Способ определения модуля скорости баллистической цели в наземной радиолокационной станции



Способ определения модуля скорости баллистической цели в наземной радиолокационной станции
Способ определения модуля скорости баллистической цели в наземной радиолокационной станции
Способ определения модуля скорости баллистической цели в наземной радиолокационной станции
Способ определения модуля скорости баллистической цели в наземной радиолокационной станции
Способ определения модуля скорости баллистической цели в наземной радиолокационной станции
Способ определения модуля скорости баллистической цели в наземной радиолокационной станции
Способ определения модуля скорости баллистической цели в наземной радиолокационной станции
Способ определения модуля скорости баллистической цели в наземной радиолокационной станции
Способ определения модуля скорости баллистической цели в наземной радиолокационной станции
Способ определения модуля скорости баллистической цели в наземной радиолокационной станции
Способ определения модуля скорости баллистической цели в наземной радиолокационной станции
Способ определения модуля скорости баллистической цели в наземной радиолокационной станции
Способ определения модуля скорости баллистической цели в наземной радиолокационной станции
Способ определения модуля скорости баллистической цели в наземной радиолокационной станции
Способ определения модуля скорости баллистической цели в наземной радиолокационной станции
Способ определения модуля скорости баллистической цели в наземной радиолокационной станции

 


Владельцы патента RU 2540323:

Открытое акционерное общество "Федеральный научно-производственный центр "Нижегородский научно-исследовательский институт радиотехники" (RU)

Способ определения модуля скорости баллистической цели в наземной радиолокационной станции относится к радиолокации. Достигаемый технический результат изобретения - повышение точности определения модуля скорости баллистической цели (БЦ) в наземных радиолокационных станциях (РЛС) с грубыми измерениями угла места и азимута. Указанный результат достигается тем, что через интервалы времени, равные периоду обзора Т0 РЛС, измеряют дальность и высоту БЦ. Определяют оценку высоты БЦ в середине интервала наблюдения путем взвешенного суммирования N оцифрованных измерений высоты. Определяют оценку второго приращения квадрата дальности за обзор путем взвешенного суммирования N оцифрованных сигналов квадратов дальности. Определяют геоцентрический угол между РЛС и БЦ в середине интервала наблюдения по формуле , где rcp - дальность до БЦ в середине интервала наблюдения, Rз - радиус Земли. Определяют ускорение силы тяжести в середине интервала наблюдения по формуле , где g0 - ускорение силы тяжести на поверхности Земли. Определяют значение модуля скорости БЦ в середине интервала наблюдения на невозмущенном пассивном участке траектории по формуле . 4 ил., 2 табл.

 

Изобретение относится к радиолокации и может быть использовано преимущественно в наземных радиолокационных станциях (РЛС) кругового и секторного обзора, размеры антенн которых соизмеримы с длиной волны, то есть в РЛС с грубыми измерениями угла места и азимута, для определения модуля скорости баллистической цели (БЦ). Знание модуля скорости необходимо для расчета баллистической траектории, прогноза точки падения, селекции баллистических ракет от других летательных аппаратов и решения других задач в интересах противоракетной обороны.

В известных способах [1-3] для определения модуля скорости измеряют составляющие вектора скорости по направлениям осей выбранной системы координат. В частности, в местной правой прямоугольной декартовой системе координат OXYZ (смотри фиг.1), начало которой находится в точке стояния РЛС, ось OY направлена в заданную точку (например, на север), ось OZ направлена по отвесной линии от земной поверхности, ось ОХ находится в одной плоскости с осью OY и образует с ней угол 90°, скорость равна квадратному корню из суммы квадратов значений скорости изменения декартовых координат:

где , , - скорости изменения декартовых координат x, y, z.

В этих способах [1-3] для определения численных значений скорости изменения координаты используются результаты всех измерений, произведенных на интервале наблюдения, то есть формируется фиксированная выборка радиолокационных измерений, и применяются следующие алгоритмы:

- алгоритмы оценивания путем оптимального взвешенного суммирования значений декартовых координат [1, 2];

- алгоритмы оценивания с использованием линейной комбинации ортогональных полиномов Чебышева [3];

- алгоритмы оценивания численным дифференцированием декартовых координат [3].

По сущности технического решения наиболее близким аналогом заявляемому способу, то есть прототипом, является способ, в котором для определения скорости изменения декартовых координат в середине интервала наблюдения осуществляют оптимальное взвешенное суммирование выборки из N оцифрованных сигналов декартовых координат [1, 2].

