Патенты автора Белоногов Пётр Зотеевич (RU)

Изобретение относится к радиолокации и может быть использовано для определения путевой скорости неманеврирующих объектов преимущественно в радиолокационных станциях (РЛС) с большими ошибками измерения азимута. Технический результат изобретения заключается в расширении арсенала технических средств определения путевой скорости объектов, движущихся по линейной траектории. В заявленном способе оценивают первое приращение радиальной скорости , делят его на период обзора Т0 и получают оценку радиального ускорения цели . Далее вычисляют путевую скорость по формуле: , где rcp и - дальность и радиальная скорость, измеренные в середине интервала сглаживания. Устройство содержит последовательно соединенные цифровой нерекурсивный фильтр оценивания , делитель на Т0 и вычислитель путевой скорости. 2 н.п. ф-лы, 3 ил., 1 табл.

Изобретение относится к области радиолокации. Технический результат изобретения заключается в устранении смещения оценок радиальной скорости объектов, перемещающихся по линейной траектории, и устранении неоднозначности определения радиальной скорости. В заявленном способе оценки радиальной скорости объекта в середине в конце и в начале интервала сглаживания определяют путем деления оценок первых приращений квадрата дальности в середине в конце и в начале интервала сглаживания на удвоенные значения дальности до объекта в середине rср, в конце rN и в начале r1 интервала сглаживания, а также на период обзора Т0 РЛС. При этом оценки первых приращений квадрата дальности определяют путем взвешенного суммирования фиксированной выборки квадратов дальности с соответствующими весовыми коэффициентами. 4 ил., 1 табл.

Изобретение относится к радиолокации и может быть использовано для определения путевой скорости неманеврирующих объектов, преимущественно в радиолокационных станциях (РЛС) с грубыми измерениями угловых координат. Достигаемый технический результат изобретения - повышение точности определения путевой скорости. В заявленном способе перемножают данные измерений дальности и радиальной скорости, оценивают первое приращение произведения дальности на радиальную скорость (ПДРС) путем взвешенного суммирования фиксированной выборки ПДРС, делят полученную оценку на период обзора РЛС и вычисляют квадратный корень. При этом весовые коэффициенты вычисляют с учетом пропусков измерений дальности и радиальной скорости. 2 н.п. ф-лы, 2 ил., 1 табл.

Изобретение относится к области радиолокации. Техническим результатом изобретения является повышение точности и устранение неоднозначности определения курса объекта на линейной траектории. В заявленном способе определения курса объекта на линейной траектории с использованием выборок квадратов дальности в РЛС измеряют дальность ri и азимут βi объекта и преобразуют их в горизонтальные прямоугольные координаты. Затем определяют оценки скорости изменения прямоугольных координат, вычисляют однозначную оценку курса Далее определяют оценку радиальной скорости в середине интервала наблюдения путем оптимального взвешенного суммирования фиксированной выборки из N измеренных значений дальности ri. Формируют фиксированную выборку из N значений квадратов дальности и оценивают второе приращение квадрата дальности путем взвешенного суммирования. Находят оценку путевой скорости объекта . Затем вычисляют курсовой угол в середине интервала наблюдения и среднеквадратическую ошибку (СКО) определения этого угла. Оценивают азимут в середине интервала наблюдения путем взвешенного суммирования измеренных значений азимута βi. Определяют две оценки курса с использованием значений оценок азимута и курсового угла . Для устранения неоднозначности используют однозначную оценку курса и полученные две оценки, и по меньшей разности устраняют неоднозначность определения курса. 1 з.п. ф-лы, 4 ил., 1 табл.

Изобретение относится к устройствам траекторной обработки радиолокационной информации. Технический результат изобретения – уменьшение вычислительных затрат и времени запаздывания выявления момента окончания активного участка траектории (АУТ) полета баллистического объекта (БО). Указанный результат достигается за счет того, что для оценивания второго приращения квадрата дальности (ВПКД) используют α, β, γ фильтр, в котором с минимальными вычислительными затратами учитываются пропуски измерений дальности, запоминаются только последние измерения дальности или экстраполированные значения квадратов дальности при пропуске измерений и предыдущие оценки первого и второго приращений квадратов дальности. Заявленное устройство содержит последовательно соединенные вычислитель квадратов дальности, α, β, γ фильтр оценивания ВПКД, вычислитель ускорения по квадрату дальности и пороговое устройство, второй вход которого соединен с выходом вычислителя СКО, а выход является выходом заявленного устройства. 2 н.п. ф-лы, 5 ил., 2 табл.

