Способ определения скорости высвобождения инкапсулированного в ниосомы цефотаксима in vitro

Изобретение относится к области биотехнологии, в частности к способу определения скорости высвобождения инкапсулированного в ниосомы цефотаксима in vitro. Способ определения скорости высвобождения инкапсулированного в ниосомы цефотаксима in vitro, включающий инкапсулирование цефотаксима в ниосомальной дисперсии, далее ниосомы цефотаксима помещают в диализный мешок, который переносят в химический стакан, содержащий фосфатно-солевой буфер, раствор с погруженным диализным мешком постоянно перемешивают на магнитной мешалке, образцы раствора отбирают через 1, 2, 4, 6, 24 часа, анализируемый раствор перед анализом разбавляют и фильтруют, концентрацию цефотаксима в образце определяют методом обращенно-фазной высокоэффективной хроматографии в изократическом режиме элюирования не менее 5 раз для каждого анализируемого раствора, при определенных условиях. Вышеописанный способ позволяет сократить длительность и трудоемкость процесса определения скорости высвобождения и повысить его производительность. 1 ил., 3 пр.

 

Область техники, к которой относится изобретение

Изобретение относится к области биотехнологии, в частности к способу определения скорости высвобождения инкапсулированного в ниосомы антибитика in vitro и может быть использовано для исследования везикул и в терапевтических целях.

Уровень техники

Известен способ эпидурального введения терапевтического соединения позвоночному, включающий инкапсулирование терапевтического соединения в системе доставки лекарственного средства, имеющей замедленную скорость высвобождения соединения от, примерно, 2 до, примерно, 7 дней, и введение указанной системы доставки лекарственного средства в разовой эпидуральной дозе позвоночному, причем система доставки лекарственного средства включает мультивезикулярные липосомы, полученные из группы, состоящей из фосфатидилхолинов яйца, дипальмитоилфосфатидилхолинов, диолеоилфосфатидилхолинов, дистеароилфосфатидилхолинов, дипальмитоилфосфатидилглицеринов, диолеоилфосфатидилглицеринов и их приемлемых комбинаций (см. патент RU 2215522).

Недостатком данного способа является - отсутствие информации по способу определения скорости высвобождения терапевтического соединения.

Известна лекарственная форма с постоянной скоростью высвобождения лекарственного вещества, включающая стенку, образующую полость, расширяющийся слой и слой, содержащий лекарственное вещество, расположенные внутри полости, причем стенка выполнена с выходным отверстием или возможностью образования выходного отверстия в ней, и по меньшей мере часть стенки является полупроницаемой, отличающаяся тем, что расширяющийся слой расположен в полости на удалении от выходного отверстия и связан посредством текучей среды с полупроницаемой частью стенки, при этом содержание лекарственного вещества составляет по меньшей мере 20% от общей массы слоя, содержащего лекарственное вещество, который расположен в полости прилегающим к выходному отверстию и непосредственно или опосредованно контактирующим с расширяющимся слоем, а между внутренней поверхностью стенки и по крайней мере наружной поверхностью слоя, содержащего лекарственное вещество, размещен способствующий продвижению слой (см. пат. RU №2246295).

Рассмотренный способ характеризуется следующими недостатками: длительность, сложность и многостадийность процесса, а также отсутствие информации по способу определения скорости высвобождения лекарственного вещества.

Известен способ сравнительной оценки высвобождения in vitro/in vivo препаратов пролонгированного действия индапамида, триметазидина, ципрофлоксацина. Выполняется при следующих условиях: лопастная мешалка, число оборотов - 50 об/мин, временные точки - 1, 2, 3, 4, 6 часов, температура - 37±0,5°С, среда растворения - буферные растворы с рН: 1,2; 4,3; 6,8, объем среды растворения: 500 мл (индапамид и триметазидин), 900 мл (ципрофлоксацин). Количественное определение - СФМ при длине волны: 240 нм (индапамид), 270 нм (триметазидин), 327 нм (ципрофлоксацин) (см. Сравнительная оценка высвобождения in vitro / in vivo препаратов пролонгированного действия индапамида, триметазидина, ципрофлоксацина / Шлыков, Вадим Сергеевич // автореферат на соиск. канд. фарм. наук. - Москва, 2011. - с. 24).

Недостатками данного способа является малая производительность процесса; отсутствие возможности применения способа у инкапсулированных лекарственных форм препаратов.