В РЛС измеряют через интервалы времени, равные периоду обзора Т0, сферические координаты, то есть дальность r, азимут β, угол места ε, и преобразуют их в горизонтальные декартовые координаты x, y и высоту z:

xi=ricosεisinβi, yi=ricosεicosβi, zi=risinεi.

Затем путем оптимального взвешенного суммирования N декартовых координат раздельно и независимо находят оценки , , первого приращения этих координат за обзор в середине интервала наблюдения [2]:

;

;

где - дискретные весовые коэффициенты оптимального оценивания первого приращения координаты в середине интервала наблюдения за период обзора T0.

N - число измерений в фиксированной выборке (объем выборки).

Полученные оценки делят на период обзора, в результате чего получают значения скорости изменения декартовых координат:; ; .

Определение модуля скорости производят в середине интервала наблюдения потому, что погрешность определения скорости изменения декартовой координаты в середине интервала при постоянном ускорении примерно в четыре раза меньше, чем в конце интервала наблюдения [4].

Сущность способа-прототипа поясняется схемой, приведенной на фигуре 2.

В РЛС отраженные радиосигналы с выхода приемных модулей фазированных или цифровых антенных решеток оцифровывают непосредственно или в квадратурных каналах с использованием фазового детектирования [5]. Оцифрованные сигналы подают на вход измерителя дальности 1, измерителя угла места 3 и измерителя азимута 13, далее сферические координаты преобразуют в вычислителе координаты x 9 и вычислителе координаты y 10 в горизонтальные декартовые координаты и высоту БЦ в измерителе высоты 2.

Определение оценки первого приращения высоты БЦ за обзор в середине интервала наблюдения производят следующим образом. Оцифрованные сигналы высоты с выхода измерителя высоты 2 подают на вход запоминающего устройства 4. Значения высоты zN, измеренные в текущем обзоре, то есть в реальном времени, а также значения высоты, измеренные в предыдущих обзорах zN-1, zN-2 … z2, z1, после задержки на соответствующее число периодов обзора подают на первые входы умножителей блока 5, где их умножают на весовой коэффициент, который поступает на вторые входы умножителей блока 5 с блока весовых коэффициентов оценки высоты БЦ в середине интервала наблюдения 6, и затем их подают на N входов сумматора 7. В итоге на входах сумматора 7 формируют фиксированные выборки взвешенных сигналов высоты. Объем выборки, то есть число N, зависит от количества задействованных устройств задержки на период обзора Т0 (ячеек памяти) в запоминающем устройстве 4. На выходе сумматора определяют оценку первого приращения высоты и подают на третий вход вычислителя модуля скорости БЦ в середине интервала наблюдения 8 [1].

Оценки первого приращения горизонтальных декартовых координат и определяют аналогичным образом в устройстве определения оценки первого приращения координаты x в середине интервала наблюдения 11 и устройстве определения оценки первого приращения координаты y в середине интервала наблюдения 12 и подают на входы 1 и 2 вычислителя модуля скорости БЦ в середине интервала наблюдения 8, соответственно.

Значение модуля скорости БЦ в середине интервала наблюдения на пассивном, невозмущенном участке баллистической траектории определяют в вычислителе модуля скорости БЦ в середине интервала наблюдения 8 по формуле:

Основным недостатком прототипа и других аналогов является низкая точность определения модуля скорости при использовании этих способов в РЛС с грубыми измерениями угла места и азимута БЦ.

В качестве примера в таблице 1 (см фиг.5) приведены значения средне-квадратических ошибок (СКО) определения способом-прототипом модуля скорости ракеты СКАД в РЛС метрового диапазона «Резонанс-НЭ». Как видно из таблицы, при объемах выборок от 5 до 19 измерений величина СКО определения модуля скорости способом-прототипом изменялась от 417 м/с до 55 м/с.

Оценивание проводят для траектории, в которой наиболее заметно проявляется отрицательное влияние ошибок измерения угла места и азимута. РЛС находится в 200 км слева от точки падения, то есть курсовой параметр равен 200 км. Дальность ракеты в точке оценивания, то есть в середине интервала наблюдения, равна 330 км, угол места - 6,20, угол наклона траектории - 36,80, модуль скорости - 1436 м/с. Ошибки измерения дальности равны 300 м, угла места и азимута - 1,5 градуса [6].

СКО определения модуля скорости БЦ вычисляется по формуле:

где

θcp - угол наклона траектории к горизонту;

P - курсовой параметр или минимальное удаление траектории БЦ от РЛС;

σβ, σε - СКО измерения азимута и угла места в градусах.

