Патенты автора Цивадзе Аслан Юсупович (RU)

Изобретение относится к способу хранения природного газа, метана, водорода и их смесей, в типовых конструкциях газовых резервуаров и баллонов, к повышению количества газового топлива, аккумулируемого в газовом резервуаре или баллоне за счет адсорбции в микропористом материале высокой насыпной плотности. Предлагаемый способ включает хранение газов в слое адсорбента, сформированного в блоки кубической формы определенного размера, оптимального для каждого типоразмера газового резервуара или баллона, загружаемые через загрузочный штуцер поэтапно, по окончании каждого этапа заполнения осуществляют вибрацию газового резервуара или баллона, а после заполнения производится сушка и регенерация адсорбента. Способ позволяет осуществить безопасное аккумулирование объемов газа, достаточных для эксплуатации автомобиля, при этом способ укладки блочного адсорбента высокой насыпной плотности в газовые резервуары или баллоны через загрузочный штуцер может быть автоматизирован, а блоки адсорбента заполняют объем газового резервуара или баллона не менее чем на 80%. Способ способствует созданию энергоэффективных, пожаро-взрывобезопасных систем хранения и транспортировки газов, обладающих повышенным запасом, т.е. высокой плотностью аккумулированного газа. 2 з.п. ф-лы, 2 ил., 1 табл.
Изобретение относится к области химической технологии производства литиевых концентратов и может быть использовано в технологии селективного извлечения лития из многокомпонентных щелочных растворов, образующихся в технологических процессах извлечения лития из морской воды, рассолов геотермальных вод и соляных озер. Селективное экстракционное извлечение лития проводят из водного щелочного раствора, содержащего хлориды лития, натрия, калия и гидроксид натрия. В качестве экстрагента при экстракционном извлечении используют эквимолярный 0,1-0,5 моль/л раствор 2-этилгексилового эфира 2-гидроксибензойной кислоты и фосфиноксидов гексил-октилового ряда в ундекане при концентрации гидроксида натрия в водном щелочном растворе 0,20-0,5 моль/л. Способ обеспечивает повышение коэффициентов распределения (DLi) и степени извлечения (E, %) лития, а также высокую селективность экстрагента по отношению к литию. 5 пр.

Изобретение относится к способу получения блочного композитного материала для аккумулирования газов. Способ включает смешение компонентов со связующим, формование получаемой смеси в блоки и их последующую сушку. Способ характеризуется тем, что в качестве компонентов используют металлоорганический координационный полимер и нанопористый углеродный адсорбент или адсорбент на основе углеродных нанотрубок, которые смешивают в пропорции от 30/70 до 95/5% масс., эффективные внутренние диаметры микропор смешиваемых компонентов отличаются между собой не менее чем на 0,4 и не более чем на 0,8 нм, в качестве связующего используют 2-15% водный раствор соединений из ряда: поливиниловый спирт, раствор хитозана в уксусной кислоте, оксиэтилцеллюлоза. Полученную смесь формуют под прессом в блоки в течение 1-2 мин при силе нагружения от 25 до 75 кН, блоки помещают в сушильную камеру при нормальных условиях, после чего поднимают температуру со скоростью не более 60 град/ч до 110-120°С и сушат не менее 12 и не более 36 ч, затем блоки активируют в термовакуумной камере при температуре 120°С не менее 6 ч при остаточном давлении до 0,26 кПа. Также изобретение относится к блочному композитному материалу. Использование предлагаемого изобретения позволяет повысить насыпную плотность блочного композитного материала формованием при сохранении развитой внутренней поверхности, увеличить твердость полученного блочного композитного материала, а также снизить потери газа при колебаниях температуры и давления в системе газового хранилища. 2 н.п. ф-лы, 8 ил., 2 табл., 5 пр.