Наиболее близким изобретением к описываемому способу по технической сущности является способ разработки состава, характеристики, стабильности и in vitro оценки нимесулида, включенного в ниосомы. Он заключается в определении скорости высвобождения нимесулида методом мембранной диффузии. Для этого 1 мл ниосомальной суспензии помещают в диффузионную камеру (стеклянную трубку) диаметром 2,5 см, нижний открытый конец стеклянной трубки покрыт пропитанной целлюлозной мембраной. Эту ячейку затем суспендируют в химическом стакане, содержащем PBS рН 7,4 (100 мл). Постоянно перемешивают со скоростью 50 об/мин при 37±10°С на магнитной мешалке с термостатом. Аликвоты отбирали с почасовой периодичностью и заменяли одновременно равным объемом свежего PBS. Концентрацию нимесулида в образцах анализировали спектрофотометрически. (Formulation, characterization, stability and in vitro evaluation of nimesulide niosomes / H.S. Chawda, CP. Jain, N.K. Bairwa // Pharmacophore. - 2011. - Vol. 2 (3). - P. 131-148).

Рассмотренный способ имеет ряд недостатков, основными из которых является: трудоемкость, длительность и малая производительность процесса, а также отсутствие данных по определению скорости высвобождения антибактериальных препаратов, инкапсулированных в ниосомы.

Раскрытие изобретения

Задачей изобретения являлась разработка такого способа определения скорости высвобождения инкапсулированного в ниосомы цефотаксима in vitro, который прост в исполнении, позволяет получить информацию, которая влияет на фармакокинетику и фармакодинамику инкапсулированного вещества, а соответственно, на профиль безопасности и эффективности лекарственного препарата.

Технический результат, который может быть получен с помощью предлагаемого изобретения, сводится к сокращению длительности и трудоемкости процесса, повышению его производительности.

Технический результат достигается с помощью способа определения скорости высвобождения инкапсулированного в ниосомы цефотаксима in vitro, в котором производят взятие 1 мл ниосомальной дисперсии, постоянное перемешивание в химическом стакане на магнитной мешалке, содержащем 100 мл фосфатно-солевого буфера, при этом в ниосомальную дисперсию инкапсулируют цефотаксим, помещают в диализный мешок (10-14 кДа, ширина 10 мм), который переносят в химический стакан, содержащий 0,01 М фосфатно-солевого буфера (рН=7,2-7,4), причем раствор с погруженным диализным мешком перемешивают на магнитной мешалке при (37±1)°С, причем образцы раствора отбирают через 1, 2, 3.5, 5, 24 часа, анализируемый раствор перед анализом разбавляют в 10 раз раствором 0,02 М раствора ацетата аммония (рН=4,7) и фильтруют через PVDF фильтр с размером пор 0,2 мкм.

Сущность способа определения скорости высвобождения инкапсулированного в ниосомы цефотаксима in vitro, включающий взятие 1 мл ниосомальной дисперсии, постоянное перемешивание в химическом стакане на магнитной мешалке, содержащем 100 мл фосфатно-солевого буфера, при этом в ниосомальную дисперсию инкапсулируют цефотаксим, помещают в диализный мешок (10-14 кДа, ширина 10 мм), который переносят в химический стакан, содержащий 0,01 М фосфатно-солевого буфера (рН=7,2-7,4), причем раствор с погруженным диализным мешком перемешивают на магнитной мешалке при (37±1)°С, причем образцы раствора отбирают через 1, 2, 3.5, 5, 24 часа, анализируемый раствор перед анализом разбавляют в 10 раз раствором 0,02 М раствора ацетата аммония (рН=4,7) и фильтруют через PVDF фильтр с размером пор 0,2 мкм.

Краткое описание чертежей и их материалов

На фиг. 1 дан способ определения скорости высвобождения инкапсулированного в ниосомы цефотаксима in vitro, переход в раствор цефотаксима, инкапсулированного в ниосомы, в ходе диализа против 0,01 М фосфатно-солевого буфера при (37±1)°С.

Осуществление изобретения

Примеры конкретного выполнения способа определения скорости высвобождения инкапсулированного в ниосомы цефотаксима in vitro.

Пример №1

Для этого 1 мл очищенной ниосомальной дисперсии препаратов 3 различных составов:

- S60-60%: молярное соотношение сорбитана моностеарата, холестерина, ПЭГ-4000 и дицетилфосфата 60:34:5:1;

- S60-50%: молярное соотношение сорбитана моностеарата, холестерина, ПЭГ-4000 и дицетилфосфата 50:44:5:1;

- S60-40%: молярное соотношение сорбитана моностеарата, холестерина, ПЭГ-4000 и дицетилфосфата 40:54:5:1;

с инкапсулированным цефотаксимом, помещают в диализный мешок (3,5 кДа, ширина 19 мм), который переносят в химический стакан, содержащий 100 мл 0,001 М фосфатно-солевого буфера (рН=7,0-7,2). Раствор с погруженным диализным мешком перемешивают на магнитной мешалке при (32±1)°С, образцы раствора отбирают через 0.5, 6, 24 часа. Анализируемый раствор перед анализом разбавляют в 5 раз раствором 0,002 М раствора ацетата аммония (рН=4,2) и фильтруют через PVDF фильтр с размером пор 0,1 мкм.