Как показали расчеты, точность определения модуля скорости зависит, в основном, от ошибок измерения угла места. Влияние ошибок измерения азимута проявляется при больших значениях курсового параметра Р. Ошибки измерения дальности практически не оказывают влияния.

Таким образом, основным недостатком прототипа и других аналогов является низкая точность определения модуля скорости в РЛС с грубыми измерениями угла места и азимута БЦ.

Существенно, то есть в несколько раз, уменьшить погрешности измерения угла места σε и азимута σβ в РЛС метрового диапазона и в других РЛС, размеры антенн которых соизмеримы с длиной волны, практически невозможно. Во-первых, вертикальные размеры антенны d соизмеримы с длиной волны λ излучаемого РЛС сигнала, поэтому ширина диаграммы направленности антенны и СКО измерения угла места в несколько раз больше, чем в РЛС сантиметрового диапазона при одинаковом отношении q энергии сигнала к спектральной плотности шума на входе приемника [7]. Во-вторых, из-за отражения радиоволн от земной поверхности появляются дополнительные погрешности измерения угла места, которые при малых углах места могут превышать значения СКО.

В связи с этим техническим результатом (целью) заявляемого изобретения является повышение точности определения модуля скорости БЦ в наземных РЛС с грубыми измерениями угла места и азимута.

Поставленная цель достигается за счет использования в предлагаемом способе определения модуля скорости БЦ относительно высокоточных измерений дальности. В отличие от ошибок измерения азимута и угла места ошибки измерения дальности не зависят от размеров антенны. Основными факторами, влияющими на точность измерения дальности, являются ширина полосы частот излучаемого и принимаемого сигналов, величина отношения сигнал/шум и метод обработки сигналов [5].

Например, ошибки измерения дальности в обзорной РЛС AN/TPS-59 (США) не превышают 30 метров [8].

Для определения модуля скорости БЦ производят следующие действия с оцифрованными радиолокационными сигналами:

- измерение дальности и высоты БЦ;

- перемножение оцифрованных сигналов дальности в каждом обзоре и определение квадратов дальности;

- формирование фиксированных выборок из N оцифрованных сигналов квадратов дальности и из N оцифрованных сигналов высоты;

- взвешенное суммирование N оцифрованных сигналов высоты и N оцифрованных сигналов квадратов дальности;

- определение численного сглаженного значения высоты БЦ в середине интервала наблюдения, то есть ее оценки ;

- определение оценки второго приращения квадрата дальности за обзор ;

- определение геоцентрического угла между РЛС и БЦ в середине интервала наблюдения (смотри фиг.3) по формуле: , где rcp - дальность до БЦ в середине интервала, Rз - расстояние от центра земли до БЦ;

- определение ускорения силы тяжести в середине интервала наблюдения по формуле , где g0 - ускорение силы тяжести на поверхности Земли;

- определение модуля скорости баллистической цели в середине интервала наблюдения на невозмущенном пассивном участке траектории по формуле: .

Сущность заявляемого способа поясняется схемой, приведенной на фигуре 4, где

1 - измеритель дальности (блок);

2 - измеритель высоты (блок);

3 - измеритель угла места (блок);

4 - запоминающее устройство;

5 - блок умножителей (блок);

7 - сумматор;

8 - вычислитель модуля скорости БЦ в середине интервала наблюдения (вычислитель модуля скорости);

14 - блок весовых коэффициентов оценки высоты в середине интервала наблюдения (блок);

15 - умножитель (блок);

16 - запоминающее устройство;

17 - блок умножителей (блок);

18 - блок весовых коэффициентов оценки второго приращения квадрата дальности (блок);

19 - сумматор;

20 - вычислитель геоцентрического угла (вычислитель);

21 - вычислитель ускорения силы тяжести (вычислитель).

В блоках 1 и 3 измеряют дальность и угол места БЦ. Оцифрованные сигналы измерений поступают в блок 2, в котором вычисляют высота БЦ. В каждом обзоре перемножают оцифрованные сигналы дальности (блок 15), то есть определяют квадраты дальности и подают на вход запоминающего устройства 16. Текущее значение квадрата дальности и значения квадратов дальности, полученные в предыдущих обзорах , , … , , после задержки на соответствующее число периодов обзора в запоминающем устройстве 16 поступают с выходов запоминающего устройства 16 на первые входы умножителей блока 17, где данные сигналы умножают на весовой коэффициент, который подают на вторые входы умножителей с выходов блока 18, и затем сигналы подают на входы сумматора 19.

