Способ очистки скандия от циркония, тория и железа


 


Владельцы патента RU 2582404:

Федеральное государственное бюджетное учреждение науки Институт физической химии и электрохимии им. А.Н. Фрумкина Российской академии наук (ИФХЭ РАН) (RU)

Изобретение относится к области металлургии редких металлов. Способ очистки скандия от тория, циркония и железа включает их экстракцию путем контактирования водного раствора, содержащего скандий, торий, цирконий и железо, азотную кислоту и хлорид лития с экстрагентом, в качестве которого используют трибутилфосфат (ТБФ) или триизоамилфосфат (ТиАФ). Обеспечивается повышение коэффициента разделения скандия от тория, циркония и железа. 5 пр.

 

Изобретение относится к области металлургии редких металлов и может быть использовано в технологии извлечения скандия из различных растворов на стадии разделения скандия и примесных элементов или стадии дополнительной очистки скандиевых концентратов.

Ранее был предложен способ получения скандия высокой степени чистоты экстракцией ТиАФ из солянокислых растворов на двух экстракционных каскадах с ограниченным числом ступеней (N=12) [Г.В. Костикова, Н.А. Данилов, Ю.С. Крылов, Г.В. Корпусов, Е.В. Сальникова. Исследование экстракции скандия триизоамилфосфатом из различных сред. 3. Разработка процесса экстракционного рафинирования скандия. - Радиохимия, 2006, т. 48, вып. 5, с. 417-420].

Недостатком данного способа является то, что в условиях проведения процессов очистки скандия от лучше и хуже экстрагируемых примесей, цирконий, торий и железо экстрагируются подобно скандию, величины коэффициентов разделения скандия и этих металлов невелики, что не позволяет провести глубокую очистку скандия от циркония, железа и тория по предлагаемой схеме.

Наиболее близким к предлагаемому способу по технической сущности и достигаемому результату является способ экстракционного извлечения скандия и его очистки от циркония, тория и железа из солянокислых растворов в присутствии хлорида лития триизоамилфосфатом [Г.В. Костикова, О.А. Кутепова, Ю.С. Крылов, А.Ю. Цивадзе, Е.В. Сальникова. Экстракционное извлечение Sc, Zr, Th и Fe триизоамилфосфатом из солянокислых сред в присутствии высаливателей. - Цветные металлы, 2014, №3, с. 49-53].

Недостатком этого способа является то, что при концентрации свободной соляной кислоты 3 моль/л и концентрации хлорида лития более 3,0 моль/л цирконий экстрагируется лучше скандия, а торий - хуже. Коэффициенты разделения скандия и тория (βSc/Th) во всей области концентраций хлорида лития не превышают 7,2; коэффициенты разделения циркония и скандия (βZr/Sc) - не более 2,8, что недостаточно для эффективного разделения металлов. Кроме того, для отделения циркония и тория при использовании метода полного противотока необходимо использовать два экстракционных каскада (для удаления лучше экстрагирующихся примесей и для отделения хуже экстрагирующихся примесей). Разделение на одном каскаде, в этом случае, может быть осуществлено только методом полного орошения.

Техническим результатом изобретения является повышение коэффициентов разделения металлов и возможность проведения процесса разделения методом полного противотока на одном экстракционном каскаде.

Данный технический результат достигается за счет проведения в течение 5 минут контактирования экстрагента с водным раствором, содержащим скандий, торий, цирконий и железо, азотную кислоту с концентрацией 1,2-2,0 моль/л и хлорид лития с концентрацией 4,0-6,0 моль/л. В качестве экстрагента используют нейтральные фосфорорганические соединения, например трибутилфосфат (ТБФ) или триизоамилфосфат (ТиАФ), как неразбавленные (100%), так и в присутствии до 50% разбавителей - предельных углеводородов (декан, ундекан, додекан).

При концентрации азотной кислоты в водном растворе менее 1,2 моль/л происходит уменьшение коэффициентов разделения циркония и скандия (βZr/Sc) в связи с резким падением коэффициента распределения циркония (DZr).

При концентрации азотной кислоты в водном растворе более 2,0 моль/л происходит уменьшение коэффициентов разделения железа и скандия (βFe/Sc) в связи с уменьшением коэффициентов распределения железа (DFe).

При концентрации хлорида лития в водном растворе менее 4,0 моль/л наблюдается уменьшение величин коэффициентов распределения циркония и железа и уменьшение величин коэффициентов разделения βZr/Sc и βFe/Sc соответственно.

Примеры, иллюстрирующие изобретение.

Пример 1

Водный раствор, содержащий 1,2 моль/л HNO3, 4,1 моль/л LiCl, 5,1 г/л Sc, 9,9 г/л Th, 4,8 г/л Zr, 5,2 г/л Fe, приводится в контакт с 75% ТиАФ в додекане при соотношении объемов фаз 1/1 в течение 5 минут. При этом коэффициенты распределения скандия, тория, циркония и железа равны DSc=0,48, DTh=72, DZr=2,05, DFe=9,7 и, соответственно, коэффициенты разделения βTh/sc=150, βZr/sc=4,3, βFe/Sc=20.

