Электрод для износостойкой электродуговой наплавки

Изобретение относится к электродам для электродуговой наплавки износостойкого сплава на детали, работающие в условиях абразивного износа, и может быть использовано при ремонте оборудования и восстановлении деталей. Электрод выполнен в виде металлического стержня, который содержит следующие компоненты, мас.%: углерод 1,05-1,2, кремний 8,0-11,0, марганец 0,7-1,2, никель 2,0-2,5, хром 11,6-16,2, бор 0,07-0,3, при этом для придания пластичности в его состав включена медь 1,0-2,0, а железо составляет остальное. Указанное соотношение компонентов электрода обеспечивает высокую износостойкость упрочняемого покрытия. 4 ил., 1 пр.

 

Изобретение относится к сварочным материалам, а именно к электродам для дуговой наплавки на детали износостойкого сплава для работы в условиях абразивного износа, и может быть использовано в металлургической, угледобывающей, сельскохозяйственной отраслях промышленности при ремонте оборудования и восстановлении деталей.

В настоящее время на рынке присутствует обширная номенклатура культиваторов и почвообрабатывающих комплексов, где основными рабочими органами являются стрельчатая лапа, служащая как для обработки почвы, так и для высева семян (Беляев, В.И. Проблемы использования сельхозмашин и орудий / В.И. Беляев, Н.Т. Кривочуров, В.В. Иванайский // Тракторы и сельскохозяйственные машины. - 2007. - №2. - С. 54-56). Основными параметрами стрельчатой лапы, изменяющимися при обработке почвы, являются длина носка и его округление. Форма износа носка стрельчатой лапы зависит от места установки на агрегат: вне следа, по следу сеялки и по следу трактора. Проблема (износостойкость носовой части) возникла вследствие того, что носовая часть изнашивается при эксплуатации в 2-3 раза быстрее, выбраковка происходит из-за носка несмотря на то, что остальная часть (крылья) еще работоспособна. Кроме того, если износостойкость носка стрельчатой лапы, установленной вне следа, принять за единицу, то износ по следу сеялки и трактора 1,5-1,9 раза выше. Поэтому возникает необходимость упрочнять стрельчатые лапы, перемещающиеся по упрочненной почве, дополнительно агрегатом.

Известны состав и способ изготовления стрельчатой лапы методом литья (патент RU №2743682). Недостаток известного способа состоит в том, что: а) сложно получить требуемые структуры в одной и той же отливке, из-за различия теплоотвода в различных частях кокиля, вследствие нестабильности температуры заливки металла; б) радиус режущей кромки должен составлять менее 0.5 мм для стрельчатых лап, что невозможно получить литьем в кокиль; в) в процессе изготовления литых отливок сложно обеспечить по сечению соотношение твердости мягкого и твердого слоев; г) химический состав чугуна не обеспечивает получение карбидов железа, обладающих максимальной твердостью при таком соотношении углерода и легирующих компонентов; д) эксплуатация изделий в абразивной среде с твердостью HRC 30 (НВ 282) имеет повышенный износ (аналог).

Известны электроды для износостойкой наплавки (Лившиц Л.С. и др. Основы легирования наплавленного металла. - Москва: Машиностроение, 1969. - 187 с.; Наплавочные материалы стран-членов СЭВ. Каталог. - Киев; Москва: ВИНИТИ, 1979. - 619 с.; Яровинский Х.Л. и др. Современные наплавочные электроды. - Москва: Черметинформация. 1987. - 32 с.), обеспечивающие определенную стойкость против абразивного износа (аналог).

Известен электрод для износостойкой наплавки содержащий карбид вольфрама, карбит титана, никель, медь и др. компоненты (RU 2465111. 27.10.2012).

Однако металл, наплавленный этими электродами, либо содержит в большом количестве дорогостоящий вольфрам, титан и кобальт (что неприемлемо для изделий предназначенных для обработки почвы из-за высокой стоимости) либо недостаточно легирован с точки зрения обеспечения высокой износостойкости.

Известны наплавочные сплавы типа «Сормайт», содержащие в своем составе (в %) углерод, кремний, марганец, хром, бор, никель и наплавочные электроды Сормайт С-1, изготавливаемые в виде прутков для газопламенной наплавки, или электродов Сормайт С-1 и С-2 для электродуговой сварки (ГОСТ 11545-65, Сормайт. Сплав наплавочный прутковый и порошкообразный).