На выходе сумматора 19 определяется оценка второго приращения квадрата дальности за обзор .

В отличие от прототипа, весовые коэффициенты оценки второго приращения входного сигнала за период обзора вычисляют заранее, до проведения измерений, по формуле:

Эту оценку подают на четвертый вход вычислителя модуля скорости БЦ в середине интервала наблюдения 8.

Так же, как в прототипе, производят взвешенное суммирование сигналов высоты БЦ. Сигналы высоты zi с выхода блока 2 подают в запоминающее устройство 4, далее умножают в блоке 5 на весовые коэффициенты, поступающие с выходов блока 14. В отличие от прототипа весовые коэффициенты определяются в блоке 14 по формуле:

.

После умножения взвешенные сигналы высоты подают на входы сумматора 7. На выходе сумматора 7 определяют сглаженное значение высоты БЦ, то есть оценка высоты в середине интервала наблюдения.

Оценку высоты подают на первый вход вычислителя модуля скорости 8 и на вход вычислителя геоцентрического угла 20, далее с выхода вычислителя 20 на вход вычислителя ускорения силы тяжести 21. Сигналы с выходов вычислителей 20 и 21 подаются на второй и третий входы вычислителя модуля скорости 8, соответственно.

По своей сущности устройство, реализующее заявляемый способ и способ-прототип, является следящим измерителем модуля скорости БЦ с запаздыванием на половину временного интервала наблюдения. Конец интервала наблюдения точка С (см. фиг.1) совпадает с моментом приема отраженных сигналов и измерения координат БЦ в реальном времени. Начало интервала наблюдения - точка А зависит от числа обзоров сопровождаемой БЦ и от числа задействованных устройств задержки (ячеек памяти). Точка оценивания В находится в середине интервала наблюдения. С приходом следующего отраженного сигнала число устройство задержки увеличивается на одно устройство задержки, число обрабатываемых сигналов увеличивается на один сигнал, конец интервала наблюдения смещается по траектории на один период обзора, а точка оценивания модуля скорости - на половину периода обзора. Минимальное число обрабатываемых сигналов равно трем, а максимальное число обрабатываемых сигналов равно максимальному числу обзоров сопровождаемой БЦ или максимальному числу задействованных устройств задержки и умножителей.

В устройствах, реализующих заявляемый способ и способ-прототип, измеряют дальность, угол места и высота БЦ, производят взвешенное суммирование сигналов высоты.

К основным признакам, которые отличают изобретение от прототипа, а также характеризуют новизну изобретения, относятся следующие действия с оцифрованными радиолокационными сигналами:

- перемножение в каждом обзоре сигналов дальности и формирование из этих произведений фиксированной выборки квадратов дальности;

- взвешенное суммирование квадратов дальности и определение оценки второго приращения квадрата дальности за обзор ;

- определение оценки высоты БЦ в середине интервала наблюдения путем взвешенного суммирования измерений высоты, а не оценок первого приращения высоты и горизонтальных декартовых координат;

- не используются результаты измерений азимута.

В заявляемом способе впервые для определения модуля скорости вычисляют геоцентрический угол между РЛС и БЦ в середине интервала наблюдения и ускорение силы тяжести в середине интервала наблюдения.

Для доказательства практического отсутствия систематических (методических) ошибок оценки модуля скорости заявляемым способом вычислим значение скорости БЦ типа ракеты СКАД в середине интервала наблюдения на 80-й секунде полета по выборке из 5-ти значений дальности и высоты в соответствии с исходными данными, приведенными в таблице 2 (см. фиг.5).

;

;

;

.

Таким образом, методическая ошибка практически отсутствует. Случайную среднеквадратическую ошибку определения модуля скорости вычисляют по формуле:

Результаты вычислений, приведенные в таблице 1 (см. фиг.5), показали, что, в отличие от прототипа, доминирующее влияние на точность определения модуля скорости БЦ оказывают ошибки измерения дальности. Ошибки измерения угла места (высоты) определяют потенциально достижимую точность определения модуля скорости (смотри 3-ю строку таблицы 1 фиг.5). Теоретически точность определения модуля скорости БЦ заявляемым способом может быть повышена в 5-22 раза по сравнению с прототипом (смотри 4-ю строку таблицы 1 фиг.5). При ошибках измерения дальности 25 м ошибки определения модуля скорости БЦ заявляемым способом меньше ошибок определения модуля скорости способом-прототипом в 5-9 раз (смотри 6-ю строку таблицы 1). При ошибках измерения дальности 300 м преимущества заявляемого способа при небольшом числе измерений практически утрачиваются (смотри 10-ю строку таблицы 1).

