Безопасный вольтамперометрический способ определения ионов сурьмы с помощью графитового электрода

Изобретение относится к области аналитической химии ионов сурьмы и направлено на разработку вольтамперометрического способа определения ионов сурьмы в водных растворах. Технический результат заключается в повышении безопасности за счёт использования электрода без ртутной плёнки. В заявленном способе для определения ионов сурьмы задают отрицательный потенциал накопления стибнина -900 мВ в течение 60-180 с и развертку потенциала в анодном направлении от -600 мВ до +600 мВ со скоростью 60-120 мВ/с и регистрируют в режиме переменно-токовой вольтамперометрии с помощью вольтамперометрического анализатора аналитический сигнал в виде пика с максимум предельного диффузионного тока окисления элементной сурьмы до ее оксида при потенциалах +50…+200 мВ относительно хлоридсеребряного электрода сравнения и вспомогательного платинового электрода. 4 ил.

 

Изобретение относится к области аналитической химии ионов сурьмы и направлено на разработку вольтамперометрического способа определения ионов сурьмы в водных растворах.

Изобретение предназначено для практического химического анализа ионов сурьмы в жидких образцах(природных поверхностных и сточных вод, технологических растворов и т.д.) и применения в экологических, медицинских и других лабораториях, выполняющих химико-аналитические определения ионов сурьмы.

Наиболее близким по технической сущности (аналогом) служит гидридный метод восстановления ионных форм сурьмы щелочным раствором борогидрида натрия в хлороводородной кислоте с последующей атомизацией гидрида сурьмы до элементной сурьмы(0) и водорода по реакции

2SbH3 → 2Sb0+3Н2 ↑ (900°С). Температура атомизации гидрида сурьмы определяется прочностью связи элемента с водородом и необходимым условием атомизациистибнина выступает температура до 1000°С. Образующийся на стадии атомизации атомный пар Sb(0) поглощает излучение от монохроматического источника с длиной волны 217,6 нм. Как правило в атомно-абсорбционной спектрометрии в качестве источника монохроматического излучения с аналитической линией элемента служат лампы с полым катодом. Свет от источника направляется в аналитическую зону атомно-абсорбционного спектрометра, представляющую собой Т - образную оптическую кювету из кварца, индукционно или иным способом нагретую до температуры около 1000°С.

[Новый справочник химика и технолога. Аналитическая химия. В трех томах. Ч. II. - Спб.: «Профессионал».2004, 2007. - С. 845-847. Новый справочник химика и технолога. Аналитическая химия. В трех томах. Ч. II. - Спб.: «Профессионал».2004, 2007. - С. 845-847]

Основным фактором опасности служит высокая температура и выделяющиейся газообразный водород, который удаляется из индукционной кварцевой печи потоком инертного газа - аргона, который в серийных спектрометрах выступает в качестве рабочего тела:

- дозировка восстановителя,

- управление механизмами открывания и закрывания реактора и других исполнительных механизмов.

Если в качестве атомизатора гидрида сурьмы применяется графитовая кювета, то температура атомизации выше 1000°С.

Предлагаемый способ не основан на высоких температурах, использует комнатную температуру и электролиз с накоплением гидрида сурьмы из кислого водного раствора (фигура 1). В качестве рабочего электрода используется графитовый электрод (Экотест ВА, Москва).

Наиболее близким по технической сущности (прототипом) выбран [Способ определения сурьмы в водах в диапазоне 0,00010-0,03 мг/дм3. «МУ 08-48/021. Методика выполнения измерений массовой концентрации сурьмы в природных, питьевых и очищенных сточных водах методом инверсионной вольтамперометрии». Томск. ТПИ, 1998, 2001], отличающийся тем, что для определения сурьмы в анализируемых кислых хлоридных растворах методом инверсионной вольтамперометрии использовали ртутно-пленочный рабочий электрод и хлорид серебряный электрод сравнения, электронакопление при постоянном катодном потенциале - 0,5 В в течение 60…300 с, диапазон развертки от -0,5 до +0,1 В и регистрировали аналитический сигнал сурьмы в виде тока пика при потенциалах 0,0…0,05 В.

