Способ автоматического управления линией производства экструдированных текстуратов

Изобретение относится к пищевой промышленности, а именно к автоматизации процессов производства экструдированных продуктов и комбикормов, а также и в других производствах, использующих экструзию. Осуществляют подготовку исходной смеси, компоненты которой из производственных бункеров с помощью дозаторов и ленточного транспортера подают в смеситель, затем полученную смесь направляют в аппарат термовлажностной обработки, внутри которого установлены перфорированный транспортер, распылители воды и ворошители. Аппарат снабжен патрубком для подачи теплоносителя из калориферно-вентиляционной станции. Далее смесь после аппарата для термовлажностной обработки подают в экструдер с дорном и матрицей, загрузочный бункер экструдера установлен с возможностью перемещения относительно корпуса экструдера, с помощью установленного в загрузочном бункере нагнетающего шнека и шнека экструдера. Обрабатываемый продукт подается в зазор между матрицей экструдера и дорном, выполненным с возможностью возвратно-поступательного и вращательного движения. Изобретение обеспечивает повышение качества готового продукта за счет усовершенствования схемы автоматического контроля и более точного регулирования технологических параметров процесса экструзии многокомпонентных смесей. 1 ил.

 

Изобретение относится к пищевой промышленности, а именно к автоматизации процессов производства экструдированных продуктов и комбикормов, а также и в других производствах, использующих экструзию.

Известен способ автоматического управления зкструдером, предусматривающий измерение расхода и влажности исходного сырья и экструдата, температуры продукта в предматричной зоне экструдера, частоты вращения регулируемого привода экструдера [Патент РФ №2130831, МПК6 B29C 47/92, заявл. 15.12.1997, опубл. 27.05.99, Бюл. №15].

Недостатками известного способа является невозможность контроля и регулирования процесса экструзии многокомпонентных смесей с параллельной схемой загрузки и, как следствие, невозможность получения полифункциональных экструдатов высокого качества,

Технической задачей изобретения является повышение качества готового продукта за счет усовершенствования схемы автоматического контроля и более точного регулирования технологических параметров процесса экструзии многокомпонентных смесей.

Поставленная задача достигается тем, что сначала осуществляют подготовку исходной смеси, компоненты которой из производственных бункеров с помощью дозаторов и ленточного транспортера подают в смеситель, затем полученную смесь направляют в аппарат термовлажностной обработки, внутри которого установлены перфорированный транспортер, распылители воды и ворошители, аппарат снабжен патрубком для подачи теплоносителя из калориферно-вентиляционной станции, и далее смесь после аппарата для термовлажностной обработки подают в экструдер с дорном и матрицей, загрузочный бункер экструдера установлен с возможностью перемещения относительно корпуса экструдера, с помощью установленного в загрузочном бункере нагнетающего шнека и шнека экструдера обрабатываемый продукт подается в зазор между матрицей экструдера и дорном, выполненным с возможностью возвратно-поступательного и вращательного движения, при этом в процессе производства экструдированных текстуратов дополнительно измеряют расходы смешиваемых компонентов перед смесителем, расход и влажность полученной смеси после смесителя, частоту вращения приводной звездочки перфорированного транспортера, температуру и расход теплоносителя, подаваемого в аппарат термовлажностной обработки, влажность и расход смеси перед экструдером, параметры положения загрузочного бункера и дорна, частоту вращения нагнетающего шнека и шнека экструдера, температуру и давление перед дорном, расход и влажность готового экструдированного текстурата, устанавливают заданное соотношение расходов компонентов воздействием на частоту вращения дозаторов и приводной звездочки ленточного транспортера, по расходу подготовленной исходной смеси устанавливают частоту вращения вала смесителя, в зависимости от влажности смеси осуществляют либо подачу теплоносителя, либо подачу воды в аппарат термовлажностной обработки, по расходу и влажности смеси после аппарата термовлажностной обработки устанавливают положение загрузочного бункера относительно корпуса экструдера, частоту вращения нагнетающего шнека и шнека экструдера, а по текущему значению влажности экструдированных текстуратов осуществляют многоуровневую коррекцию технологических режимов линии, причем при отклонении влажности экструдированных текстуратов от заданного значения в сторону увеличения, сначала увеличивают расход теплоносителя в аппарате термовлажностной обработки до достижения верхнего предельного значения перепада давления теплоносителя в слое продукта и прекращают подачу воды на увлажнение, затем увеличивают время пребывания продукта в экструдере путем увеличения длины рабочей камеры экструдера за счет изменения положения загрузочного бункера и далее снижают производительность линии путем синхронного изменения частоты вращения ленточного конвейера, смесителя и аппарата термовлажностной обработки, при отклонении влажности экструдированных текстуратов от заданного значения в сторону уменьшения, сначала уменьшают расход теплоносителя в аппарате термовлажностной обработки до достижения нижнего предельного значения перепада давления теплоносителя в слое продукта и начинают подачу воды на увлажнение, затем уменьшают время пребывания продукта в экструдере путем уменьшения длины рабочей камеры экструдера за счет изменения положения загрузочного бункера и далее увеличивают производительность линии путем синхронного изменения частоты вращения ленточного конвейера, смесителя и аппарата термовлажностной обработки, а при отклонении температуры в сторону увеличения сначала уменьшают частоту вращения дорна и увеличивают зазор путем перемещения дорна относительно матрицы, а при отклонении температуры в сторону уменьшения сначала увеличивают частоту вращения дорна и уменьшают зазор путем перемещения дорна относительно матрицы.

