера.

Один из вариантов осуществления изобретения для экзоскелета, описанного в дистанционном манипуляторе, защищенном патентом RU №125508, кл. B25J 3/04, 2013 г., заключается в следующем.

Экзоскелет фиксируют на жесткой раме, закрепленной на операционном столе (фиг. 2).

В соответствие с заявляемым способом семь раз перемещают одну «руку» экзоскелета в произвольное положение на операционном столе.

Для каждого положения с помощью системы управления экзоскелетом получают показания энкодеров и записывают их.

С помощью средств прямого измерения на основе известных конструктивных параметров стенда и стола определяют декартовы координаты центров локтевого и лучезапястного сочленений, центра схвата относительно центра плечевого сочленения «руки» экзоскелета.

Фактические углы поворота в кинематических парах рычажной системы экзоскелета вычисляют путем решения обратной задачи кинематики с помощью решения, предложенного в работе [Petrenko, V.I. Calculating rotation angles of the operator's arms based on generalized coordinates of the master device with following anthropomorphic manipulator in real time / V.I. Petrenko, F.B. Tebueva, V.B. Sychkov, V.O. Antonov, M.M. Gurchinsky // International Journal of Mechanical Engineering and Technology (IJMET). - 2018. - Vol. 9, Issue 7 (2018). - pp. 447-461].

С помощью метода наименьших квадратов находят значения для каждого энкодера.

Найденные коэффициенты записывают в память электронных энкодеров с помощью системы управления экзоскелетом.

Для упрощения процесса вычислений может использоваться ЭВМ. Процедура калибровки может быть автоматизирована путем реализации программного модуля калибровки в составе системы управления экзоскелетом.

Пример калибровочных данных, полученных с помощью заявляемого способа для энкодера, измеряющего ротацию плечевого звена рычажной системы экзоскелета, приведен на фиг. 2.

Способ калибровки энкодеров рычажной системы экзоскелета, включающий вычисление калибровочной поправки и запись калибровочной поправки в память электронного энкодера, отличающийся тем, что для вычисления калибровочной поправки дополнительно фиксируют основание экзоскелета на стенде, расположенном рядом с операционным столом, n раз выполняют измерения, включающие приведение рычажной системы экзоскелета в произвольное положение на операционном столе, запись показаний i-го энкодера di,j, , где m - количество энкодеров, - номер измерения, измерение декартовых координат узловых точек рычажной системы экзоскелета, вычисление фактических углов поворота ϕi,j энкодеров в кинематических парах рычажной системы экзоскелета путем решения обратной задачи кинематики на основе декартовых координат узловых точек рычажной системы экзоскелета, для каждого i-го энкодера находят свободный член bi линейной зависимости показаний энкодеров di от фактических углов поворота ϕi:

di = ϕi + bi,

методом наименьших квадратов на основе n пар записанных показаний энкодеров di,j и фактических углов поворота ϕi,j, принимают калибровочную поправку равной свободному члену bi.



 

Похожие патенты:

Изобретение относится к измерительной технике и может быть использовано для высокоточных абсолютных измерений угловых перемещений. Техническим результатом является повышение точности измерений и улучшение помехозащищенности в условиях воздействия электромагнитных помех.

Изобретение относится к области геофизических исследований скважин и предназначено для контроля положения инструмента буровой установки. Техническим результатом изобретения является упрощение монтажа магнитного модулятора на валу лебедки буровой установки.

Группа изобретений относится к способу и устройству контроля целостности лопастей несущих винтов вертолета в соосной схеме их расположения. Для реализации способа используют зондирующее излучение СВЧ диапазона для измерения колебательных параметров перемещения лопастей, фазовый метод определения амплитуды махового колебания лопасти, а также используют информацию об угле установке лопастей, получаемую от штатных датчиков.
Изобретение относится к метрологии, в частности к устройствам для измерения угла поворота дроссельной заслонки. Устройство содержит генератор электромагнитных колебаний, соединенный первым плечом с источником питания, и измеритель, волноводный циркулятор, отрезок прямоугольного волновода, детектор, усилитель и отрезок дугообразного диэлектрического волновода с перемещающейся по его поверхности металлической пластинкой.

Изобретение относится к измерительной технике и может быть использовано для измерения угловых перемещений с помощью преобразователя перемещения индукционного типа.

Изобретение относится к области военной техники, в частности к датчикам положения (ДП) установленного оборудования, в том числе вооружения объектов типа БМП, БМД, БТР, танков и другой военной техники, такой как подъемно-мачтовые устройства, опорно-поворотные устройства, а также систем управления дистанционно управляемых модулей систем вооружения.

Изобретение относится к электроизмерительной технике и может быть использовано в системах дистанционного управления. Двухкоординатный преобразователь угловых перемещений содержит корпус с крышкой, ограничивающей угол поворота крестовины.

Предлагаемое изобретение относится к измерительной технике и может быть использовано для измерения угловых перемещений, а именно для преобразования ограниченного угла поворота вала в цифровой код при управлении угловым положением подвижных частей объекта регулирования.

Изобретение относится к области измерительной и информационной техники. Техническим результатом заявляемого изобретения является упрощение процедуры измерения угла вращения.

Изобретение относится к измерительной технике, а именно к области бесконтактных измерений угла поворота вала. Бесконтактный истинно двухосевой датчик угла поворота вала использует магнитную систему на основе малого дипольного диаметрально намагниченного магнита, совершающего угловое движение с двумя степенями свободы в рабочей плоскости, параллельной лицевой поверхности программируемого двухосевого энкодера Холла с интегрированными магнитоконцентрирующими (ИМК) дисками, выполняющими физическое преобразование магнитного поля в рабочей плоскости в перпендикулярное, к которому истинно чувствителен датчик Холла с ИМК, при этом используются другие типы датчиков, высокочувствительные только к компонентам магнитного поля в рабочей (XY) плоскости и полностью или сравнительно малочувствительные к вертикальной составляющей (Z) магнитного поля, а интегральный компонент истинно двухосевого датчика может быть смонтирован с любой стороны платы, также центральный конструктивный компонент или элемент детали корпуса – вставка – жестко соединен с корпусом и обеспечивает точное позиционирование в корпусе статора друг относительно друга дипольного магнитного ротора и интегрального компонента двухосевого магниточувствительного датчика с оптимальным рабочим расстоянием между ними, кроме того, в датчике угла поворота вала используется дипольный магнит, намагниченный параллельно той плоскости, в которой ротор совершает рабочее угловое движение с двумя степенями свободы, также имеется интегральный истинно двухосевой магниточувствительный датчик (энкодер) с синусно-косинусными первичными выходными сигналами, включенный в схему обработки сигнала, и избыточный интегральный датчик, объединяющий в одном интегральном корпусе два магниточувствительных элемента.

Изобретение относится к способу определения размерных параметров газотурбинного двигателя, содержащего корпус и диск, на котором закреплена по меньшей мере одна лопатка, при этом указанный корпус окружает диск и указанную по меньшей мере одну лопатку, указанный диск приводится во вращение валом вокруг оси, называемой осью z газотурбинного двигателя.
Наверх