Концентрацию цефотаксима определяют методом обращенно-фазной высокоэффективной хроматографии в изократическом режиме элюирования. В ходе анализа используется хроматографическая колонка С18 250×3 мм, размер частиц 5 мкм. Подвижная фаза - смесь 0,02 М раствора ацетата аммония (рН=4,7) с ацетонитрилом в соотношении 90:10. Детекция осуществляется ультрафиолетовым детектором при длине волны 252 нм.

Объем вводимой пробы 10 мкл. Проводится не менее пяти измерений для каждого раствора (патент 2687493).

При заданных параметрах переход в раствор цефотаксима, инкапсулированного в ниосомы, в ходе диализа отследить не удалось.

Пример №2

Выполняется аналогично примеру 1, но ниосомальные дисперсии с инкапсулированным цефотаксимом, помещают в диализный мешок (10-14 кДа, ширина 10 мм), который переносят в химический стакан, содержащий 0,01 М фосфатно-солевого буфера (рН=7,2-7,4). Раствор с погруженным диализным мешком перемешивают на магнитной мешалке при (37±1)°С, образцы раствора отбирают через 1,2, 3.5, 5, 24 часа. Анализируемый раствор перед анализом разбавляют в 10 раз раствором 0,02 М раствора ацетата аммония (рН=4,7) и фильтруют через PVDF фильтр с размером пор 0,2 мкм.

Согласно полученным данным, высвобождение цефотаксима из ниосомальных микрочастиц наиболее интенсивно происходит в первые 4 часа (фиг. ). В этот период происходит высвобождение 70-80% от исходного количества инкапсулированного антибиотика. Спустя 24 часа диализа ниосомы сохраняют 15-19% от исходного количества инкапсулята. Кроме того, скорость высвобождения цефотаксима в раствор уменьшается с увеличением доли холестерина относительно Span 60 в составе ниосом.

Пример №3

Выполняется аналогично примеру 1, но ниосомальные дисперсии с инкапсулированным цефотаксимом, помещают в диализный мешок (12-14 кДа, ширина 45 мм), который переносят в химический стакан, содержащий 100 мл 0,1 М фосфатно-солевого буфера (рН=7,4-7,6). Раствор с погруженным диализным мешком перемешивают на магнитной мешалке при (40±1)°С, образцы раствора отбирают через 4, 6, 12, 24 часа. Анализируемый раствор перед анализом разбавляют в 12 раз раствором 0,2 М раствора ацетата аммония (рН=5,0) и фильтруют через PVDF фильтр с размером пор 0,45 мкм.

При заданных параметрах переход в раствор цефотаксима, инкапсулированного в ниосомы, в ходе диализа отследить не удалось.

Таким образом, оптимальным является пример 2. Рассмотренный способ по сравнению с прототипом и другими известными техническими решениями имеет следующие преимущества: сокращение длительности и трудоемкости процесса, повышение его производительности.

Способ определения скорости высвобождения инкапсулированного в ниосомы цефотаксима in vitro, включающий инкапсулирование цефотаксима в 1 мл ниосомальной дисперсии, далее ниосомы цефотаксима помещают в диализный мешок 10-14 кДа, ширина 10 мм, который переносят в химический стакан, содержащий 100 мл 0,01 М фосфатно-солевого буфера рН=7,2-7,4, раствор с погруженным диализным мешком постоянно перемешивают на магнитной мешалке при 37±1°С, образцы раствора отбирают через 1, 2, 4, 6, 24 часа, анализируемый раствор перед анализом разбавляют в 10 раз раствором 0,02 М раствора ацетата аммония рН=4,7 и фильтруют через PVDF фильтр с размером пор 0,2 мкм, концентрацию цефотаксима в образце определяют методом обращенно-фазной высокоэффективной хроматографии в изократическом режиме элюирования не менее 5 раз для каждого анализируемого раствора.



 

Похожие патенты:

Изобретение относится к улучшенным способам получения амфифильных соединений имидазолиния, таких как хлорид 1-[2-(9(Z)-октадеценоилокси)этил]-2-(8(Z)-гептадеценил)-3-(2-гидроксиэтил)имидазолиния (DOTIM). В частности, изобретение относится к способам синтеза таких соединений, в которых отказываются от использования токсичных реагентов, которые являются более экономичными и приводят к меньшему количеству отходов, чем обычные методы.