Изобретение относится к радиолокации и может быть использовано для определения путевой скорости неманеврирующих объектов преимущественно в радиолокационных станциях (РЛС) с грубыми измерениями угловых координат. Достигаемый технический результат изобретения - повышение точности определения путевой скорости. Для этого в цифровом нерекурсивном фильтре (ЦНРФ) оценивают первое приращение произведения дальности на радиальную скорость, делят эту оценку на период обзора РЛС Т0, из полученного результата вычисляют квадратный корень и получают оценку путевой скорости В каждом обзоре вычисляют пороговую дальность , где N - количество измерений координат, - среднеквадратическая ошибка (СКО) измерения радиальной скорости, на которой разность между оценкой и измеренным модулем радиальной скорости равна СКО оценки путевой скорости . Если измеренная дальность ri больше пороговой, потребителям выдают значение радиальной скорости вместо оценки путевой скорости , определяемой с большей ошибкой. Измеритель путевой скорости содержит умножитель дальности на радиальную скорость, ЦНРФ, делитель на период обзора, вычислители квадратного корня и пороговой дальности, пороговое устройство и переключатель с соответствующими связями. 2 н.п. ф-лы, 4 ил., 1 табл.

Изобретение относится к радиолокации и может быть использовано в двухпозиционном комплексе пассивной локации для определения дальности воздушных и надводных целей, которые облучаются зондирующими сигналами ионосферной загоризонтной РЛС. Техническим результатом изобретения является повышение точности определения дальности цели за счет учета влияния ионосферы на распространение радиолокационных сигналов. Указанный результат достигается за счет измерения в первой приемной позиции ПП1 азимута цели β1, а в обеих приемных позициях разностей путей распространения через ионосферу и поверхностной электромагнитной волной отраженных от цели сигналов ΔS01 и ΔS02, моментов приема зондирующих сигналов вычисление разности дальностей до цели где с - скорость света, и использование этой разности для вычисления в ПП1 дальности до цели по формуле: 2 ил., 2 табл.

Изобретение относится к области радиолокации и предназначено для определения курса неманеврирующих объектов. Технический результатом изобретения заключается в повышении точности определения курса неманеврирующего объекта. Указанный результат достигается за счет использования выборки произведений измеренных значений дальности ri на радиальную скорость и уменьшения вследствие этого влияния ошибок измерения дальности и азимута. Для этого оценивают путевую скорость по выборке произведений дальности на радиальную скорость и вычисляют курсовой угол в середине интервала наблюдения Курс вычисляют как алгебраическую сумму сглаженных значений оценок азимута курсового угла а также углов 0° или 180°. С помощью известного способа определения курса по выборкам прямоугольных координат устраняют неоднозначность определения курса в заявленном изобретении. 1 з.п. ф-лы, 6 ил., 1 табл.
Изобретение относится к радиолокации и может быть использовано в радиолокационных комплексах (РЛК) для контроля воздушного пространства и управления воздушным движением. Техническим результатом изобретения является повышение защищенности РЛК от пассивных помех. Указанный результат достигается за счет того, что с помощью длинноволновой РЛС обнаруживают воздушные объекты, измеряют параметры пакета отраженных сигналов и сопровождают эти объекты по центру пакета. С помощью коротковолновой РЛС производят разрешение воздушных объектов, уточнение их координат и привязку этих координат к координатам центра пакета. С помощью коротковолновой РЛС определяют области, в которых имеются пассивные помехи. Если количество сигналов в составе пакета в такой области превышает допустимое число, разрешение воздушных объектов и уточнение их координат не производят.

Изобретение относится к радиолокации и может быть использовано для определения модуля скорости неманеврирующей аэродинамической цели (АЦ) преимущественно в РЛС с грубыми измерениями азимута. Достигаемый технический результат - повышение точности определения модуля скорости. Указанный результат достигается за счет того, что по выборке квадратов дальности оценивают модуль скорости, вычисляют среднеквадратическую ошибку (СКО) модуля скорости, определяют радиальную скорость АЦ, вычисляют разность между оценкой модуля скорости и абсолютным значением радиальной скорости, сравнивают эту разность с СКО, если разность больше СКО, то потребителям выдают значение оценки модуля скорости, если разность меньше СКО, то потребителям выдают значение радиальной скорости аэродинамической цели. 3 ил., табл. 1.