Изобретение относится к способу получения металлоорганического координационного полимера для аккумулирования природного газа, метана. Способ включает в себя стадию синтеза, состоящую из взаимодействия эквимолярных количеств кристаллогидрата нитрата алюминия и тримезиновой кислоты, растворенных в апротонном полярном органическом растворителе с температурой кипения выше 80°С, взятом в эквимолярном или избыточном к реагентам количестве, при этом раствор кристаллогидрата нитрата алюминия нагревают до температуры 110°С, раствор тримезиновой кислоты нагревают до температуры 80-110°С, нагретый раствор тримезиновой кислоты по каплям при интенсивном перемешивании добавляют к нагретому раствору нитрата алюминия со скоростью 5-15% об. в минуту, смесь растворов подогревают до температуры 140°С, выдерживают до образования золя, который полимеризуют при температуре 100-150°С в течение 2-3 суток до образования металлоорганического координационного полимера со структурой геля, и стадию активации, состоящую из многократной промывки синтезированного металлоорганического координационного полимера со структурой геля в условиях вакуума при перепаде давления не менее 90 кПа нагретым до температуры 40-60°С апротонным полярным органическим растворителем, используемым на стадии синтеза, сушки до 24 часов сначала в стандартных условиях, затем при температуре 100-150°С, термовакуумирования до 6 часов при температуре 120-300°С и остаточном давлении до 0,26 кПа. При этом стадию активации завершают при стабилизации массы металлоорганического координационного полимера со структурой геля. Также предложен металлоорганический координационный полимер для аккумулирования природного газа, метана. Предложенный способ позволяет снизить материалоемкость процесса за счет использования одного растворителя на стадии синтеза и активации, сократить время получения полимерного геля, который характеризуется наличием активных мезо- и микропор, что позволит применять его в качестве основы в различных адсорбционных процессах, в том числе в системах хранения природного газа. 2 н.п. ф-лы, 6 ил., 2 табл., 5 пр.

Изобретение относится к технологии синтеза и активации металлорганических полимеров для создания функциональных блочных материалов - адсорбентов, а именно к способу получения термоактивированного металлорганического координационного полимера Cu-ВТС. Способ включает взаимодействие при перемешивании раствора нитрата меди Cu (II) с раствором 1,3,5 -бензолтрикарбоновой кислоты, с использованием в качестве растворителя - N,N'-диметилформамида, с образованием пористой структуры, и последующей активацией, при этом активацию проводят комбинированным способом, включающим промывку подогретым до температуры 40-60°С органическим растворителем, сушку при температуре 90-120°С, термовакуумную активацию при температурах 110-200°С. Также предложены термоактивированный металлорганический координационный полимер Cu-ВТС, способы получения композитного нанопористого адсорбента и композитный нанопористый адсорбент. Техническим результатом изобретения является улучшение адсорбционных свойств металлорганического координационного полимера CuBTC, в частности увеличение удельного объема микропор адсорбента и удельной поверхности пор, при сохранении сравнительно узких радиусов микропор, управление средними размерами микропор путем изменения параметров активации, а также создание новых композитных нанопористых адсорбентов на основе термоактивированного металлорганического координационного полимера Cu-ВТС, с повышенной плотностью и высокой степенью сохранения пористой структуры в процессе компактирования. 8 н.п. ф-лы, 6 ил., 4 табл., 18 пр.