Преимущество предлагаемого способа состоит в использовании графитового рабочего макроэлектрода КТЖГ 414324.005 №169, изготовленный в России и входящего в комплект программируемого анализатора Экотест ВА. Рабочий электрод не содержит токсичной ртутной пленки и безопасен в работе, может храниться в сухом виде, более удобен в эксплуатации, обеспечивает удовлетворительный коэффициент чувствительности 8,1 в уравнении (фигура 2)

I [мкА]=2,7+8,1 CAs [мкг/мл]

При восстановлении ионов сурьмы до стибнина 3%-ным щелочным раствором борогидрида натрия образуется избыток водорода

2NaBH4+2НСl → 2NaCl+В2Н6+4Н++4е

В2Н6↑ → ВН3↑+2е

2ВН4-+2Н+ → В2Н6+2Н+Н2↑, который в предлагаемом способе удаляется из при электродной области во время накопления (задают потенциал электролиза Е=-900 мВ относительно насыщенного хлоридсеребряного электрода сравнения). На рисунке (фигура 3) представлена зависимость величины аналитического сигнала от объема раствора восстановителя для рабочего раствора Sb(III) сконцентрацией 1 мкг/мл. Таким образом, оптимальный объем раствора восстановителя выбран 200 мкл. Экспериментальные величины вводили в программу анализатора Экотест ВА: потенциал накопления - 900 мВ, время накопления 90 с, диапазон анодной развертки - 600 мВ до +600 мВ, скорость анодной разверти 80 мВ/с. Уменьшение скорости развертки потенциала менее 60 мВ/с приводит к значительным погрешностям при анализе малых концентраций ионов сурьмы, а увеличение скорости развертки свыше 120 мВ/с связано с нелинейным увеличением тока пика ионов сурьмы (аналитического сигнала). В качестве вспомогательного противоэлектрода использовали проволочный платиновый электрод и трехэлектродная (классическая) схема измерения предельного диффузионного тока - аналитического сигнала.

В случае химического анализа низких концентраций предлагаемый способ предусматривает увеличение времени накопления (Фигура 4) и скорости развертки от 60 до 120 мВ/с. Вольтамперограммы регистрировали с помощью ЭКОТЕСТ ВА (Москва).

Пример.

В качестве модельных систем выбраны кислые водные растворы. В качестве фоновых - растворы хлороводородной кислоты (ХЧ) с добавками сурьмы(III). Приготовление серий рабочих растворов Sb(III) выполняли методом последовательного разбавления ГСО сурьмы(III) с содержанием 1000 мкгSb/см3 (Эко-аналитика, Москва). При этом рабочие растворы готовили в мерных колбах, доводя до метки раствором децимолярной хлороводородной кислоты. В качестве восстановителя всех форм сурьмы использовали 3%-ный щелочной раствор борогидрида натрия.

Например 100 г раствора восстановителя готовили следующим образом: в 96 г би-дистиллированной воды помещали в сосуд из полиэтилена, растворяли 1 г гидроксида натрия, затем добавляли 3 г борогидрида натрия. Серию модельных растворов готовили в пробирках объемом 15 мл с пробками. Серию модельных растворов равных объемов 10 мл и контрольный раствор объемом 10 мл помещали в пробирки и дозатором вносили по 200 мкл раствора восстановителя (Фигура 3), закрывали пробками и перемешивали. Все окисленные формы сурьмы в пробирках с добавками ГСО восстанавливали до гидрида сурьмы (стибнина)по реакции:

4 SbO-2 (ГСО)+3 NaBH4+4Н+ → 4 SbH3↑+3NaBO2+2Н2O

Через 15-20 минут регистрировали вольтамперограммы (фигуры 1 - 4) в переменно-токовом режиме с амплитудно-частотной модуляцией, рекомендуемой для твердых электродов фирмой - изготовителем анализатора Экотест ВА(Москва).

Далее ацидокомплекс стибнина восстанавливали на рабочем электроде из графита, накаливая при - 900 мВ в течение 60…180 секунд, затем в анодном направлении разворачивали потенциал со скоростью 60…120 мВ/с и регистрировали аналитический сигнал окисления элементной сурьмы до ее оксида в области +(50…200) мВ, пропорциональный концентрации Sb(III) в растворе.

Типичные вольтамперограммы контрольного (1, фигура 1) и растворов с добавками Sb(III) (2, 3,4, фигура 1) представлены на фигуре 1.