Изобретение относится к области радиолокации. Технический результат изобретения - повышение точности определения вертикальной скорости баллистического объекта (БО) в наземных радиолокационных станциях (РЛС) с грубыми измерениями угла места и дальности. Указанный технический результат достигается тем, что оценивают второе приращение произведения дальности на радиальную скорость за период обзора РЛС Т0 с помощью цифрового нерекурсивного фильтра (ЦНРФ) или ∝, β, γ фильтра. Измеряют высоту БО в середине , в начале и в конце zn интервала наблюдения. Вычисляют геоцентрические углы между РЛС и БО в середине ϕср, в начале ϕ1 и в конце ϕn интервала наблюдения, а также ускорение силы тяжести в середине интервала наблюдения. Вычисляют сглаженное значение вертикальной скорости БО в середине интервала наблюдения на невозмущенном пассивном участке траектории по формуле . Основу устройства для реализации заявленного способа образует ЦНРФ. 2 н.п. ф-лы, 4 ил., 4 табл.

Изобретение относится к радиолокации и может быть использовано для определения путевой скорости неманеврирующей аэродинамической цели преимущественно в радиолокационных станциях (РЛС) с грубыми измерениями угловых координат. Достигаемый технический результат изобретения - повышение точности определения путевой скорости. Для этого перемножают данные измерений дальности и радиальной скорости, определяют с помощью, цифрового нерекурсивного фильтра (ЦНРФ) оценку первого приращения произведения дальности на радиальную скорость за период обзора РЛС, делят оценку на период обзора РЛС, из полученного результата вычисляют квадратный корень. Устройство, реализующее способ, содержит последовательно соединенные умножитель дальности на радиальную скорость, ЦНРФ, делитель на период обзора, вычислитель квадратного корня. 2 н.п. ф-лы, 3 ил., 3 табл.

Изобретение относится к области радиолокации. Достигаемым техническим результатом изобретения является упрощение схемы обнаружителя маневра (ОМ) баллистической ракеты (БР) при повышении вероятности обнаружения маневра. Указанный результат достигается за счет того, что фиксированную выборку произведений дальности на радиальную скорости умножают на заранее рассчитанные весовые коэффициенты определения абсолютной разности между оценками, полученными по выборкам большего и меньшего объемов, что обеспечивает примерно в два раза сокращение количества блоков ОМ. 2 ил., 3 табл.

Изобретение предназначено для определения модуля скорости баллистического объекта (БО) с использованием выборки произведений дальности на радиальную скорость и относится к радиолокации. Достигаемый технический результат изобретения - повышение точности определения модуля скорости БО в наземных радиолокационных станциях (РЛС) с грубыми измерениями угла места, азимута и дальности и уменьшение объема хранимых предыдущих измерений. Указанный технический результат достигается тем, что через интервалы времени, равные периоду обзора Т0, в РЛС измеряют дальность, угол места, радиальную скорость и формируют выборку значений высоты БО и произведений дальности на радиальную скорость. Определяют оценку высоты БО в середине интервала наблюдения и оценку первого приращения произведения дальности на радиальную скорость в конце интервала наблюдения с помощью α, β фильтров. Вычисляют геоцентрический угол между РЛС и БО в середине интервала наблюдения по формуле , где rcp - дальность до БО в середине интервала наблюдения, RЗ - радиус Земли, и ускорение силы тяжести в середине интервала наблюдения по формуле , где - ускорение силы тяжести на поверхности Земли. Далее вычисляют сглаженное значение модуля скорости БЦ в середине интервала наблюдения на невозмущенном пассивном участке траектории по формуле , где N - число измерений на интервале наблюдения. Устройство для реализации способа состоит из двух α, β фильтров и вычислителей геоцентрического угла, ускорения силы тяжести и модуля скорости. 2 н.п. ф-лы, 3 ил., 4 табл.

Изобретение относится к области радиолокации. Достигаемым техническим результатом изобретения является упрощение способа и устройства обнаружения маневра баллистического объекта (БО) при сохранении высокой вероятности обнаружения маневра. Указанный результат достигается за счет того, что абсолютную разность между оценкой первого приращения произведения дальности на радиальную скорость, полученной по выборке большего объема, и оценкой первого приращения произведения дальности на радиальную скорость, полученной по выборке меньшего объема, определяют только по выборке большего объема. Для этого в блоке оценивания первого приращения произведения дальности на радиальную скорость фиксированную выборку произведений дальности на радиальную скорости большего объема умножают на заранее рассчитанные весовые коэффициенты определения абсолютной разности между оценками, полученными по выборкам большего и меньшего объема, что позволяет упростить способ обнаружения маневра баллистического объекта и устройство, его реализующее. 2 н.п. ф-лы, 2 ил.