Пример 2

Водный раствор, содержащий 2,0 моль/л HNO3, 4,1 моль/л LiCl, 5,1 г/л Sc, 9,9 г/л Th, 4,8 г/л Zr, 5,2 г/л Fe, приводится в контакт с 75% ТиАФ в додекане при соотношении объемов фаз 1/1 в течение 5 минут. При этом коэффициенты распределения скандия, тория, циркония и железа равны DSc=0,82, DTh>100, DZr=28, DFe=5,2 и, соответственно, коэффициенты разделения βTh/sc>100, βZr/sc=34, βFe/Sc=6,3.

Пример 3

Водный раствор, содержащий 1,5 моль/л HNO3, 6,0 моль/л LiCl, 5,1 г/л Sc, 9,9 г/л Th, 4,8 г/л Zr, 5,2 г/л Fe, приводится в контакт с 75% ТиАФ в додекане при соотношении объемов фаз 1/1 в течение 5 минут. При этом коэффициенты распределения скандия, тория, циркония и железа равны DSc=1,12, DTh>100, DZr=55, DFe=20,3 и, соответственно, коэффициенты разделения βTh/sc>80, βZr/Sc=49, βFe/Sc=18.

Пример 4

Водный раствор, содержащий 1,3 моль/л HNO3, 4,0 моль/л LiCl, 5,1 г/л Sc, 9,9 г/л Th, 4,8 г/л Zr, 5,2 г/л Fe, приводится в контакт со 100% ТБФ при соотношении объемов фаз 1/1 в течение 5 минут. При этом коэффициенты распределения скандия, тория, циркония и железа равны DSc=1,36, DTh=29,4, DZr=27,0, DFe=37,0 и, соответственно, коэффициенты разделения βTh/sc=21,6, βZr/sc=20,0 βFe/Sc=27,0.

Пример 5

Водный раствор, содержащий 2,0 моль/л HNO3, 4,0 моль/л LiCl, 5,1 г/л Sc, 9,9 г/л Th, 4,8 г/л Zr, 5,2 г/л Fe, приводится в контакт со 100% ТБФ при соотношении объемов фаз 1/1 в течение 5 минут. При этом коэффициенты распределения скандия, тория, циркония и железа равны DSc=1,38, DTh>100, DZr=50, DFe=13,0 и, соответственно, коэффициенты разделения βTh/sc>70, βZr/sc=36, βFe/Sc=9,4.

Таким образом, сопоставляя ранее известный и предлагаемый способ, видно, что использование предлагаемого способа позволяет увеличить величины коэффициентов разделения металлов с 7,2 до 150 для тория и скандия; с 2,3 до 49 для циркония и скандия. Кроме того, торий, цирконий и железо экстрагируются лучше скандия, что позволяет проводить выделение скандия методом полного противотока на одном экстракционном каскаде, что, в свою очередь, позволит использовать небольшое число ступеней разделения, увеличить эффективность и производительность процесса.

Способ очистки скандия от циркония, тория и железа, включающий их экстракцию из водного раствора трибутилфосфатом (ТБФ) или триизоамилфосфатом (ТиАФ), которые используют неразбавленными или разбавленными до 50% предельными углеводородами, выбранными из декана, ундекана и додекана, отличающийся тем, что экстракцию ведут из упомянутого водного раствора, содержащего азотную кислоту с концентрацией 1,2-2,0 моль/л и хлорид лития с концентрацией 4,0-6,0 моль/л, в течение 5 минут.



 

Похожие патенты:

Изобретение относится к металлургии редких металлов, а именно к извлечению скандия из красного шлама, который является отходом производства глинозема. Способ включает выщелачивание скандия раствором серной кислоты при нагревании в течение 2 часов и фильтрацию пульпы.
Изобретение относится к способу извлечения редкоземельных и благородных металлов из золошлаков. Способ включает смешение их с выщелачивающими растворами, накопление биомассы микроорганизмов рода Acidithiobacillales, бактериальное выщелачивание редкоземельных и благородных металлов.

Заявляемый способ относится к гидрометаллургии редких металлов, в частности к способу извлечения редкоземельных элементов (РЗЭ) из растворов, и может быть использован в технологии получения концентратов редкоземельных элементов.
Изобретение относится к технологии выделения редкоземельных элементов (РЗЭ) из природных фосфорсодержащих концентратов. Монацитовый концентрат обрабатывают при нагревании серной кислотой c получением спека, содержащего сульфаты редкоземельных элементов.

Изобретение относится к способу переработки железосодержащих монацитовых концентратов. Способ включает обработку концентрата разбавленной соляной кислотой с получением солянокислых растворов FeCl2 и LnCl3.