В случае концентраций ионов сурьмы менее 0,01 мкг/мл способ предусматривает увеличение времени накопления стибнина на рабочем графитовом электроде до 180 секунд (фигура 4) и увеличение скорости развертки анодного потенциала до 120 мВ/с.

Вольтамперометрический способ определения ионов сурьмы с помощью графитового электрода, отличающийся тем, что в качестве рабочего электрода используют графит; задают отрицательный потенциал накопления стибнина -900 мВ в течение 60 - 180 с и развертку потенциала в анодном направлении от -600 мВ до +600 мВ со скоростью 60 - 120 мВ/с и регистрируют в режиме переменно-токовой вольтамперометрии с помощью вольтамперометрического анализатора аналитический сигнал в виде пика с максимум предельного диффузионного тока окисления элементной сурьмы до ее оксида при потенциалах +50…+200 мВ относительно хлоридсеребряного электрода сравнения и вспомогательного платинового электрода.



 

Похожие патенты:

Использование: для определения массового содержания урана и плутония в растворах кулонометрическим методом. Сущность изобретения заключается в том, что при постоянной силе тока упаривают аликвоту раствора смешанного уран-плутониевого топлива до влажных солей, для определения плутония часть аликвоты растворяют в 1 моль⋅л-1 HClO4, окисляют Pu4+ до PuO22+ оксидом серебра (II), помещают пробу в электрохимическую ячейку, проводят титрование плутония в инертной атмосфере, при постоянной силе тока электрогенерированными ионами Fe2+, рассчитывают содержание плутония по количеству электричества, затраченному на электрохимическое восстановление Fe3+ до Fe2+ на электроде, вторую часть аликвоты упаренного раствора растворяют в 2 моль⋅л-1 H2SO4, восстанавливают уран и плутоний до U4+ и Pu3+ амальгамой цинка, окисляют уран и плутоний до UO22+ и Pu4+ соответственно, добавляя бихромат калия с избытком, помещают раствор в электрохимичекую ячейку с таким же раствором фонового электролита, как и при определении плутония, проводят титрование избытка бихромата калия электрогенерированными ионами Fe2+, зная общее количество внесенного в рабочий раствор бихромата калия и массу его избытка, определенную во втором титровании, рассчитывают его массу, затраченную на окисление U4+ и Pu3+, зная содержание плутония в растворе, определенное в первой части раствора, из общего количества бихромата калия вычитают часть, затраченную на окисление плутония, а по оставшемуся количеству бихромата калия рассчитывают содержание урана.

Гигрометр // 2652656
Изобретение относится к области аналитического приборостроения и может быть использовано в кулонометрических гигрометрах. Заявленный гигрометр, состоящий из кулонометрической ячейки, выполненной секционно, из двух частей - рабочей и контрольной, расположенных во внутреннем канале корпуса ячейки последовательно одна за другой, стабилизатора расхода газа, микроамперметра, кнопки «Контроль», источника постоянного тока.

Гигрометр // 2652656
Изобретение относится к области аналитического приборостроения и может быть использовано в кулонометрических гигрометрах. Заявленный гигрометр, состоящий из кулонометрической ячейки, выполненной секционно, из двух частей - рабочей и контрольной, расположенных во внутреннем канале корпуса ячейки последовательно одна за другой, стабилизатора расхода газа, микроамперметра, кнопки «Контроль», источника постоянного тока.

Изобретение относится к винодельческой промышленности и может быть использовано для оценки качества и установления натуральности (фальсификации) вин и виноматериалов. Способ предусматривает одновременное потенциометрическое титрование с кулонометрически генерированным основанием двух одинаковых анализируемых проб, построение средней кривой титрования по двум параллельным кривым, нанесение на этот график зависимости относительного отклонения от единичного конкретного значения времени титрования и по точке пересечения перпендикуляра, опущенного из точки максимума на среднюю кривую титрования, находят время, соответствующее точке конца титрования, по параметрам кривой титрования рассчитывают: концентрацию титруемых кислот в расчете на титруемые ионы водорода в ячейке, массовую концентрацию титруемых кислот, в пересчете на винную кислоту, формальное время титрования солевой части, суммарное содержание органических кислот в ячейке, содержание щелочных металлов, в пересчете на калий, буферную емкость, отношение активной кислотности к титруемой кислотности и относительную часть титруемых кислот в пробе; причем значения определяемых и рассчитанных параметров в качественной винодельческой продукции должны не выходить за установленные диапазоны.