Настоящее изобретение относится к липосомальной фармацевтической композиции, содержащей от приблизительно 0,8 мас.% до приблизительно 1 мас.% доцетаксела, от приблизительно 30 мас.% до приблизительно 38 мас.% соевого фосфатидилхолина, от приблизительно 0,2 мас.% до приблизительно 0,8 мас.% натрия холестерилсульфата, от приблизительно 61 мас.% до приблизительно 68 мас.% сахарозы и регулятор рН, где рН липосомальной композиции составляет менее 3,5, а также к способу ее получения.

Изобретение может быть использовано в фармацевтике и относится к твердой пероральной лекарственной форме, содержащей липосомы, которые включают конъюгат по меньшей мере одного типа проникающего в клетки пептида (CPP) и соединения, выбранного из липида и жирной кислоты. Указанный конъюгат является частью двойного липидного слоя липосомы.

Изобретение относится к области химии и фармацевтики, а именно к способу определения величины адсорбции циннаризина липосомами, согласно которому диализ проводят в основном диализаторе и диализаторе сравнения, заполненных коллоидным раствором липосом с массовой долей липосом из соевого лецитина, равной 0,3059±0,0470%, и раствором циннаризина в кислоте хлористоводородной 0,1 М или раствором кислоты хлористоводородной 0,1 М соответственно, при объемном соотношении раствор циннаризина или раствор кислоты хлористоводородной и коллоидный раствор липосом 1:1, при этом объемы растворов, заполняющие диализаторы, равны.

Группа изобретений относится к области биотехнологии. Предложены способ и устройство для получения композиции или изолята экзосом или микровезикул.

Настоящая группа изобретений относится к медицине, а именно к онкологии, и касается лечения метастатического рака поджелудочной железы. Для этого вводят комбинацию лекарственных средств: липосомального иринотекана, оксалиплатина, лейковорина и 5-фторурацила.

Настоящее изобретение относится к способу получения липидной смеси, включающему приготовление спиртового раствора фосфатидилхолина и раствора альфа-токоферола и холестерина в хлороформе, смешивание указанных растворов и удаление хлороформа под вакуумом, при этом для удаления из липидной смеси спирта и остатков хлороформа указанную смесь подвергают лиофилизации в присутствии очищенной воды, размещенной в открытых емкостях отдельно от спиртового раствора липидной смеси на полках сублимационной камеры, причем отношение объема спирта к объему воды составляет не менее 1:2, с получением после окончания процесса лиофилизации твердой липидной смеси с остаточным количеством органических растворителей: хлороформа - менее 0.5 ppm., этанола - менее 0.3 ppm.

Группа изобретений относится к области медицины и фармацевтики. Первый объект представляет собой эмульсию перфторуглеродных соединений медицинского назначения как основы кровезаменителя, включающую быстровыводящийся компонент перфтордекалин, смешанную перфторуглеродную добавку и фосфолипиды, отличающуюся тем, что включает фосфолипиды в липосомальной форме, выполняющую роль эмульгатора и приготовленную гомогенизацией под давлением в пределах 60-120 атм в водно-солевой среде, а перфторуглеродная добавка представляет собой смесь перфтороктилбромида и перфтортрипропиламина.

Группа изобретений относится к области медицины и фармацевтики. Первый объект представляет собой липосомную композицию, содержащую липосомы, для пероральной доставки пептидного лекарственного средства, белка или антитела, причем указанные липосомы содержат тетраэфирные липиды (TEL) и проникающие в клетки пептиды (CPP), где указанные CPP присоединены к соединению, которое является частью липидного бислоя липосомы.

Изобретение относится к химии и фармацевтической промышленности, а именно к способу получения нанолипосомальной формы бетулина, обладающей гепатопротекторной активностью и состоящей из трех компонентов: подсолнечного лецитина, бетулина и ланолина. В соответствии с предложенным способом все три указанных компонента последовательно растворяют в горячем диоксане, перемешивают смесь до образования прозрачного гомогенного раствора с последующим осаждением холодной дистиллированной водой до устойчивой эмульсии липосом, которые после осаждения отфильтровывают, промывают и сушат до постоянной массы.

Изобретение относится к области фармацевтики и ветеринарной медицины, а именно к средству для профилактики и лечения вагинита у коров. Средство содержит в качестве активной части гидрохлорид хитозана с определенной молекулярной массой и аскорбиновую или борную кислоту, а в качестве вспомогательной части − гелеобразующую основу, выбранную из триблок сополимера этиленоксида и пропиленоксида, или смеси желатины с глицерином, или триблок сополимера этиленоксида и пропиленоксида с желатиной, или триблок сополимера этиленоксида и пропиленоксида с желатиной и тетраглицеролатом кремния, или кондитерского жира с пчелиным воском и неионного поверхностно-активного вещества ТВИН-80, а также воду при определенном соотношении компонентов.
Наверх