Изобретение может быть использовано для разделения редкоземельных металлов РЗМ и получения церия и сопутствующих ему других редкоземельных металлов. Способ разделения РЗМ из растворов включает получение азотнокислых растворов РЗМ растворением карбонатов РЗМ в азотной кислоте, экстракцию катионов РЗМ в трибутилфосфат и последующее разделение извлекаемых РЗМ путем реэкстракции, Перед получением азотнокислых растворов РЗМ их карбонаты предварительно окисляют продувкой горячим воздухом с температурой от 300 до 350°С.

Изобретение относится к технологии редких и редкоземельных металлов и может быть использовано на рудоперерабатывающих предприятиях для вскрытия и переработки трудно разлагаемых концентратов для извлечения редкоземельных металлов (РЗМ), циркония, титана и других металлов.

Изобретение относится к гидрометаллургии редких металлов, в частности к способу извлечения редкоземельных элементов (РЗЭ), и может быть использован в технологии хроматографического разделения лютеция и иттербия.

Изобретение относится к способу переработки отходов шлифования постоянных магнитов. Шлифотходы смешивают с концентрированной (не менее 92%) серной кислотой в количестве, необходимом для получения твердого агломерированного продукта.

Изобретение может быть использовано для переработки и дезактивации редкоземельного концентрата (РЗК), выделенного из апатитового концентрата и продуктов его переработки - фосфогипса и экстракционной фосфорной кислоты.

Группа изобретений относится к переработке израсходованных ядерных топлив. Отделяют америций от других металлических элементов, присутствующих в кислотной водной фазе или в органической фазе, путем образования комплекса америция с водорастворимым производным этилендиамина.

Изобретение относится к области гидрометаллургии урана и его соединений и может быть использовано в технологии переработки урансодержащих материалов, а именно отходов уранового производства с низким (менее 3 мас.%) содержанием урана и с высоким (до 15 мас.%) содержанием кремния.

Изобретение относится к способу извлечения ионов тяжелых металлов из водных растворов. Способ включает экстракцию с использованием в качестве экстрагента растительных масел, содержащих жирные кислоты, при величине рН водных растворов, равной 9-11.

Изобретение относится к. способу переработки колумбитового концентрата.
Изобретение может быть использовано при подготовке растворов отработавшего ядерного топлива атомных электростанций (ОЯТ АЭС) к экстракционной переработке, при выделении радионуклидов из радиоактивных растворов облученных урановых мишеней в биомедицинских целях, а также при анализе технологических растворов.

Способ экстракции палладия из водных растворов относится к гидрометаллургическим приемам извлечения металлов и может использоваться в металлургической и химической промышленности.
Изобретение может быть использовано в химической промышленности. Способ переработки титансодержащего материала включает выщелачивание измельченного материала серной кислотой при нагревании с получением суспензии.

Изобретение может быть использовано в области гидрометаллургии цветных металлов и в химической промышленности. Способ экстракции ионов меди (II) из аммиачных растворов с использованием экстрагента, состоящего из смеси 1-фенил-3-гептил-1,3-пропандиона и 2-этилгексановой кислоты в количестве от 5 до 10 моль % от содержания 1-фенил-3-гептил-1,3-пропандиона в органическом растворителе, несмешивающемся с водой.

Изобретение относится к способу извлечения и концентрирования золота из растворов гидрохлорирования золотосодержащих руд и концентратов. Золото извлекают в анионной форме из хлорсодержащих растворов экстракцией стабильной эмульсией водного раствора водорастворимого сульфита в сернистой нефти.

Изобретение относится к способу извлечения тербия (III) из бедного или техногенного сырья с помощью метода флотоэкстракции. В процессе флотоэкстракции катионов тербия (III) используют в качестве органической фазы изооктиловый спирт, а в качестве собирателя ПАВ анионного типа - додецилсульфат натрия в концентрации, соответствующей стехиометрии реакции: Tb+3+3NaDS=Tb(DS)3+3Na+, где Tb+3 - катион тербия (III), DS- - додецилсульфат-ион.

Изобретение относится к получению редкоземельных металлов (РЗМ) или их оксидов из бедного или техногенного сырья с помощью метода флотоэкстракции. Способ извлечения гольмия (III) из водных фаз включает флотоэкстракцию с использованием органической фазы и собирателя. При этом в качестве органической фазы используют изооктиловый спирт, а в качестве собирателя - поверхностно-активное вещество анионного типа - додецилсульфат натрия в концентрации, соответствующей стехиометрии реакции: Но+3+3NaDS=Ho(DS)3+3Na+, где Но+3 - катион гольмия (III), NaDS - додецилсульфат натрия. Флотоэкстракцию осуществляют при pH от 5,3 до 9,5 и соотношении органической и водной фаз от 1/20 до 1/40. Способ позволяет достигнуть увеличения степени извлечения гольмия (III) из раствора его солей. 1 ил., 1 пр.
Наверх