Способ полярографического определения микроколичеств кобальта в стали

 

Использование: полярографическое определение кобальта в стали в количестве 10-2 - 10-4% без отделения сопутствующих ионов. Сущность изобретения: способ заключается в использовании каталитической волны кобальта в присутствии диметилглиоксима, азотистокислого натрия и фтористого аммония. Приведены оптимальные условия восстановления кобальта на ртутном капельном электроде в переменнотоковом трапецеидальном режиме.

Прямолинейная зависимость высоты пика от концентрации кобальта наблюдается в интервале 0,005 - 0,4 мкг/50 см3 раствора. Железо, молибден, вольфрам, марганец, медь и цинк не оказывают влияния на высоту пика, влияние никеля, хрома и ванадия устраняется введением их в раствор градуированного графика. 2 ил. 1 табл.

Изобретение относится к аналитической химии, в частности к электрохимическим методам анализа.

Известны полярографические методы определения кобальта, основанные на измерении высоты волны в присутствии диметилглиоксима (1).

Н. С. Воронова и сотр. предложили с целью повышения чувствительности определения вводить в анализируемый раствор нитрит натрия (2). Методика, рекомендованная для определения кобальта в природной воде, предусматривает проведение реакции в растворе, содержащем 0,1 0,2 моль/дм3 азотистокислого натрия, 0,025 моль/дм3 натрия тетраборнокислого, 0,015 моль/дм3 диметилглиоксима.

А. Бобровский (3) изучал системы Со-диоксим-азотистокислый натрия. Из диоксимов проверены -бензилдиоксим, диметилглиоксим, a-фурилглиоксим и ниоксим. Наиболее подробные исследования проведены с ниоксимом. Показано, что в интервале концентраций азотистокислого натрия 0,01 1 моль/дм3 высота пика кобальта зависит от концентрации нитрита. Автор рекомендует для аналитического применения раствор, содержащий 0,1 моль/дм3 аммиачного буфера, 110-4 моль/дм3 ниоксима и 0,5 моль/дм3 натрия азотистокислого. Десятикратный избыток ионов железа (III) приводит к ошибкам в определении кобальта.

О мешающем влиянии железа указывается и в других работах, основанных на каталитическом токе, возникающем в присутствии диметилглиоксима. Его влияние устраняют добавлением цитрата натрия или триэтаноламина (4, 5), а в материалах на железной основе рекомендуется предварительное отделение железа (6, 7).

Из упомянутых выше аналогов наиболее близок к заявляемому способ (3), основанный на измерении каталитической волны кобальта в электролите, содержащем 0,2 моль/дм3 хлоридно-аммиачного буферного раствора 0,5 моль/дм3 азотистокислого натрия и 110-4 диоксима.

Основным недостатком указанного способа является значительное влияние железа, что делает невозможным определение микроколичеств кобальта в материалах на железной основе.

Целью изобретения является повышение селективности и чувствительности определения и разработка способа определения 10-2 10-4% кобальта в сталях без отделения сопутствующих ионов.

Эта цель достигается изменением состава электролита, в котором проводится определение кобальта.

Опыты показали, что введение в раствор фтористого аммония не только предупреждает образование осадка гидроксида железа, частично адсорбирующего кобальт, но также играет определенную роль в электрохимическом процессе, о чем свидетельствует изменение потенциала пика с -1,17 до -1,13 в и увеличение в несколько раз высоты пика CNH4F, моль/дм3 0 0,2 0,5 1,2 2,4 3,6 4,8 6,0 Н, мм 23 73 102 100 105 102 86 72 Как видно из приведенных выше данных, постоянная высота волны наблюдается в диапазоне концентраций фтористого аммония 0,5 3,6 моль/дм3, но при концентрации менее 1 моль/дм3 железо неполно связывается во фторидный комплекс, а высокая концентрация солей нежелательна из-за высокого загрязнения реакторов, поэтому оптимальной концентрацией следует считать 1 2 моль/дм3.

Влияние фторида проявляется только в системах, содержащих диметилглиоксим (ДГ) и азотистокислый натрий совместно. В двойных системах с той же концентрацией реагентов высота волны значительно ниже.