Изобретение относится к ионометрии, а именно к разработке составов мембран с ионной проводимостью для ионоселективных электродов, избирательных к ионам свинца. Состав мембраны ионоселективного электрода для определения ионов свинца включает поливинилхлорид в качестве полимерной матрицы, дибутилфталат в качестве пластификатора, липофильную добавку и электродоактивный компонент, при этом в качестве липофильной добавки используют дигидрат тетракис(4-фторфенил)бората натрия, в качестве электродоактивного компонента - 1-(метоксидифенилфофорил)-2-дифенилфосфорилбензол, при следующих соотношениях мембранных компонентов, мас. %: поливинилхлорид 26-33, дибутилфталат 65-70, дигидрат тетракис(4-фторфенил)бората натрия 0.5-1.5, 1-(метоксидифенилфофорил)-2-дифенилфосфорилбензол 1-3. Техническим результатом является получение свинец-селективной мембраны. 3 табл.
Изобретение относится к области гальванотехники и может быть использовано в машиностроении, приборостроении, авиастроении и других отраслях промышленности для нанесения защитно-декоративных покрытий на металлы и сплавы. Способ приготовления раствора для химического никелирования включает растворение в воде компонентов раствора, при этом последовательно растворяют глицин и затем следующие неорганические компоненты: соль никеля в виде сульфата никеля, сульфат меди, нитрат свинца, гипофосфит натрия и аммиак. Соль никеля вводят в виде концентрированного раствора, полученного добавлением в водный раствор никелевой соли карбоната никеля из расчета 7 г/л, выдержкой в течение 18-24 часов, фильтрованием полученного концентрата через плотный бумажный или тканевый фильтр и электрохимической обработкой при катодной плотности тока 0,07-0,12 А/дм2 с гофрированным металлическим катодом и никелевым анодом до прохождения 8-12 А⋅ч/л. Техническим результатом является повышение скорости осаждения покрытий и их защитной способности за счет снижения их пористости. 3 пр., 2 табл.

Изобретение относится к органической химии, в частности касается кристаллической модификации 2-[(4-хлорфенил)фенилацетил]-1H-инден-1,3(2H)-диона (хлорфацинона), характеризующейся следующими значениями параметров кристаллографической ячейки: пр. гр. P 21/с, a = 9.853(1) Å, b = 9.041(1) Å, c = 20.474(1) Å, β = 97.322(3)°, Z = 4. Способ получения кристаллической модификации 2-[(4-хлорфенил)фенилацетил]-1H-инден-1,3(2H)-диона осуществляют путем добавления в субстанцию хлорфацинона 2-[(4-хлорфенил)фенилацетил]-1H-инден-1,3(2H)-диона и диэтилового эфира низкоцепочечного спирта, выбранного из группы – этиловый спирт, метиловый спирт, изопропиловый спирт и н-пропиловый спирт, и нагревают при контроле температуры в диапазоне 30-35°С до полного растворения, после остывания до комнатной температуры проводят кристаллизацию полученного раствора. Кристаллическая модификация 2-[(4-хлорфенил)фенилацетил]-1H-инден-1,3(2H)-диона (хлорфацинон) обладает токсикологической характеристикой в виде параметра токсичности DL50 при внутрижелудочном введении на уровне 0,47±0,06 мг/кг для самцов крыс Rattus norvegicus (Berk.). 2 н. и 1 з.п. ф-лы, 3 ил., 3 табл., 4 пр.

Изобретение относится к органической химии, в частности касается кристаллической модификации 2-[(4-хлорфенил)фенилацетил]-1H-инден-1,3(2H)-диона (хлорфацинона), характеризующейся следующими значениями параметров кристаллографической ячейки: пр. гр. P 21/с, a = 16.70(2) Å, b = 5.62(3) Å, c = 20.2(1) Å, β = 109.4(8)°, Z = 4. Способ получения кристаллической модификации 2-[(4-хлорфенил)фенилацетил]-1H-инден-1,3(2H)-диона осуществляют путем добавления в субстанцию хлорфацинона 2-[(4-хлорфенил)фенилацетил]-1H-инден-1,3(2H)-диона и хлороформа низкоцепочечного спирта, выбранного из группы – этиловый спирт, метиловый спирт, изопропиловый спирт и н-пропиловый спирт, и нагревают при контроле температуры в диапазоне 55-65°С до полного растворения, после остывания до комнатной температуры проводят кристаллизацию полученного раствора. Кристаллическая модификация 2-[(4-хлорфенил)фенилацетил]-1H-инден-1,3(2H)-диона (хлорфацинон) обладает токсикологической характеристикой в виде параметра токсичности DL50 при внутрижелудочном введении на уровне 2,73±0,83 мг/кг для самцов крыс Rattus norvegicus (Berk.). 2 н. и 1 з.п. ф-лы, 2 ил., 3 табл., 4 пр.

