Патенты автора Чунаев Владимир Юрьевич (RU)

Изобретение относится к авиации и касается конструкций составных частей корпусов высокоскоростных ЛА (наружных оболочек или панелей аэродинамических поверхностей) из композиционного материала на основе углеродной ткани и карбида кремния. Изготовление составной части корпуса включает изготовление углерод-углеродных заготовок для наружной оболочки или панели аэродинамической поверхности с элементами силового набора с последующей сборкой с помощью крепежных деталей. При этом углерод-углеродные заготовки проходят механическую обработку, взаимную подгонку и сборку с помощью крепежных деталей. Крепежные детали выполнены из углерод-углеродных заготовок. Причем крепежные детали образуют пары винт-гайка, где головки винтов, выходящие на поверхность внешнего обвода, выполнены с выступающими частями для обеспечения сборки, включая затяжку моментом соединений винт-гайка. После чего срезают выступающие части заподлицо с внешним обводом и производят силицирование собранной конструкции. Достигается изготовление конструкций составных частей корпуса ЛА, работающих в высокоскоростных окислительных потоках, повышение технологичности изготовления и сборки, повышение надежности конструкции. 4 з.п. ф-лы, 4 ил.
Изобретение относится к космической технике и касается высокочастотных ионных двигателей. Электрод ионного двигателя, содержит равномерно распределенные по поверхности круглой или прямоугольной формы отверстия размером 1,2-4,6 мм и перемычки между ними шириной 0,4-2,4 мм и выполнен из (УУКМ) на основе каркаса слоистой структуры из высокомодульных углеродных волокон и коксо-пироуглеродной матрицы; при этом углеродные волокна (УУКМ) входят в состав однонаправленной ленты толщиной 0,07-0,11 мм и расположены в УУКМ детали под углом 60 или 90 градусов друг к другу для отверстий круглой и квадратной формы соответственно.Технический результат изобретения - повышение ресурса работы ускоряющего электрода и эмиссионного электрода ИОС, а также повышение их прочности и размерной точности, высокой чистоты поверхности и упрощение технологии изготовления. 2 н.п. ф-лы.
Изобретение может быть использовано в медицине, в области композиционных материалов для изготовления эндопротезов, используемых в ортопедии для замены пораженных естественных суставов человека. Эндопротез тазобедренного сустава, эндопротез коленного сустава, эндопротез локтевого сустава, эндопротез сустава пальца кисти, содержат элементы, выполненные из композиционного материала для замещения костной ткани, содержащего пористую матрицу из волокон кристаллического углерода с межслоевым расстоянием 3,58…3,62 ангстрема, при общем количестве волокна 20…80% и материал-наполнитель, состоящий из кристаллического углерода с межслоевым расстоянием 3,42…3,44 ангстрема в количестве 50…70%, и аморфного углерода в виде кокса в количестве 10…20% от общего объема пор. При этом в аморфный углерод внедрены углеродные нанотрубки в количестве 0,05…1,0% от массы аморфного углерода. Изобретение позволяет повысить прочность эндопротезов до значений, равных и выше максимальной прочности костной ткани человека, 4 н. и 8 з.п. ф-лы.