Недостатком этих относительно недорогих электродов (типа Сормайт) при электродуговой наплавки является образование недостаточного количества износостойких фаз: карбидов хрома типа кубического и тригонального, а также карбидов кремния при наплавке на изнашиваемую поверхность рабочих органов сельхозмашин, режущего инструмента и деталей машин, которые не обеспечивают требуемой износостойкости и обладают повышенной хрупкостью (прототип).

Задачей, решаемой настоящим изобретением, является создание недорогого по стоимости электрода для износостойкой электродуговой наплавки.

Технической сущностью изобретения является повышение износостойкости упрочняемого покрытия путем легирования кремнием от 8,0 до 11,0 и медью 1,2-2,0 для повышения вязкости наплавляемого металла, наиболее ярко проявляющих свои эти известные свойства при данном соотношении компонентов.

Настоящая задача решается тем, что электрод для износостойкой электродуговой наплавки, выполненный в виде металлического стержня определенного химического состава, включающего железо, углерод, кремний, марганец, никель, хром, бор, дополнительно содержит медь, при следующем соотношении компонентов, мас. %:

углерод 1,05-1,2
кремний 8,0-11,0
марганец 0,7-1,2
хром 11,6-16,2
никель 2,0-2,5
медь 1,0-2,0
бор 0,07-0,3

железо остальное.

*Бор определяли в сплаве расчетным методом.

На фиг. 1 показана литейная форма в сборе для получения литого стержня для электродуговой наплавки: 1 - опока; 2 - литейная форма; 3 - литниковая чаша; 4 - отверстия для удаления газов с установленными лучинами; 5 - деревянная модель металлического стержня. (Деревянные составляющие модели выжигались при ее термической обработки в печи.)

На фиг. 2 представлены микроструктура и микротвердость (HV100) сварочного электрода.

На фиг. 3 показана микроструктура сварочного электрода, где медь равномерно распределена по всему объему карбидов.

Пример реализации изобретения.

Для организации получения литого стержня электродуговой сварки приготавливали формовочную смесь (90% кварцевый песок; 2-4% глина; 3-4% вода и 1,5-2,5% бура) и изготавливали специальную стальную опоку, в которую устанавливали модель стержня, выполненного из древесины, и наполняли ее формовочной смесью, в опоке смесь уплотняли трамбовкой. При заполнении опоки на 3/4 ее высоты устанавливали литниковую чашу, смесь уплотняли вокруг чаши. Через отверстия, предварительно выполненные в опоке, уплотненную смесь прокалывали заостренной лучинкой (диаметр 2 мм) до модели стержня. Таким образом, создавали газоотводы по всей поверхности формы и оставляли их там. Из формы вынимали модель литниковой чаши.

Таким же образом изготавливали и тигли для каждого эксперимента (плавки) как для выплавки предлагаемого по химическому составу электрода, так и по прототипу (химический состав сормайта).

Подготовленную таким образом форму в сборе и тигли для экспериментальных плавок помещали в печь и сушили их в течение 5 ч при температуре 920-970°С. Параллельно приготавливалась шихта для индукционной плавки в индукторе, подключенном к инвертору ЭЛСИТ-100/70.

Плавку осуществляли в тигле, масса расплава составляла 0,5 кг. Для каждой завалки и получения заданного химического состава в экспериментальные плавки добавлялась сталь 20. Флюс состоял из 85% карбида бора и 15% флюса марки П-066 и загружался одновременно с металлической завалкой в тигель.

Часть расплавленного металла заливали в металлический кокиль с габаритными размерами 5×20×20 мм и после затвердевания охлаждали (880°С) в масле. Оставшаяся часть расплавленного металла оставалась в форме и в ней охлаждали полученные слитки.

Оценку износостойкости сплава производили по величине его твердости (прибор Бринель HRC). Для определения хрупкости (вязкости) сплава устанавливали наличие трещин на поверхности предварительно прошлифованных слитков, отлитых в металлический кокиль, толщина слитка составляла 3,0-3,5 мм. Слиток шлифовали и на подготовленную поверхность образца наносили суспензию, содержащую в своем составе порошок черного цвета - магнитит (Fe3O4) - 40 г на 1 л керосина. Затем методом магнитной дефектоскопии (универсальный магнитный дефектоскоп М-217) определяли в них наличие трещин на поверхности слитков в зависимости от содержания меди в завалки.