Изобретение относится к области ионометрии, а именно к разработке ионоселективных электродов с мембранами на основе полимерных супрамолекулярных систем. Предлагаемое изобретение предназначено для прямого потенциометрического определения активности катионов кадмия в водных растворах и может быть использовано при экологическом мониторинге сточных вод, в технологических и биологических растворах. Предложена мембрана ионоселективного электрода для определения ионов кадмия, которая содержит полимерную матрицу, пластификатор, липофильную добавку и активный компонент, в которой в качестве полимерной матрицы используется поливинилхлорид, а в качестве пластификатора используется дибутилфталат. В качестве электродоактивного компонента используется фосфорилсодержащий поданд 2,6-бис[2-(дифенилфосфинил)фенокси] пиридин, а в качестве липофильной добавки - дигидрат тетракис(4-фторфенил)борат натрия при следующих соотношениях мембранных компонентов, мас.%: электродоактивный компонент 1-3 липофильная добавка 0,5-1,5 пластификатор 65-71 ПВХ 27-32 Изобретение позволяет улучшить предел обнаружения ионов кадмия до 2,1⋅10-6М в водных растворах, а также увеличить избирательность определения кадмия в присутствии меди, цинка, свинца, а также многих щелочных и щелочноземельных металлов. 1 пр., 3 табл.

Изобретение относится к области ионометрии, а именно к разрабоке ионоселективных электродов с мембранами на основе полимерных супрамолекулярных систем, и может быть использовано для прямого потенциометрического определения активности ионов кальция в водных растворах: природных, сточных вод, а также биологических жидкостей. Мембрана ионоселективного электрода для определения ионов кальция содержит полимерную матрицу, пластификатор, липофильную добавку и ионофор, в которой в качестве полимерной матрицы используется поливинилхлорид, а в качестве пластификатора используется о-нитрофенилоктиловый эфир, при этом в качестве ионофора используется бидентатный фосфор-содержащий поданд тетратолил-м-ксилендифосфин, а в качестве липофильной добавки тетракис (4-фторфенил) борат калия при определенных согласно изобретению соотношениях мембранных компонентов. Изобретение позволяет улучшить предел обнаружения ионов кальция до рСа2+=6,1 в водных растворах, а также увеличить избирательность определения в присутствии катионов щелочных и щелочноземельных элементов, включая биогенные, что позволяет применять разработанные электроды для анализа биологических объектов (цельная кровь, сыворотка крови, моча и др.) и в научных исследованиях. 1 ил., 2 табл.
Изобретение относится к хранению природного газа, или метана, или смеси метана с углеводородными соединениями С2, С3, С4, С5 или С6+, в том числе всеми насыщенными и ненасыщенными углеводородами под давлением в контейнере в адсорбированном виде, и дальнейшей транспортировке находящегося под давлением контейнера с адсорбентом. Внутренний объем контейнера заполняют нанопористым углеродным адсорбентом, отобранным исходя из предполагаемых условий эксплуатации контейнера, с максимально большим объемом нанопор, но не меньше 0.50 см3/г . Для эксплуатации контейнера при рабочем давлении до 3.5 МПа и средних температурах ниже минус 30°С используют нанопористый материал со средней эффективной шириной нанопор от 1.2 до 3 нм. При рабочем давлении свыше 7 МПа и температурах, ниже или равных температуре окружающей среды, используют нанопористый материал со средней эффективной шириной нанопор от 0.5 до 1.25 нм. Техническим результатом изобретения является повышение адсорбционной емкости систем хранения газа под давлением в контейнере в области пониженных температур от минус 50 до плюс 30°С и понижение давления хранения газов. 2 з.п. ф-лы.

Изобретение относится к конструкции системы хранения и транспортировки природного газа в адсорбированном виде. Адсорбционный газовый терминал состоит из корпуса, выполненного в форме параллелепипеда, и расположенной внутри него конструкции из чередующихся ячеек, способных нести нагрузку, ориентированной относительно одной из главных осей симметрии корпуса в продольном направлении. Внутри ячеек расположены блоки адсорбционного материала, обеспечивающие заполнение адсорбционного газового терминала не менее чем на 80%. Технический результат заключается в повышении эффективности использования полезного объема транспортных систем при размещении в них газового терминала, снижении давления заправки природным газом по сравнению с компримированным природным газом, а также повышении пожаро-взрывобезопасности. 10 з.п. ф-лы, 6 ил.