Следует отметить, что изменение (обход) заявляемой формулы изобретения приводит к ухудшению точности определения модуля скорости БЦ. Если не использовать геоцентрический угол между РЛС и БЦ в середине интервала наблюдения γcp, то модуль скорости будет определяться с методической ошибкой (с отрицательным смещением). В приведенном примере вычисленная скорость будет меньше истинной скорости на 62 м/с. При дальности до БЦ более 500 км отрицательное смещение вычисленного значения модуля скорости может достигать значений до нескольких сотен метров в секунду. Если не производить взвешенное суммирование сигналов высоты, а использовать единичные измерения высоты БЦ, то случайные СКО определения модуля скорости увеличатся примерно в раз.

Увеличение точности определения модуля скорости заявляемым способом по сравнению с прототипом происходит только при выборе точки оценивания в середине интервала наблюдения, то есть скорость оценивают с запаздыванием по времени на половину длительности интервала наблюдения. При оценивании скорости в реальном режиме времени, то есть в момент получения последнего измерения, преимущества заявляемого способа утрачиваются из-за необходимости учета вертикальной скорости БЦ. Кроме того, заявляемый способ нельзя использовать на активном участке траектории, то есть при работающем ракетном двигателе, и при совершении БЦ маневра на пассивном участке траектории. Для определения времени окончания активного участка траектории можно использовать изобретение: «Способ радиолокационного определения времени окончания активного участка траектории баллистической ракеты» (заявка 2012138670, Рос. Федерация: МПК G01S 13/58/ Белоногов П.З., Бомштейн А.Д., Прядко А.Н.; заявитель ОАО «ФНПЦ «ННИИРТ»; приоритет от 10.09.2012; решение о выдаче патента принято 03.12.2013).

Таким образом, повышение точности определения модуля скорости баллистической цели в наземных РЛС с грубыми измерениями угла места и азимута получают за счет того, что через интервалы времени, равные периоду обзора Т0 радиолокационной станции, измеряют дальность и высоту баллистической цели, производят преобразование измерений дальности и высоты в цифровые сигналы, формируют фиксированную выборку N оцифрованных сигналов высоты баллистической цели, производят взвешенное суммирование N оцифрованных сигналов высоты баллистической цели, а также дополнительно определяют численное сглаженное значение высоты БЦ в середине интервала наблюдения, то есть ее оценку , в каждом обзоре определяют квадраты дальности, формируют фиксированную выборку N оцифрованных сигналов квадратов дальности, производят взвешенное суммирование N оцифрованных сигналов квадратов дальности и определяют оценку второго приращения квадрата дальности за обзор, определяют геоцентрический угол γcp между радиолокационной станцией и баллистической целью в середине интервала наблюдения и ускорение силы тяжести g0 в середине интервала наблюдения, определяют значение модуля скорости БЦ в середине интервала наблюдения на невозмущенном пассивном участке траектории по определенной формуле.

Список использованной литературы:

1. Кузьмин С.З. Цифровая обработка радиолокационной информации. М.: «Сов. радио», 1967, с.298-306.

2. Кузьмин С.З. Основы проектирования систем цифровой обработки радиолокационной информации. М.: «Радио и связь», 1986, с.151-155.

3. Жданюк Б.Ф. Основы статистической обработки траекторных измерений. М.: «Сов. радио», 1978, с.109-142, 253-265.

4 Бартон Д., Вард Г. Справочник по радиолокационным измерениям. Перевод с англ. под ред. М. М. Вейсбейна. М: «Сов. радио», 1976, с.63, 340.

5. Кузьмин С.З. Цифровая радиолокация. Киев, издательство «КВЩ»,2000, с.8-9.

6. Вооружение ПВО и РЭС России. Альманах. М.: Издательство НО «Лига содействия оборонным предприятиям», 2011, с.356-361.

7. Теоретические основы радиолокации / под ред. Я.Д. Ширмана, М.: Сов. радио, 1970, с.290-291.