Изобретения относятся к изготовлению объемной структуры волокнистого материала, применяемого в качестве теплоизоляционного материала, а также в качестве армирующего наполнителя при изготовлении изделий из углерод-углеродного композиционного материала. Волокнистый материал объемной структуры содержит слои фрагментированных до размера филаментов дискретных по длине углеродных волокон, скрепленные между собой вертикально расположенными пучками углеродных волокон, получаемых иглопрокалыванием указанных слоев. В соответствии с заявленным способом слой углеродных волокон формируют на основе дискретных по длине и фрагментированных по толщине (вплоть до размеров филаментов) волокон путем расчесывания дискретных волокон - самих по себе или находящихся в составе кусочков ткани - за счет прохождения их в зазоре между вращающимися валками с пильчатой гарнитурой. Фрагментированные волокна подают на перфорированный, вращающийся и находящийся под разрежением барабан для образования из них настила с последующей намоткой последнего в виде холста на приемный вал и иглопробиванием. При необходимости получения толстого слоя из холстов перед иглопробиванием набирают пакет. Способ осуществляют на конвейерной лини, снабженной чесальной машиной для фрагментирования волокон, барабаном для формирования холста, приемным валом и столом для иглопробивания, а также, при необходимости, механизмом пакетирования. Технический результат изобретения – повышение теплоизоляционных свойств волокнистого материала при сохранении достаточно высокой прочности изготавливаемых из него композиционных изделий конструкционного назначения. 3 н.п. ф-лы, 1 ил., 1 табл.
Изобретение относится к медицине, хирургии и ортопедии. Имплантат для замещения костных дефектов выполнен из углерод-углеродного композиционного материала. Материал содержит пористую матрицу из волокон кристаллического углерода с межслоевым расстоянием 3,58…3,62 ангстрема, при общем количестве волокна 20…80%. Материал-наполнитель состоит из кристаллического углерода с межслоевым расстоянием 3,42…3,44 ангстрема в количестве 50…70% и аморфного углерода в виде кокса в количестве 10…20% от общего объема пор матрицы. При этом в аморфный углерод внедрены углеродные нанотрубки в количестве 0,05…1,0% от массы аморфного углерода. Изобретение позволяет повысить эффективность применения имплантата для замещения костных дефектов путем повышения коэффициента запаса прочности кости при замещении ее дефекта. 2 з.п. ф-лы.
Изобретение относится к медицине, ортопедии. Головка эндопротеза тазобедренного сустава выполнена из композиционного материала. Материал содержит пористую матрицу из волокон кристаллического углерода с межслоевым расстоянием 3,58…3,62 ангстрема, при общем количестве волокна 20…80%. Материал-наполнитель состоит из кристаллического углерода с межслоевым расстоянием 3,42…3,44 ангстрема в количестве 50…70% и аморфного углерода в виде кокса в количестве 10…20% от общего объема пор матрицы. В аморфный углерод внедрены углеродные нанотрубки в количестве 0,05…1,0% от массы аморфного углерода. Изобретение позволяет повысить прочность эндопротезов до значений, равных и выше максимальной прочности костной ткани человека. 2 з.п. ф-лы.
Изобретение относится к медицине, а именно ортопедии. Ножка эндопротеза тазобедренного сустава выполнена из композиционного материала. Материал содержит пористую матрицу из волокон кристаллического углерода с межслоевым расстоянием 3,58……3,62 ангстрема при общем количестве волокна 20……80% и материал-наполнитель, состоящий из кристаллического углерода с межслоевым расстоянием 3,42……3,44 ангстрема в количестве 50……70% и аморфного углерода в виде кокса в количестве 10……20% от общего объема пор матрицы. При этом в аморфный углерод внедрены углеродные нанотрубки в количестве 0,05……1,0% от массы аморфного углерода. Изобретение позволяет повысить прочность эндопротеза до значений, равных и выше максимальной прочности костной ткани человека. 2 з.п. ф-лы.
Изобретение относится к медицине, ортопедии. Чашка эндопротеза тазобедренного сустава выполнена из композиционного материала. Материал содержит пористую матрицу из волокон кристаллического углерода с межслоевым расстоянием 3,58…3,62 ангстрема, при общем количестве волокна 20…80%. Материал-наполнитель состоит из кристаллического углерода с межслоевым расстоянием 3,42…3,44 ангстрема в количестве 50…70% и аморфного углерода в виде кокса в количестве 10…20% от общего объема пор матрицы. В аморфный углерод внедрены углеродные нанотрубки в количестве 0,05…1,0% от массы аморфного углерода. Изобретение позволяет повысить прочность эндопротеза до значений равных и выше максимальной прочности костной ткани человека. 2 з. п. ф-лы.

Изобретение относится к медицине, конкретно к области композиционных материалов для изготовления эндопротезов. Композиционный материал для замещения костной ткани содержит пористую матрицу из волокон кристаллического углерода с межслоевым расстоянием 3,58…3,62 ангстрема при общем количестве волокна 20…80% и материал-наполнитель, состоящий из кристаллического углерода с межслоевым расстоянием 3,42…3,44 ангстрема в количестве 50…70% и аморфного углерода в виде кокса в количестве 10…20% от общего объема пор. При создании композиционного материала для замещения костной ткани в аморфный углерод внедрены углеродные нанотрубки в количестве 0,05…1,0% от массы аморфного углерода. Композиционный материал по изобретению имеет прочность при циклическом нагружении, равную и выше максимальной прочности костной ткани человека. 1 табл.