Изобретение относится к электротехнической промышленности, в частности к устройствам для непосредственного преобразования химической энергии в электрическую, а конкретно - к литий-ионному аккумулятору. Литий-ионный аккумулятор содержит разделенные пористым сепаратором с электролитом и снабженные активными слоями положительный и отрицательный электроды, причем активный слой отрицательного электрода включает в качестве активного материала сплошную пленку аморфного кремния или кремниевого композита, на которую нанесен слой высокодисперсного нанотитаната лития. Изобретение позволяет повысить удельную емкость отрицательного электрода и аккумулятора в целом при достаточно хорошей циклируемости. 3 з.п. ф-лы, 5 ил.

Изобретение относиться к 2,4,6-трис[(2-дифенилфосфорил)-4-этилфенокси]-1,3,5-триазину, который может быть использован в качестве селективного ионофора для катиона лития в пластифицированной полимерной мембране в ионоселективных электродах для определения концентраций иона лития в биологических жидкостях (кровь, сыворотка и плазма крови, моча, слюна и т.д.) и технологических растворах. Предложено новое соединение, повышающее селективность пластифицированной мембраны ионоселективного электрода к ионам лития в присутствии катионов натрия. 5 пр., 3 табл., 2 ил.
Изобретение относится к области металлургии редких металлов и может быть использовано в технологии селективного извлечения скандия из концентратов редкоземельных элементов (РЗЭ). Способ выделения скандия из концентрата редкоземельных элементов в виде водного раствора включает контактирование водного раствора, содержащего нитрат скандия, нитраты РЗЭ, трихлорацетат лития с концентрацией 1,0-2,0 моль/л с экстрагентом в течение 3 минут. В качестве экстрагента используют раствор бензо-15-краун-5 в хлороформе и экстракционный процесс проводят при рН 3,0-5,0. Техническим результатом является повышение коэффициентов разделения металлов и возможность проведения процесса селективного извлечения скандия из нейтральных концентрированных растворов нитратов РЗЭ перед проведением процессов их группового разделения по стандартной технологической схеме. 1 з.п. ф-лы, 4 пр.

Изобретение относится к активированному углеродному материалу для хранения, распределения и транспортировки природного газа или метана. Нанопористый материал получают из дробленого карбонизованного и активированного природного сырья органического происхождения путем его смешения с полимерным связующим и водой с последующим формованием в блоки. Технический результат заключается в увеличении количества аккумулированного материалом природного газа, повышении насыпной плотности материала, а также в возможности повышения плотности упаковки полученного материала в специализированных разборных адсорберах, что позволяет заполнить систему хранения на 95% и более от ее объема при сохранении диффузионных характеристик. 2 н. и 3 з.п. ф-лы, 3 пр.

Изобретение относится к способу переработки углеводородного сырья, выбираемого из твердых или жидких углеводородов природного или синтетического происхождения, который включает диспергирование сырья и воздействие на него ускоренными электронами с получением реакционной смеси, содержащей более легкие целевые продукты радиолиза. При этом сырье вводят в зону воздействия посредством газоструйной эжекции, используя газообразные парафины и, возможно, газообразные продукты, включая алкены и алкины как рабочее тело, при температуре выше точки начала кипения сырья, но не ниже точки конца его плавления, с линейной скоростью выше скорости реакционной смеси в зоне воздействия и скорости вывода целевого продукта из зоны воздействия, при этом в зоне воздействия сырье подвергают преимущественно косвенному действию излучения, осуществляют непрерывную инерционную сепарацию компонентов, чередуют направление движения реакционной смеси вдоль и поперек направления пучка электронов и выводят целевой продукт из зоны воздействия в парообразной форме, а более тяжелые продукты конденсируют и оставляют в зоне воздействия. Предлагаемый способ позволяет существенно увеличить качество конечного продукта и его выход, а также выход связывания газа при возможности регулирования расщепления тяжелых компонентов до требуемого фракционного состава. 7 з.п. ф-лы, 9 ил., 10 пр.