8. Радиоэлектронные системы: основы построения и теория. Справочник /Ширман Я.Д., Лосев Ю.И. и др. / Под ред. Я.Д. Ширмана. - М.: ЗАО «МАКВИС», 1998. - 828 с: с.36

Способ определения модуля скорости баллистической цели в наземной радиолокационной станции, заключающийся в том, что через интервалы времени, равные периоду обзора T0 радиолокационной станции, измеряют дальность и высоту баллистической цели, производят преобразование измерений дальности и высоты в цифровые сигналы, формируют фиксированную выборку N оцифрованных сигналов высоты баллистической цели, производят взвешенное суммирование N оцифрованных сигналов высоты баллистической цели, отличающийся тем, что определяют численное сглаженное значение высоты баллистической цели в середине интервала наблюдения, то есть ее оценку , в каждом обзоре определяют квадраты дальности, формируют фиксированную выборку N оцифрованных сигналов квадратов дальности, производят взвешенное суммирование N оцифрованных сигналов квадратов дальности и определяют оценку второго приращения квадрата дальности за обзор, определяют геоцентрический угол γcp между радиолокационной станцией и баллистической целью в середине интервала наблюдения по формуле , где rcp - дальность до баллистической цели в середине интервала наблюдения, Rз - радиус Земли, определяют ускорение силы тяжести в середине интервала наблюдения по формуле , где g0 - ускорение силы тяжести на поверхности Земли, определяют значение модуля скорости баллистической цели в середине интервала наблюдения на невозмущенном пассивном участке траектории по формуле .



 

Похожие патенты:

Способ измерения радиальной скорости объекта относится к радиолокации. Достигаемый технический результат - уменьшение погрешности измерения радиальной скорости объекта, при которой частота Доплера меньше единиц кГц, и упрощение способа измерения скорости объекта.

Изобретение относится к навигационной технике и предназначено для решения проблемы повышения точности встречи при кратковременном взаимодействии двух летательных объектов на малых расстояниях.

Группа изобретений относится к способу и устройству формирования команды на пуск защитного боеприпаса, а также к применению этого устройства в качестве радиолокационной станции (РЛС) измерения скорости цели, в качестве радиовзрывателя и в качестве измерителя интервала времени пролета целью известного расстояния.

Изобретение относится к области радиолокации, в частности, к области сопровождения траектории цели в обзорных радиолокационных станциях. Достигаемый технический результат - уменьшение времени обнаружения траектории цели и увеличение достоверности выдаваемой радиолокационной информации.

Группа изобретений относится к методам и средствам траекторных измерений космических аппаратов (КА) с использованием линий радиосвязи. В способе используются три территориально разнесенные наземные измерительные станции (ИС) и приемоответчик КА.

Группа изобретений относится к методам и средствам траекторных измерений космических аппаратов (КА) с использованием линий радиосвязи. В способе используют три территориально разнесенные измерительные станции (ИС).

Изобретение относится к способам траекторией обработки радиолокационной информации. Достигаемым техническим результатом изобретения является повышение вероятности обнаружения маневра баллистической цели за счет исключения измерений угла места и азимута из обрабатываемых выборок.

Изобретения относятся к радиолокационной технике. Техническим результатом является сокращение времени измерения изменения скорости движения цели по дальности.
Группа изобретений относится к высокоскоростной радиолокационной технике и может использоваться при создании измерителей скорости объектов. Достигаемый технический результат - повышение надежности измерения скорости сближения объектов за счет более надежного обнаружения локатором сверхскоростных целей.

Изобретения относятся к радиолокационной технике. Достигаемый технический результат - расширение ассортимента устройств измерения длинны объектов. Измеренная длина перемещающегося объекта определяется выражением L=4Доt1/t2, где t2 - интервал времени между моментами возникновения и обнаружения на радиолокационной станции (РЛС) сигналов частотой NFдо=N2Vofн/C и (N+4)Fдо, за который объект пролетает интервал расстояния S2 от (1-δ)(Дo/Vo)(Vi+NVo) до (1+δ)(Дo/Vo)[Vi+(N+4)Vo], где fн - средняя частота излучаемого РЛС непрерывного сигнала с частотной модуляцией по одностороннему пилообразному линейно спадающему закону (НЛЧМ сигнал), выбираемая из условия До/Vo=fн/Fмfд; fд и Fм - соответственно девиация частоты и частота модуляции НЛЧМ сигнала; Vo - минимально возможная величина радиальной скорости цели; До - выбираемое базовое расстояние; С и Vi - соответственно скорость света и скорость цели; δ - коэффициент, определяющий длину известного интервала S1 расстояния, на котором происходит обнаружение объекта; N - положительное число, определяющее расстояние между РЛС и началом обнаружения цели на интервале расстояния S2; t1 - интервал времени, в течение которого объект пролетает интервал расстояния S1 от (1-δ)(До/Vo)(Vi+NVo) до (1+δ)(Дo/Vo)(Vi+NVo), во время обнаружения на РЛС сигнала частотой NFдо±ΔFдо, где ±ΔFДo - диапазон узкополосного спектра частот сигналов, обнаруживаемых на РЛС.