По проведенным экспериментальным плавкам определили металлическую и флюсовую части завалки для получения оптимального химического состава сварочного электрода.

Для обеспечения качественной отливки электрода для дуговой наплавки готовые формы помещали в электрическую печь при температуре 950-980°С и ее просушивали. В этой печи (СНОЛ-1,6.2,5.1/1 И2М) также выжигались модель электрода и лучинки, расположенные в форме для газоотвода. Затем горячую форму очищали от золы и заливали в нее металл. После охлаждения формы извлекался стержень отливки электрода для электродуговой сварки и очищался от пригара.

Таким образом, для создания повышенной износостойкости наплавляемого сплава электродом для электродуговой наплавки на поверхность упрочняемой детали в него дополнительно введен кремний в количестве 8-11%, а для повышения вязкости наплавляемого сплава - медь в количестве 1,0-2,0%

В каждом сплаве химический состав проводился спектрометром XMEN-1000, производили подшихтовку последующей плавки так, чтобы химический состав соответствовал химическому составу прототипа. На полученных отливках определяли твердость и наличие трещин.

Предлагаемый способ изготовления износостойкого сварочного электрода и химический состав увеличивают износостойкость и вязкость сплава по отношению к прототипу.

Электрод для износостойкой электродуговой наплавки, выполненный в виде металлического стержня, включающего железо, углерод, кремний, марганец, никель, хром и бор, отличающийся тем, что он дополнительно содержит медь, при следующем соотношении, мас.%:

углерод 1,05-1,2
кремний 8,0-11,0
марганец 0,7-1,2
хром 11,6-16,2
никель 2,0-2,5
медь 1,0-2,0
бор 0,07-0,3
железо остальное



 

Похожие патенты:

Изобретение относится к области металлургии, а именно к изготовлению сляба, используемому в качестве материала для листа из неструктурированной электротехнической стали. Способ включает в себя рафинирование расплавленной стали, выпущенной из конвертера или электродуговой печи, с использованием устройства для вакуумной дегазации, и непрерывную разливку расплавленной стали с использованием машины непрерывной разливки для получения сляба.

Настоящее изобретение относится к листу анизотропной электротехнической стали, который используется в качестве материала металлического сердечника для трансформатора, а также к способу его производства. Лист анизотропной электротехнической стали содержит основной стальной лист, промежуточный слой оксидной пленки, который расположен на основном стальном листе, содержит SiO2 и имеет среднюю толщину 1,0 нм - 1,0 мкм, и изоляционное покрытие с натяжением, которое расположено на промежуточном слое оксидной пленки.

Изобретение относится к металлургии, а именно к листу из анизотропной электротехнической стали, и может быть использовано в качестве материала сердечника для трансформатора. Лист анизотропной электротехнической стали содержит: основной стальной лист; промежуточный слой оксидной пленки, включающий в себя SiO2, который располагается на основном стальном листе и имеет среднюю толщину 1,0 нм - 1,0 мкм; и изоляционное покрытие с натяжением, которое располагается на промежуточном слое оксидной пленки, включающем в себя SiO2.

Изобретение относится к области металлургии, а именно к холоднокатаной и термообработанной листовой стали, используемой для изготовления деталей автомобилей. Сталь имеет следующий химический состав, в мас.%: 0,10 ≤ углерод ≤ 0,5, 1 ≤ марганец ≤ 3,4, 0,5 ≤ кремний ≤ 2,5, 0,03 ≤ алюминий ≤ 1,5, сера ≤ 0,003, 0,002 ≤ фосфор ≤ 0,02, азот ≤ 0,01, при необходимости по меньшей мере один элемент из: 0,05 ≤ хром ≤ 1, 0,001 ≤ молибден ≤ 0,5, 0,001 ≤ ниобий ≤ 0,1, 0,001 ≤ титан ≤ 0,1, 0,01 ≤ медь ≤ 2, 0,01 ≤ никель ≤ 3, 0,0001 ≤ кальций ≤ 0,005, ванадий ≤ 0,1, бор ≤ 0,003, церий ≤ 0,1, магний ≤ 0,010 и цирконий ≤ 0,010, остальное - железо и неизбежные примеси.