Изобретение относится к способу хранения природного газа метана при помощи адсорбции в общепромышленных газовых баллонах, в микропористом материале с эффективной шириной пор меньше 3 нм, высокой насыпной плотности, формованного в блоки в виде специальных шестигранных призм, у которых диаметр описанной окружности основания не менее чем на 15% меньше, чем отверстие в горловине баллона, упакованных таким образом, что внутренний объем баллона заполняется адсорбционным материалом не менее чем на 95%, может быть использовано в системах хранения, распределения и транспортировки газового топлива. Технический результат заключается в повышении количества газового топлива, запасаемого в баллоне, и снижении пожаровзрывоопасности системы хранения. 3 з.п. ф-лы, 2 ил.

Способ переработки твердых бытовых отходов и/или производственных отходов, выбранных из природных и синтетических полимеров в газообразные, жидкие и твердые продукты посредством одновременного воздействия ускоренными электронами и температурой. Переработку осуществляют в проточном режиме, меняя просвет между выпускным окном ускорителя и поверхностью сырья при температуре, которая обеспечивает плавление не менее 30% фракции синтетических полимеров, но не выше температуры, которая обеспечивает начало сухой перегонки более 30% фракции природных полимеров при традиционном нагреве не более чем на 30° С, подвергая летучие продукты фракционной конденсации за пределами зоны облучения. Использование данного способа обеспечивает возможность безотходной переработки ТБО. 10 з.п. ф-лы, 2 табл.

Изобретение относится к новым соединениям в ряду хелатных комплексов иридия, а именно к бис(2-фенилпиридинато-N,С2′){2-[2′-(4-алкилбензолсульфонамидо)фенил]бензоксазолато-N,N′}иридия(III) формулы I где R = алкил (С1-С6). Также предложено электролюминесцентное устройство. Соединение формулы I проявляет электролюминесцентные свойства и применяется в качестве активных люминесцентных слоев в электролюминесцентном устройстве, излучающем в желтой области спектра. 2 н.п. ф-лы, 3 ил., 4 пр.
Изобретение относится к области металлургии редких металлов. Способ очистки скандия от тория, циркония и железа включает их экстракцию путем контактирования водного раствора, содержащего скандий, торий, цирконий и железо, азотную кислоту и хлорид лития с экстрагентом, в качестве которого используют трибутилфосфат (ТБФ) или триизоамилфосфат (ТиАФ). Обеспечивается повышение коэффициента разделения скандия от тория, циркония и железа. 5 пр.

Изобретение относится к способу переработки парафинов и/или алкилатов путем воздействия ускоренными электронами на содержащую их сырьевую смесь с получением продуктов радиолиза, в том числе, продуктов крекинга, осуществляют, используя в качестве сырья парафины и/или алкилаты с соотношением атомов водорода и углерода не более 2.15, разбавленные не менее чем в 10 раз парафинами с соотношением атомов водорода и углерода не выше 2.30. При этом сырье одновременно вводят в зону с температурой не выше 220°C и в зону с температурой не ниже 350°C, а целевой продукт отбирают из зоны с температурой не выше 200°C, а затем конденсируют или используют в парообразном состоянии. В состав жидкого утилизируемого продукта переходит практически весь углерод и водород, присутствовавший в исходном сырье. Способ обеспечивает целенаправленное превращение парафинов и алкилатов, независимо от их происхождения, в хозяйственно-ценные конденсируемые соединения - бензин, растворители или реагенты для тяжелого органического синтеза. 6 з.п. ф-лы, 10 пр., 2 табл.