Изобретение относится к области ближней радиолокации и может быть использовано в системах фазовой автоподстройки частоты (ФАПЧ) в радиолокационном датчике доплеровского смещения частоты. Достигаемый технический результат изобретения - повышение точности определения моментов срывов ФАПЧ и возможность их корректировки. Указанный результат достигается за счет того, что радиолокационный датчик выполняют в виде системы из двух контуров, один из которых используется в контуре слежения за фазой, а другой - в контуре обнаружителя срыва слежения. За счет совместной обработки информации, получаемой с дискриминаторов, удается отследить срывы слежения за фазой и ввода коррекции. 5 ил.

Изобретение относится к радиолокации и предназначено для обнаружения когерентно-импульсных неэквидистантных радиосигналов и измерения радиальной скорости движущегося объекта. Достигаемый технический результат - повышение точности измерения. Указанный результат достигается тем, что обнаружитель-измеритель радиоимпульсных сигналов содержит блок задержки, блок комплексного сопряжения, блок комплексного умножения, блок усреднения, блок вычисления фазы, умножитель, ключ, блок вычисления модуля, первый блок памяти, блок управления, пороговый блок, второй блок памяти, синхро-генератор, первый и второй двухканальные ключи, дополнительный блок усреднения, дополнительный блок задержки, дополнительный блок вычисления модуля, дополнительный блок комплексного сопряжения, дополнительный блок комплексного умножения и сумматор, определенным образом соединенные между собой и осуществляющие междупериодную обработку исходных отсчетов. 10 ил.
Изобретение относится к области обработки радиосигналов и может быть использовано в радиолокационной технике. Достигаемый технический результат - обеспечение возможности измерения радиальной скорости движущегося объекта при сохранении возможности измерения дальности до объекта. Указанный результат достигается за счет того, что устройство моноимпульсного измерения радиальной скорости объектов состоит из двух идентичных каналов обработки зондирующего и отраженного линейно-частотно модулированных (ЛЧМ) импульсов, подключенных к первому и второму выходам электронного ключа, при этом поступающие на электронный ключ зондирующий ЛЧМ импульс и отраженный от движущегося объекта ЛЧМ импульс коммутируются с соответствующим каналом обработки, причем каждый из каналов обработки состоит из последовательно соединенных полосового фильтра, перемножителя, на один вход которого с выхода полосового фильтра поступает ЛЧМ импульс, а на второй вход - тот же импульс, но задержанный в линии задержки, интегратора, схемы фазовой автоподстройки частоты, измерителя частоты, при этом выход измерителя частоты из состава каждого канала соединен с входом устройства сравнения, выход которого соединен с решающим устройством. 2 ил.

Группа изобретений относится к области траекторных измерений с использованием станции слежения (СС) за полетом космического аппарата (КА). При обмене информацией с КА по радиоканалу СС производит измерение дальности до КА и скорости ее изменения. Основная и дополнительные антенны СС принимают ответный сигнал с КА и передают его в блок интерферометрических измерений (БИИ), имеющий фазовый пеленгатор. В БИИ определяются углы азимута и места КА и скорости их изменения. Для раскрытия неоднозначности угловых измерений они дополнительно производятся на частоте, излучаемой с борта КА и равной 1/4 основной. Это позволяет не применять на СС антенн, создающих укороченные базы. Все шесть измеренных параметров (расстояние, углы и скорости их изменения) передаются в баллистический центр, где по ним определяется траектория и прогноз движения КА. Технический результат группы изобретений заключается в упрощении сети слежения за полетом КА при проведении траекторных измерений. 2 н.п. ф-лы, 2 ил.

Группа изобретений относится к средствам защиты летательных аппаратов. Беспилотный летательный аппарат (БЛА) содержит две радиолокационные станции (РЛС), миниатюрный парашют с пускателем, телескопическую антенну с взрывателем заряда, соединенные определенным образом. При первом способе формирования команды на раскрытие имитатора БЛА команду на раскрытие формируют при равенстве по длительности второго и половины первого интервала времени между обнаружениями сигналов определенной частоты, когда между антенной БЛА и приближающейся ракетой будет определенное расстояние. При втором и третьем способах формируют команду на раскрытие при равенстве по длительности двух интервалов времени между моментами обнаружения сигналов с определенной частотой, когда между антенной и приближающейся ракетой будет определенное расстояние. Первая РЛС формирования команды на раскрытие имитатора БЛА содержит локатор определения момента выдачи команды, регистр сдвига, два генератора счетных импульсов, реверсивный счетчик, блок памяти, постоянное запоминающее устройство (ПЗУ), цифровой компаратор, элемент И, два генератора непрерывной частоты, соединенные определенным образом. Вторая РЛС формирования команды на раскрытие БЛА содержит локатор определения момента выдачи команды, регистр сдвига, генератор счетных импульсов, реверсивный счетчик, элемент ИЛИ-НЕ, элемент И, аналоговый ключ, два генератора непрерывной частоты, соединенные определенным образом. 6 н.п. ф-лы, 4 ил.