Состав раствора ДГ + NaNO2 NH4F + NaNO2 ДГ + NH4F ДГ + NH4F + NaNO2
Н, мм 37 25 13 113
Концентрация диметилглиоксима не оказывает влияния на высоту волны в пределах 0,001 0,003 моль/дм3.

СДГ, моль/дм3 0,0004 0,001
0,002 0,003
Н, мм 73 82 82 84
Дальнейшее увеличение количества диметилглиоксима нежелательно, т.к. растворимость его ограничена, а увеличение объема спиртового раствора приводит к снижению высоты волны.

Объем спирта, см3 1 5 10
Н, мм 160 87 23
Влияние рН раствора представлено на фиг. 1, из которого видно, что оптимальная величина рН 8,2 8,5.

Концентрация буферного раствора в пределах 0,05 1 моль/дм3 не оказывает влияния на восстановление кобальта. Поскольку растворы с концентрацией 0,1 0,2 моль/дм3 обладают достаточно хорошими буферными свойствами, дальнейшее увеличение концентрации буфера не имеет смысла.

Увеличение концентрации нитрита натрия в пределах 0,2 1,0 моль/дм3 приводит к повышению высоты волны. В области 1 2 моль/дм3 высота волны постоянна.

, моль/дм3 0,2 0,4 0,7 1,0
1,5 2,0 2,5
Н, мм 23 44 62 72 74
74 77
В качестве оптимальной следует принять концентрацию азотистокислого натрия 1 2 моль/дм3.

В рекомендуемых условиях проверено влияние основных компонентов стали на восстановление кобальта. Железо, молибден, вольфрам, марганец медь не оказывают влияния на восстановление кобальта, также как и присутствующая в сталях примесь цинка. Ванадий образует растянутую необратимую волну и при соотношении V Co > 10 1 его следует вводить в растворы градуировочного графика. Хром при высокой концентрации вызывает появление предволны в области потенциалов -0,9 1,07 В. При содержании хрома более 5% его следует вводить в растворы градуировочного графика. Никель при содержании в полярографируемом растворе 0,5 50 мкг вызывает повышение высоты кобальта на 6 10% при содержании никеля в растворе более 50 мкг образуется осадок глиоксимата никеля, который адсорбирует частично кобальт, поэтому никель всегда следует вводить в растворы градуировочного графика.

Пример. Навеску стали 0,1 0,2 г растворяют в соляной кислоте при нагревании, окисляют азотной кислотой и выпаривают досуха, не перекаливая. Возможно растворение в смеси соляной и азотной кислот 3 1 и в смеси, содержащей воду, азотную и соляную кислоты в соотношении 1 1 1. Соли растворяют под стеклом при умеренном нагревании в 10 см3 соляной кислоты, разбавленной 1 1, охлаждают раствор, переводят в мерную колбу вместимостью 100 200 см3, разбавляют до метки водой и перемешивают.

Аликвоту раствора, содержащую 0,005 0,4 мкг кобальта, помещают в стакан вместимостью 50 см3, добавляют 10 см3 фтористого аммония (200 г/см3), 1 см3 диметилглиоксима (1%-ный спиртовый раствор), 25 см3 буферного раствора (0,4 моль/дм3 NH4Cl, 0,4 моль/дм3 NH4OH, 2 моль/дм3 NaNO2). Устанавливают рН раствора в диапазоне 8,2 8,5 добавлением по каплям разбавленных 1 1 растворов аммиака или соляной кислоты, переводят в мерные колбы вместимостью 50 см3, доводят до метки водой и перемешивают.

Помещают часть раствора в электролизер, продувают аргон в течение 3 мин и снимают полярограмму на ртутном капельном электроде в переменнотоковом трапецеидальном режиме в интервале потенциалов -1,0 1,2 В.

Массовую долю кобальта рассчитывают по градуировочному графику. Нижняя точка (0,005 мкг) ограничивается только величиной содержания кобальта в реакторах. При массе кобальта в полярографируемом растворе более 0,4 мкг наблюдается искажение формы пика и изменение наклона градуировочного графика (фиг. 2).