Изобретение относится к области химической технологии утилизации высокорадиоактивных растворов, получаемых при переработке облученного ядерного топлива, а именно к составам экстракционно-хроматографических материалов импрегнированного типа для селективного выделения и очистки прометия-147 от сопутствующих РЗЭ из азотнокислых растворов, которые состоят из двух компонентов при следующем содержании: 1-50 мас.% фосфорилподанда - производного 1,5-бис[2-(оксиалкоксифосфорил)-4-(этил)]фенокси-3-оксапентана формулы , где R представляет собой алкил C3-C12, и 99-50 мас.% макропористого сферически гранулированного сополимера стирола с дивинилбензолом с размером гранул 40-400 мкм. Технический результат - состав нового высокоэффективного экстракционно-хроматографического материала для селективного выделения и очистки прометия-147 от сопутствующих РЗЭ из азотнокислых растворов. 6 ил., 1 пр.

Изобретение относится к области переработки радиоактивных растворов. Состав экстракционно-хроматографического материала для селективного выделения U(VI), Th(IV), Np(IV) и Pu(IV) из азотнокислых растворов содержит три компонента. В качестве комплексообразующих компонентов состав содержит 33 % метилтриоктиламмоний нитрата (МТОАН) и 1-16% фосфорилподанда. В качестве матрицы состав содержит макропористый сферический гранулированный сополимер стирола с дивинилбензолом. В качестве фосфорилподанда используют производные 1,5-бис[2-(оксиэтоксифосфорил)-4-(алкил)фенокси-3-оксапентана общей формулы I, где Alk - алкил C1-C12. Техническим результатом является расширение спектра высокоэффективных селективных сорбентов для извлечения U(VI), Th(IV), Np(IV) и Pu(IV) из азотнокислых растворов. 8 ил.

Изобретение относится к области электролюминесцентных устройств - органических светоизлучающих диодов, применяемых в качестве эффективных и высокоэкономичных твердотельных источников освещения. Электролюминесцентное устройство включает дырочно-инжектирующий слой, дырочно-транспортный слой, активный люминесцентный слой на основе электролюминесцентного соединения бис[2-(2'-тозиламинофенил) бензоксазолато]цинка(2+) формулы I, дырочно-блокирующий слой, электронно-транспортный слой, электронно-инжектирующий слой и электронный блокирующий слой с использованием в качестве него N,N´-бис(3-метилфенил)-N,N´би(фенил)-9,9-спиробифлюорена. Изобретение обеспечивает повышение яркости зеленого излучения электролюминесцентных устройств по известному уровню с люминесцентным слоем на основе хелатных комплексов цинка с производными салицилового альдегида с различными аминами. 3 ил., 1 табл., 1 пр.

Изобретение относится к новым соединениям в ряду хелатных комплексов цинка с производными азометина, а именно к бис[2-(N-тозиламино)бензилиден-4'-диметиламинофенилиминато]цинка(II) формулы I Также предложено электролюминесцентное устройство. Изобретение позволяет получить соединения, проявляющие электролюминесцентные свойства с высокой яркостью. 2 н.п. ф-лы, 3 ил., 1 табл., 2 пр.
Изобретение может быть использовано в области получения газообразного и жидкого топлива и полупродуктов для тяжелого органического синтеза и при утилизации отходов на основе липидов. Способ переработки липидов и лигнинов включает воздействие ионизирующим излучением и температурой на суспензию лигнинов в жидких или расплавленных липидах при температуре отгонки фракции метоксифенолов. Продукты разложения выводят из зоны воздействия методом газлифта с помощью газообразных продуктов деструкции сырья. Дополнительными управляющими факторами в зависимости от состава исходного сырья может служить подщелачивание реакционной смеси, применение ультразвука, катализаторов или минеральных сорбентов. Изобретение позволяет расширить номенклатуру пригодного сырья для получения топлива, повысить выход продуктов топливного назначения, увеличить стабильность получаемых продуктов и упростить их фракционное разделение, а также снизить температуру переработки сырья. 5 з.п. ф-лы, 2 табл., 10 пр.