Изобретение относится к области радиолокации. Достигаемым техническим результатом является устранение неоднозначности распознавания неманеврирующей баллистической цели (БЦ). Указанный результат достигается за счет совместного использования обнаружителя маневра на пассивном участке баллистической траектории (ПУТ) и обнаружителя маневра на линейной траектории по выборкам квадратов дальности. Решение об отнесении сопровождаемой цели к классу неманеврирующих БЦ принимают, если обнаружитель маневра на ПУТ выдал сообщение об отсутствии маневра, а обнаружитель маневра на линейной траектории - о наличии маневра. Устройство распознавания содержит цифровой нерекурсивный фильтр, состоящий из запоминающего устройства, двух блоков умножителей квадратов дальности на весовые коэффициенты и двух сумматоров, а также содержит два пороговых устройства, три схемы совпадения и вычислитель среднеквадратической ошибки, определенным образом соединенные между собой. 2 ил., 3 табл.

Изобретение относится к области радиолокации. Техническим результатом изобретения является повышение точности определения курса неманеврирующей аэродинамической цели. Указанный результат достигается за счет использования фиксированной выборки квадратов дальности и уменьшения влияния ошибок измерения азимута. Указанный результат достигается за счет того, что определяют путевую скорость путем взвешенного суммирования выборки квадратов дальности, радиальную скорость путем взвешенного суммирования измерений дальности и вычисляют курсовой угол в середине интервала наблюдения Курс вычисляют по формуле , где - азимут, устраняют неоднозначность определения курса, вычисляют ошибки определения курса, потребителям выдают значение курса с меньшей ошибкой. 2 н.п. ф-лы, 6 ил., 2 табл.

Изобретение относится к области радиолокации. Достигаемый технический результат изобретения - повышение вероятности обнаружения маневра баллистической ракеты. Указанный результат достигается за счет того, что решение об обнаружении маневра принимают, если отношение разности между оценками второго приращения квадрата дальности, вычисляемыми в «скользящем окне» по двум выборкам квадратов дальности, при этом выборка меньшего объема входит в состав выборки большего объема, а ее начало и конец удалены от начала и конца выборки большего объема на равное число обзоров, к среднеквадратической ошибке (СКО) определения этой разности становится больше порога. Обнаружитель маневра содержит последовательно соединенные умножитель входных измеренных сигналов дальности, цифровой нерекурсивный фильтр из запоминающего устройства, блока умножителей и сумматора, делитель и пороговое устройство, а также вычислитель СКО, подключенный к второму входу делителя. 3 ил., 3 табл.

Изобретение относится к радиолокации. Технический результат изобретения - повышение точности определения модуля скорости баллистического объекта (БО) в наземных радиолокационных станциях (РЛС) с грубыми измерениями угла места, азимута и дальности. Указанный результат достигается тем, что через интервалы времени, равные периоду обзора Т0, в РЛС измеряют дальность, радиальную скорость и высоту БО. Определяют оценку высоты БО в середине интервала наблюдения путем взвешенного суммирования N оцифрованных измерений высоты. Определяют оценку первого приращения произведения дальности на радиальную скорость за обзор путем взвешенного суммирования N оцифрованных сигналов произведений дальности на радиальную скорость. Определяют геоцентрический угол между РЛС и БО в середине интервала наблюдения по формуле где rср - дальность до БО в середине интервала наблюдения, Rз - радиус Земли. Определяют ускорение силы тяжести в середине интервала наблюдения по формуле где g0 - ускорение силы тяжести на поверхности Земли. Определяют значение модуля скорости БО в середине интервала наблюдения на невозмущенной баллистической траектории по формуле 1 табл., 2 ил.

Изобретение относится к радиолокации и может быть использовано в радиолокационных станциях (РЛС) с грубыми измерениями азимута и угла места. Достигаемый технический результат - повышение точности определения модуля скорости аэродинамической цели (АЦ). Указанный результат достигается за счет того, что формируют фиксированную выборку значений квадратов дальности, оценивают второе приращение квадрата дальности за обзор путем оптимального взвешенного суммирования значений квадратов дальности, делят эту оценку на период обзора РЛС во второй степени и получают значение квадрата модуля скорости АЦ, летящей по линейной траектории. Повышение точности определения модуля скорости достигается за счет устранения влияния ошибок измерения азимута и угла места. 4 ил.