Изобретение предназначено для химической промышленности и медицины и может быть использовано при изготовлении фильтрующих элементов, адсорбентов, носителей катализаторов, материалов для восстановления костной ткани. Сначала в синтетическую термореактивную смолу вводят 0,01-0,30 мас. % углеродных нанотрубок. Затем полученным составом пропитывают заготовку из пенополиуретана. Пропитанную заготовку термообрабатывают в атмосфере природного газа. Нагрев от 100 до 600°C ведут со скоростью 70-90°C/ч, от 600 до 1000°C - со скоростью не менее 300°C/ч. После этого проводят изотермическую выдержку при 1000°C в течение 2 часов. Получают высокопористый ячеистый углеродный материал с пористостью 80-90%, плотностью 0,2-0,4 г/см3, с содержанием углерода не менее 99,9%. 1 табл.
Изобретение относится к защитным покрытиям для химической, металлургической, авиационной промышленности. Технический результат изобретения заключается в повышении надежности покрытия к воздействию окружающей среды при сохранении требуемой термостойкости. Защитное покрытие содержит, мас.ч.: жидкое калийное стекло 100-130; карбид кремния 30-60; окись алюминия 40-70; окись магния 5-15; окись кобальта 3-7. 1 табл.

Изобретение относится к производству изделий из композиционных материалов с карбидно-металлической матрицей, получаемых методом объемного металлирования. Способ изготовления изделий из композиционных материалов на основе матрицы из карбидов металлов включает изготовление заготовки из пористого углеродсодержащего материала с низкой плотностью и высокой открытой пористостью и ее металлирование паро-жидкофазным методом. Введение в поры материала заготовки металла осуществляют порционно за 2 или более приема, чередуя его с порционным введением углерода путем пропитки коксообразующим связующим с последующим его отверждением и карбонизацией. Для введения ограниченного количества металла в поры углеродсодержащего материала на промежуточных стадиях металлирования размещают заготовку и тигли с металлом в замкнутом объеме реторты, нагревают в вакууме в парах металла, выдерживают при максимальной температуре карбидизации металла и охлаждают. Нагрев заготовки и изотермическую выдержку при температуре выше температуры испарения, но ниже максимальной температуры карбидизации металла проводят при перепаде температур между парами металла и металлируемой заготовкой с меньшей температурой на последней, последующий за ней нагрев и изотермическую выдержку при максимальной температуре карбидизации металла - в отсутствии перепада температур, а охлаждение - с обратным перепадом температур или в отсутствии паров металла, при этом чем меньше требуется ввести в поры материала заготовки металла, тем меньшую температуру устанавливают на заготовке и/или тем меньший перепад температур создают между заготовкой и парами металла и/или тем меньшее время задают на изотермической выдержке, и наоборот. Технический результат изобретения - повышение прочности и окислительной стойкости композиционных материалов. 2 н.п. ф-лы, 2 табл.

Изобретение относится к способам изготовления герметичных изделий из углерод-карбидокремниевых материалов (УККМ), предназначенных для работы в химической, химико-металлургической и других отраслях промышленности. Способ включает формирование каркаса из углеродных волокон, имеющих клтр 3-3,5×10-6 град-1, уплотнение его пироуглеродом до его привеса 30-50%, или при его формировании используют углеродные волокна или ткань со сформированным на них пироуглеродным покрытием с образованием заготовки из пористого углерод-углеродного материала. Затем в поры такой заготовки вводят частями, не менее чем за 2 приема, кокс и кремний, чередуя их введение. Кокс вводят путем пропитки коксообразующим связующим с последующим его отверждением и карбонизацией. Введение кремния на промежуточных стадиях осуществляют путем конденсации паров кремния в порах материала заготовки в процессе нагрева и выдержки заготовки и тиглей с кремнием при температуре на силицируемой заготовке 1300-1650°C с последующим нагревом до 1800°C, выдержкой при 1800-1850°C в течение 1-2 часов и охлаждением в условиях, исключающих конденсацию паров кремния в порах материала, а введение кремния на окончательной стадии силицирования - путем конденсации паров кремния в порах материала в период подъема температуры и/или окончательного охлаждения с 1800-1850°C. Техническим результатом изобретения является повышение срока службы герметичных изделий из УККМ в окислительных средах при высоких температурах. 4 з.п. ф-лы, 20 пр., 3 табл.