Методика проверена на стандартных образцах сталей. Приведенные в таблице данные показывают, что она удовлетворяет нормам точности количественного химического анализа.


Формула изобретения

Способ полярографического определения микроколичества кобальта в стали методом переменнотоковой полярографии по каталитической волне, возникающей в присутствии диметилглиоксима и азотистокислого натрия в хлоридно-аммиачном буферном растворе при рН 8,2 8,5, содержащем 0,1 0,2 моль/дм3 хлористого аммония и 0,1 0,2 моль/дм3 аммиака, отличающийся тем, что в раствор дополнительно вводят фтористый аммоний и восстановление проводят в растворе, содержащем 1 2 моль/дм3 фтористого аммония, 0,001 0,003 моль/дм3 диметилглиоксима, 1 2 моль/дм3 азотистокислого натрия.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3



 

Похожие патенты:

Изобретение относится к электрохимическим способам определения проб драгоценных сплавов, в частности золотых сплавов, и может найти применение в ювелирном деле, а также в других отраслях, заинтересованных в объекте идентификации

Изобретение относится к техническим средствам вольтамперометрических методов анализа и может быть использовано для изучения состава органических и неорганических веществ, медицинских и других объектов

Изобретение относится к гидроэлектрометаллургии меди, в частности касается оценки содержания вводимых в состав электролитов рафинирования меди поверхностно-активных веществ тиомочевины и клея, и может быть использовано на предприятиях цветной металлургии, связанных с электролитическим рафинированием меди, а также в гальванотехнике, если в применяемых электролитах содержится хотя бы одно из поверхностно-активных веществ тиомочевина и/или клей

Изобретение относится к аналитической химии, в частности к вольтамперометрическим способам определения ионов гольмия в водных растворах

Изобретение относится к аналитической химии, в частности к вольтамперометрическим способам определения в водных растворах

Изобретение относится к способам определения растворов оксидов азота, может найти применение в аналитической химии, и промышленных процессах получения азотной кислоты, нитросоединений нитрованием азотной кислотой

Изобретение относится к электрохимическому анализу и может быть использовано при создании аппаратно-программного средств для контроля состава и свойств веществ в различных областях науки, техники, промышленности, сельского хозяйства и экологии, а также для электрохимических исследований

Изобретение относится к области аналитической химии, а именно к способу инверсионно-вольт-амперометрического определения разновалентных форм мышьяка в водных растворах, основанному на электронакоплении As (III) на стационарном ртутном электроде в присутствии ионов Cu2+ и последующей регистрации кривой катодного восстановления сконцентрированного арсенида меди, включающему определение содержания As (III) на фоне 0,6 M HCl + 0,04 M N2H4 2HCl + 50 мг/л Cu2+ по высоте инверсионного катодного пика при потенциале (-0,72)В, химическое восстановление As(V) до As (III), измерение общего содержания водорастворимого мышьяка и определение содержания As(V) по разности концентраций общего и трехвалентного мышьяка, при этом в раствор, проанализированный на содержание As (III), дополнительно вводят HCl, KI и Cu2+, химическое восстановление As(V) до As (III) осуществляют в фоновом электролите состава 5,5M HCl + 0,1M KI + 0,02M N2H4 2HCl + 100 мг/л Cu2+, электронакопление мышьяка производят при потенциале (-0,55 0,01)В, катодную вольт-амперную кривую регистрируют в диапазоне напряжений от (-0,55) до (-1,0)В, а общее содержание мышьяка в растворе определяют по высоте инверсионного пика при потенциале (-0,76 0,01)В

Изобретение относится к области аналитической химии, в частности к вольтамперметрическому способу определения химико-терапевтического средства, применяемого при онкологических заболеваниях - 5-фторурацила

Изобретение относится к способу и устройству для определения концентрации органических веществ в растворах

Изобретение относится к аналитической химии, в частности к вольтамперометрическим способам определения в водных растворах

Изобретение относится к области электрохимических методов анализа, в частности для определения тяжелых металлов с использованием модифицированного электрода
Изобретение относится к области аналитической химии, в частности к инверсионно-вольтамперометрическому способу определения лекарственного препарата кардила
Наверх