Способ определения модуля скорости баллистической цели в наземной радиолокационной станции относится к радиолокации. Достигаемый технический результат изобретения - повышение точности определения модуля скорости баллистической цели (БЦ) в наземных радиолокационных станциях (РЛС) с грубыми измерениями угла места и азимута. Указанный результат достигается тем, что через интервалы времени, равные периоду обзора Т0 РЛС, измеряют дальность и высоту БЦ. Определяют оценку высоты БЦ в середине интервала наблюдения путем взвешенного суммирования N оцифрованных измерений высоты. Определяют оценку второго приращения квадрата дальности за обзор путем взвешенного суммирования N оцифрованных сигналов квадратов дальности. Определяют геоцентрический угол между РЛС и БЦ в середине интервала наблюдения по формуле , где rcp - дальность до БЦ в середине интервала наблюдения, Rз - радиус Земли. Определяют ускорение силы тяжести в середине интервала наблюдения по формуле , где g0 - ускорение силы тяжести на поверхности Земли. Определяют значение модуля скорости БЦ в середине интервала наблюдения на невозмущенном пассивном участке траектории по формуле . 4 ил., 2 табл.

Изобретение относится к способам траекторией обработки радиолокационной информации. Достигаемым техническим результатом изобретения является повышение вероятности обнаружения маневра баллистической цели за счет исключения измерений угла места и азимута из обрабатываемых выборок. Указанный результат достигается за счет того, что вычисляют оценки скорости изменения произведения дальности на радиальную скорость в середине интервала наблюдения типа скользящего окна по двум фиксированным выборкам произведений дальности на радиальную скорость, при этом выборка меньшего объема входит в состав выборки большего объема, затем вычисляют отношение абсолютного приращения оценок скорости к среднеквадратической ошибке оценки. Решение об обнаружении маневра принимают в момент времени, когда отношение абсолютного приращения оценок скорости к среднеквадратической ошибке оценки скорости становится больше заданного порога. 2 ил., 3 табл.

Изобретение относится к устройствам траекторной обработки радиолокационной информации. Достигаемый технический результат изобретения - повышение чувствительности устройств определения времени окончания активного участка (АУТ) баллистической траектории за счет исключения измерений угла места из обрабатываемых выборок. Для этого на вход устройства определения времени окончания АУТ подают данные измерений дальности ракеты через одинаковые интервалы времени, равные периоду обзора РЛС, вычисляют квадраты значений дальности, формируют фиксированную выборку значений квадратов дальности типа «скользящего окна», находят оценку второго приращения квадрата дальности путем оптимального взвешенного суммирования выборки значений квадратов дальности, делят эту оценку на период обзора радиолокационной станции во второй степени и получают значение оценки ускорения по квадрату дальности, вычисляют среднеквадратическую ошибку оценки, в каждом новом положении «скользящего окна» сравнивают оценку ускорения по квадрату дальности со среднеквадратической ошибкой оценки. Решение об окончании активного участка принимают в момент времени, когда значение оценки ускорения по квадрату дальности становится больше величины среднеквадратической ошибки оценки. 3 ил., 4 табл.

Изобретение относится к устройствам траекторной обработки радиолокационной информации. Достигаемый технический результат изобретения - повышение вероятности определения времени окончания активного участка (АУТ) баллистической траектории за счет исключения измерений угла места и азимута из обрабатываемых выборок. Для этого на вход устройства определения времени окончания АУТ подают данные измерений дальности и радиальной скорости ракеты через одинаковые интервалы времени, равные периоду обзора радиолокационной станции, вычисляют произведения дальности на радиальную скорость, формируют фиксированную выборку типа «скользящего окна» значений произведений дальности на радиальную скорость, находят оценку скорости изменения произведения дальности на радиальную скорость путем оптимального взвешенного суммирования выборки значений произведений дальности на радиальную скорость, вычисляют среднеквадратическую ошибку (СКО) оценки, вычисляют отношение оценки скорости к СКО этой оценки, в каждом новом положении «скользящего окна» сравнивают отношение оценки скорости к СКО этой оценки с заданным порогом, решение об окончании АУТ принимают в момент времени, когда величина полученного отношения превышает заданный порог, величину которого выбирают в соответствии с требуемой вероятностью определения времени окончания АУТ. 3 ил., 6 табл.

 


Наверх