Изобретение относится к области металлургии, а именно к термообработанному и холоднокатаному стальному листу, используемому для изготовления конструкционных деталей или деталей, отвечающих за безопасность, в транспортном средстве. Лист выполнен из стали, содержащей, в мас.%: 0,18 ≤ углерод ≤ 0,24, 1,5 ≤ марганец ≤ 2,5, 1,2 ≤ кремний ≤ 2, 0,01 ≤ алюминий ≤ 0,06, 0,2 ≤ хром ≤ 0,5, фосфор ≤ 0,02, сера ≤ 0,03, при необходимости по меньшей мере один элемент из: ниобий ≤ 0,06, титан ≤ 0,08, ванадий ≤ 0,1 и кальций ≤ 0,005, остальное - железо и неизбежные примеси.
Изобретение относится к области металлургии, а именно к изготовлению гибко-катаного плоского стального продукта переменной толщины, состоящего из высокопрочной марганецсодержащей стали. Для получения плоского стального продукта переменной толщины используют горячекатаную или холоднокатаную стальную полосу, оцинкованную или неоцинкованную, имеющую состав, содержащий, мас.%: С: от 0,0005 до 0,9, Мn: от 4 до 12, А1: до 10, Р: <0,1, S: <0,1, N: <0,1, при необходимости один или несколько из: Si: до 6, Сr: до 6, Nb: до 1, V: до 1,5, Ti: до 1,5, Мо: до 3, Sn: до 0,5, Сu: до 3, W: до 5, Со: до 8, Zr: до 0,5, Та: до 0,5, Те: до 0,5 и В: до 1,5, остальное - железо с неизбежными примесями.

Изобретение относится к области металлургии, а именно к стали для изготовления высокопрочных болтов. Сталь содержит, мас.%: от 0,50 до 0,65 углерода, от 1,5 до 2,5 кремния, от 1,0 до 1,6 хрома, 0,4 или менее марганца, от более 1,5 до 2,2 молибдена, 0,03 или менее в совокупности фосфора и серы, железо и неизбежные примеси – остальное.

Изобретение относится к области металлургии, а именно к получению удлинённого стального элемента, имеющего некруглое поперечное сечение и находящегося в упрочненном состоянии, который используют для получения пружинной проволоки или канатов. Удлинённый стальной элемент имеет состав стали, содержащий в мас.%: углерод от 0,20 до 1,00, кремний от 0,05 до 2,0, марганец от 0,40 до 1,0, хром в диапазоне от 0,0 до 1,0, серу и фосфор по отдельности до 0,025, никель, ванадий, алюминий, молибден или кобальт по отдельности до 0,5, остальное - железо и неизбежные примеси.

Изобретение относится к производству листовой стали с нанесенным покрытием, характеризующейся пределом прочности при растяжении TS, составляющим, по меньшей мере, 450 МПа, и полным относительным удлинением ТЕ, составляющим, по меньшей мере, 17%. Предложенный способ включает следующие последовательные стадии: получение холоднокатаной листовой стали, изготовленной из стали, имеющей химический состав, мас.
Изобретение относится к стальному изделию для защиты электрических деталей от механического повреждения и обусловленного этим электрического короткого замыкания, изготовленному из легкой конструкционной стали в виде горяче- или холоднокатаной полосы, листа или трубы, состоящей из 6-30 мас.% марганца, до 12,0 мас.% алюминия, до 6,0 мас.% кремния, 0,04-2,0 мас.% углерода, а также дополнительно одного или нескольких элементов: хром, титан, ванадий, ниобий, бор, цирконий, молибден, никель, медь, вольфрам, кобальт, до 5 мас.% каждый и в сумме до 10 мас.%, остальное железо, включая обычные сопутствующие выплавке примеси, причем стальное изделие, по меньшей мере, с одной выполненной с возможностью обращения к электрическим деталям стороны снабжено диэлектрическим пластиковым покрытием.

Изобретение может быть использовано для ручной сварки в среде защитных газов деталей и конструкций из немагнитных высокопрочных аустенитных сталей с высокими концентрациями азота, например в нефтегазовой, судостроительной или машиностроительной промышленности. Сварочная проволока содержит компоненты в следующем соотношении, мас.%: углерод 0,04-0,08, кремний не более 1,0, марганец 14,0-16,0, хром 19,0-23,0, никель 6,0-9,0, молибден 0,5-1,5, ванадий 0,10-0,50, азот 0,45-0,65, церий 0,05-0,2, лантан 0,03-0,1, сера 0,005-0,010, фосфор 0,010-0,015, железо - остальное, при этом суммарное содержание церия и лантана не должно превышать 0,25 мас.%.
Наверх