Изобретение относится к радиолокации и может быть использовано в радиолокационных станциях (РЛС) с грубыми измерениями азимута и угла места. Достигаемый технический результат - повышение точности определения модуля скорости аэродинамической цели (АЦ). Указанный результат достигается за счет того, что формируют фиксированную выборку значений квадратов дальности, оценивают второе приращение квадрата дальности за обзор путем оптимального взвешенного суммирования значений квадратов дальности, делят эту оценку на период обзора РЛС во второй степени и получают значение квадрата модуля скорости АЦ, летящей по линейной траектории. Повышение точности определения модуля скорости достигается за счет устранения влияния ошибок измерения азимута и угла места. 4 ил.

Изобретение относится к вычислительной технике и предназначено для вычисления на основе корреляционного принципа скорости движущегося объекта; может использоваться в автоматизированных системах управления воздушным движением для обнаружения и измерения скорости летательных аппаратов. Достигаемый технический результат - повышение точности измерения скорости и расширение диапазона однозначно измеряемых доплеровских скоростей при сохранении однозначного измерения дальности. Указанный результат достигается за счет того, что устройство обнаружения-измерения радиоимпульсных сигналов содержит блок задержки, блок комплексного сопряжения, блок комплексного умножения, блок усреднения, блок вычисления фазы, умножитель, ключ, блок вычисления модуля, первый блок памяти, блок управления, пороговый блок, второй блок памяти, синхрогенератор, первый и второй двухканальные ключи, дополнительный блок усреднения, дополнительный блок задержки, дополнительный блок вычисления модуля, дополнительный блок комплексного сопряжения, дополнительный блок комплексного умножения и сумматор, осуществляющие межпериодную корреляционную обработку исходных отсчетов. 10 ил.

Изобретение относится к области радиолокации и может быть использовано при обработке информации, получаемой радиолокаторами с синтезированной апертурой для измерения скорости и азимутальной координаты надводных кораблей. Достигаемый технический результат - обеспечение измерения скорости и азимутальной координаты надводных целей при съемке радиолокаторами с синтезированной апертурой антенны. Способ основан на измерении поправки к частоте Доплера и заключается в том, что измерение поправки к частоте Доплера осуществляется по отклику точечных отражателей надводных кораблей, полученных по радиолокационному изображению (РЛИ) с искусственно введенной неоднозначностью по азимуту, что достигается синтезом РЛИ с частотой ниже частоты повторения зондирующего сигнала. 3 ил.

Изобретение относится к радиолокации и может быть использовано для обработки сигналов двухдиапазонных радиолокационных систем. Достигаемый технический результат - повышение точности обработки измерений дальности до цели и скорости сближения с целью. Указанный результат достигается за счет использования двухдиапазонных радиолокационных станций, представляющих собой систему совместной обработки измерений дальности и скорости, при этом оценки измерений дальности до цели и скорости сближения с целью формируются по определенным правилам. 2 н.п. ф-лы, 8 ил.

Изобретение относится к радиолокации и может быть использовано для обработки сигналов двухдиапазонных радиолокационных систем. Достигаемый технический результат - повышение быстродействия и точности идентификации измерений, приходящих от двухдиапазонных радиолокационных систем. Суть предлагаемого способа состоит в том, что в каждом j-ом диапазоне для полученной группы измерений для всех сопровождаемых целей формируются невязки, представляющие собой разность между результатами полученных измерений и результатами прогнозирования оцениваемых фазовых координат отслеживаемой цели. Далее, для всех сопровождаемых траекторий формируются функционалы качества. Решение о принадлежности полученных измерений той или иной из сопровождаемых целей принимается по минимальному значению функционалов, определяемому в процессе их перебора. Система идентификации измерений для двухдиапазонной радиолокационной системы выполнена определенным образом. 2 н.п. ф-лы, 2 ил.
Наверх