Изобретение относится к ракетной технике. Блок тяги жидкостного ракетного двигателя содержит раму, камеру сгорания с соплом и устройство защиты блока тяги, имеющее донные экраны. Устройство защиты блока тяги дополнительно оснащено устройством тепловой защиты рамы, выполненным в виде устройства охлаждения стенки камеры сгорания с каналами в ней, сообщающимися с каналами подачи одного из компонентов топлива к форсуночной камере. Достигается повышение надежности блока тяги жидкостного ракетного двигателя. 1 ил.

Изобретение может быть использовано при получении конструкционных материалов, работающих в условиях высокого теплового нагружения и окислительной среды, для химической, нефтехимической, химико-металлургической промышленности и авиатехники. На заготовке из пористого углеграфитового материала формируют шликерное покрытие на основе композиции из силицирующего агента и временного связующего. Шликерное покрытие выполняют комбинированным с внутренним слоем на основе композиции из порошка нитрида кремния и некоксообразующего полимерного связующего и наружным - на основе композиции из смеси порошков карбида кремния и кварца, взятых в соотношении 1:(2-3), и жидкого стекла, или силоксанового связующего, или коллоидного раствора кремнезема в воде. Затем проводят силицирование путем нагрева заготовки в вакууме до температуры 1800°C, выдержки в течение 1-2 часов при 1800-1850°C и охлаждения. Силицирование проводят в парах кремния при давлении в реакторе не более 35 мм рт.ст., для чего в садку дополнительно устанавливают тигли с кремнием. Нагрев в интервале 1400-1700°C ведут со скоростью не менее 300-350 град/час. Упрощается способ изготовления крупногабаритных изделий из углерод-карбидокремниевого материала, обеспечивается высокая чистота их поверхности и высокая прочность. 2 з.п. ф-лы, 1 табл.

Изобретение может быть использовано в химической, нефтехимической и химико-металлургической отраслях промышленности, а также в авиатехнике для изготовления конструкционных материалов, подвергающихся воздействию агрессивных сред и механическим нагрузкам. Изготавливают заготовку из пористого углеграфитового материала, формируют на ней шликерное покрытие на основе композиции из силицирующего агента и временного связующего. В качестве силицирующего агента используют порошок нитрида кремния, а в качестве временного связующего по всей толщине или по крайней мере в наружном слое шликерного покрытия - жидкое стекло или кремнийорганическое силоксановое связующее. Затем проводят силицирование путем нагрева заготовки в вакууме до температуры 1800°С, выдержки в течение 1-2 часов при 1800-1850°С и охлаждения. При силицировании в насыщенных парах кремния давление в реакторе не более 35 мм рт.ст. и скорость нагрева в интервале 1350-1650°С не менее 300-350 град/час. При силицировании в ненасыщенных парах кремния поверх сформированного шликерного покрытия дополнительно формируют слой шликерного покрытия на основе порошка кремния и жидкого стекла или кремнийорганического силоксанового связующего. Упрощается способ изготовления крупногабаритных изделий из углерод-углеродного композиционного материала, обеспечивается высокая чистота их поверхности и высокая прочность.

Изобретение относится к ракетной технике

Изобретение относится к ракетной технике, точнее - к способам изготовления камер ЖРД

Изобретение относится к способу изготовления изделия из композиционного материала

Изобретение относится к ракетной технике

Изобретение относится к ракетной технике

Изобретение относится к клею-компаунду для использования в производстве углеродных, углерод-карбидокремниевых композиционных материалов и изделий из них

Изобретение относится к ракетной технике

Изобретение относится к области производства объемносилицированных изделий

Изобретение относится к металлургической промышленности, к машиностроению, а именно к соединению выполненных из разнородных или однородных по материалу деталей, и может найти применение в производстве сборочных единиц изделия в космической, авиационной технике, в приборостроении, в транспорте, электронике и других областях

Изобретение относится к технологии изготовления деталей из композиционных материалов

Изобретение относится к области изготовления труб

Изобретение относится к ракетной технике

Изобретение относится к области летательных аппаратов
Изобретение относится к композиции защитных покрытий и может быть использовано в химической, металлургической, авиационной промышленности, например, в производстве углеродных материалов и изделий из них

Изобретение относится к области изготовления труб из пластических масс

Изобретение относится к клеевым композициям и может быть использовано, например, в производстве углеродных материалов и изделий из них

 


Наверх