Изобретение относится к способу переработки жиров и жиросодержащей биомассы. Способ может быть использован при производстве топлива и полупродуктов для органического синтеза. Способ осуществляют путем одновременного воздействия ионизирующим излучением и температурой на жировое сырье при нормальном или пониженном давлении в кипящем слое с получением хозяйственно ценных продуктов радиолиза, представляющих собой топливо (преимущественно дизельное топливо) и полупродукты для органического синтеза. Облучение сырья проводят электронным пучком с энергией 0.1-8 МэВ при мощности дозы выше 0.05 кГр/с при нагреве ниже температуры начала сухой перегонки (пиролиза). Дополнительными управляющими факторами в зависимости от состава исходного сырья может служить подщелачивание исходной массы, применение катализаторов и/или ультразвука. Технический результат - повышение степени утилизации сырья и выхода ценных фракций топливных углеводородов и полупродуктов для тяжелого органического синтеза. 5 з.п. ф-лы, 2 табл., 10 пр.

Изобретение относится к области химической технологии производства радиоактивных изотопов медицинского назначения

Изобретение относится к области химической технологии производства радиоизотопов медицинского назначения, а конкретно к составу жидкостной экстракционной системы, на основе фосфорилсодержащих подандов, в 1,1,7-тригидрододекафторгептаноле, которая может быть использована для селективного извлечения молибдена из мультикомпонентных азотнокислых растворов

Изобретение относится к электрокаталитическому способу получения углеводородов, в частности диенов, олефинов, алканов и спиртов, путем гальваностатического электролиза смеси 10-ундециленовой и уксусной кислот, которые частично нейтрализованы и находятся в виде соли

Изобретение относится к электролюминесцентным веществам, а именно к бис {3-метил-1-фенил-4-[(хинолин-3-имино)-метил]1-Н-пиразол-5-онато}цинка(II) общей формулы I Также предложено электролюминесцентное устройство, содержащее бис{3-метил-1-фенил-4-[(хинолин-3-имино)-метил]1-Н-пиразол-5-онато}цинка(II) общей формулы I

Изобретение относится к способу переработки газообразных алканов путем воздействия ионизирующим излучением на содержащую их сырьевую смесь с получением продуктов радиолиза, в процессе которого из продуктов радиолиза постоянно удаляют водород и конденсируемую фракцию, являющуюся целевым продуктом, а оставшуюся часть смешивают с исходной смесью, содержащей алканы, с получением сырьевой смеси, характеризующемуся тем, что воздействие ионизирующим излучением осуществляют при температуре реакционной смеси не ниже минимальной температуры конденсации низших спиртов и эфиров и не выше 350°С
Изобретение относится к способу переработки газов и паров, содержащих от 30 до 60 ат.% углерода, а также до 70 ат.% кислорода и водорода, путем воздействия ускоренными электронами на содержащую их сырьевую смесь с получением продуктов радиолиза, в процессе которого из продуктов радиолиза постоянно удаляют конденсируемую фракцию, включающую целевой продукт, а оставшуюся часть смешивают с исходным газом и/или паром с получением сырьевой смеси, причем в сырьевую смесь добавляют водород, или водородсодержащие соединения углерода, или конденсируемую низкокипящую фракцию с температурой кипения ниже, чем у целевого продукта, поддерживая в реакционной смеси содержание углерода в пределах от 16 до 35 ат.%, не допуская при этом превышения содержания кислорода выше 23 ат.%

Изобретение относится к электролюминесцентному устройству на основе хелатных комплексов цинка в качестве активного люминесцентного слоя

Изобретение относится к составам для получения супергидрофобного покрытия на силоксановом резиновом изоляторе

Изобретение относится к области катализаторов для топливных элементов, в частности к катализатору для катода топливного элемента, а также к способу его получения

Изобретение относится к химии фосфорорганических соединений с Р-С-связью, а именно к новому полиэфирному соединению формулы (II), которое может быть использовано в качестве лиганда для избирательного связывания тория (IV) в ряду урана (VI) и лантана (III)

Изобретение относится к области химического и биологического анализа, в частности для электрохимического детектирования алкалоидов

 


Наверх