Изобретение относится к области аналитической химии и может быть использовано при экологическом мониторинге природных, сточных вод при контроле состояния объектов окружающей среды. Способ определения примесей этилбензола, декана, никотиновой кислоты, никотинамида в воде включает в себя отбор проб в картридж, наполненный полимерным сорбентом.

Гигрометр // 2589516
Изобретение относится к области аналитического приборостроения, предназначено для измерения объемной доли влаги в газах, может быть использовано в гигрометрах, основанных на кулонометрическом методе измерения влажности. Гигрометр содержит датчик, включающий блок формирования потока со стабилизатором расхода газа, измерительный канал, в котором установлен кулонометрический чувствительный элемент, источник постоянного тока, измеритель тока электролиза.

Изобретение относится к аналитическому приборостроению и предназначено для измерения объемной доли влаги (ОДВ) в газах. Способ стабилизации динамических характеристик кулонометрических гигрометров заключается в том, что в гигрометре с целью стабилизации динамических характеристик независимо от температуры окружающей среды используется кулонометрическая ячейка, в которой поддерживается постоянной температура сорбента с использованием общего электрода ячейки.

Изобретение может быть использовано в гидрометаллургии, в различных геологических разработках при поиске и разведке. Способ определения платины в руде методом хронопотенциометрии заключается в том, что платину (IV) переводят в раствор и проводят хронопотенциометрическое определение.

Изобретение относится к аналитическому приборостроению. Кулонометрическая потенциостатическая установка, содержащая потенциостат, задатчик потенциала, подключенный к первому входу потенциостата, трехэлектродную электролитическую ячейку, рабочий электрод, которой соединен с общим проводом потенциостата, а электрод сравнения - со вторым входом потенциостата, резисторный преобразователь ″ток-напряжение″, включенный между выходом потенциостата и вспомогательным электродом ячейки, блок переключения полярности, подключенный к резисторному преобразователю ″ток-напряжение″, интегратор напряжения, выполненный по схеме интегрирующего преобразователя ″напряжение-частота″ с подключенным на его выходе счетчиком импульсов, блоки регистрации и управления, первый и второй развязывающие резисторы, первый и второй переключатели и эталонный резистор, причем вход и общий провод интегратора напряжения соединены с выходом блока переключения полярности соответственно через первый и второй развязывающие резисторы, а управляющие входы задатчика потенциала, блока переключения полярности, первого и второго переключателей, интегратора напряжения и блока регистрации соединены с соответствующими выходами блока управления.

Изобретение направлено на повышение точности и упрощение конструкции кулонометрической установки с контролируемым потенциалом. Указанный результат достигается тем, что кулонометрическая установка с контролируемым потенциалом, содержащая потенциостат, задатчик потенциала, подключенный к первому входу потенциостата, трехэлектродную электролитическую ячейку, рабочий электрод, которой соединен с общим проводом потенциостата, электрод сравнения соединен со вторым входом потенциостата, а вспомогательный электрод соединен с выходом потенциостата, резисторный преобразователь ″ток-напряжение″, включенный между выходом потенциостата и вспомогательным электродом ячейки, первый и второй развязывающие резисторы, переключатели, интегратор напряжения, блоки регистрации и управления, дополнительно содержит операционный усилитель, переключатель полярности и сдвоенный переключатель с первой и второй группами переключающих контактов, при этом вход переключателя полярности через первый и второй развязывающие резисторы соединен с резисторным преобразователем ″ток-напряжение″, а выход - со входом и общим проводом операционного усилителя, выход которого соединен со входом интегратора напряжения, переключающий контакт первой группы сдвоенного переключателя подключен к выводу резисторного преобразователя ″ток-напряжение″, нормально разомкнутый и нормально замкнутый контакты этой группы сдвоенного переключателя соединены соответственно со вспомогательным электродом электролитической ячейки и с общим проводом, переключающий контакт второй группы сдвоенного переключателя подключен ко второму входу потенциостата, нормально разомкнутый и нормально замкнутый контакты этой группы переключателя соединены соответственно с электродом сравнения электролитической ячейки и с выходом потенциостата, а управляющие входы задатчика потенциала, сдвоенного переключателя, переключателя полярности, операционного усилителя, интегратора напряжения и блока регистрации соединены с соответствующими выходами блока управления.
Наверх