На чертеже представлена схема осуществления предлагаемого способа.

Схема автоматического управления зкструдером содержит секционные бункеры 1 для хранения компонентов исходного сырья с регулируемыми приводами 14, ленточный конвейер 2 с регулируемым приводом 15, смеситель 3 с комбинированным рабочим органом 4 и регулируемым приводом 16, аппарат 5 для термовлажностной обработки с регулируемым приводом 17, калорифер 9, вентилятор 8, ворошители 6, распылители воды 7, экструдер 12 со шнеком 40, загрузочным бункером 10 и нагнетающим шнеком 11, матрицей с дорном 13, регулируемый привод загрузочного шнека 18, регулируемый привод 20 экструдера, регулируемый привод дорна 44, регулируемый привод возвратно-поступательного перемещения в горизонтальной плоскости загрузочного бункера 19, линии: 0.2.1 подвода смеси компонентов исходного сырья, 0.2.2 подвода перемешанных компонентов, 0.2.3 подвода компонентов с требуемой влажностью, 0.2.4 отвода экструдата, 1.1.1 подвода воды, 3.1.1 подвода воздуха, 3.4.1 подвода нагретого воздуха, 2.2.1 подвода насыщенного пара, 1.8.1 отвода конденсата, 3.0.1 отвода отработанного воздуха; датчики: 25, 29, 41, 42 расхода исходного сырья, 28 расхода теплоносителя, подаваемого в аппарат 5 для термовлажностной обработки, 35 расхода экструдата, датчики: 24, 30 влажности исходного сырья, 34 влажности экструдата, датчик 32 изменения положения загрузочного бункера, датчик 46 изменения положения дорна, датчики: 21, 22, 23, 26, 31, 33, 45 потребляемой мощности регулируемых приводов, датчик 36 температуры в предматричной зоне экструдера, датчик 43 давления в предматричной зоне экструдера, датчик 27 температуры теплоносителя (воздуха), подаваемого из калорифера 9 в аппарат 5 для термовлажностной обработки, исполнительные механизмы 37, регуляторы 38, микропроцессор 39 (а, б, в, г, д, е, е, ж, з, и, й, к, л, м, н, о, п, р, с, т, у, ф, х, ц, ч - входные каналы управления a1, а2, а3, а4, а5, а6, а7, а8, а9 - выходные каналы управления).

Способ осуществляется следующим образом.

Различные компоненты исходного сырья из секционных бункеров 1 с помощью регулируемых приводов 14 подаются на ленточный конвейер 2, а с него - в смеситель 3, у которого частота вращения комбинированного рабочего органа 4 регулируется приводом 16, который позволяет изменять величину расхода смеси исходного сырья.

Из смесителя 3 сырье с равномерно распределенными компонентами поступает в аппарат 5 для термовлажностной обработки с регулируемым приводом 17, при этом влажность исходного сырья определяется датчиком 24, а расход исходного сырья - датчиком 25. Если влажность сырья превышает допустимую, то ее понижают при помощи горячего воздуха, который нагнетается вентилятором 8 через калорифер 9 в аппарат 5 для термовлажностной обработки. Температура воздуха контролируется при помощи датчика 27 температуры воздуха, поступающего из калорифера 9 в аппарат 5, а расход воздуха - при помощи датчика 28. Для равномерного высушивания сырья в аппарате 5 установлены ворошители 6. Если же влажность сырья меньше допустимой, то ее повышают за счет воды, подаваемой с помощью распылителей 7.

Из аппарата 5 для термовлажностной обработки смесь исходного сырья с заданной влажностью подается в загрузочный бункер 10. Положение бункера 10 влияет на время обработки продукта в рабочей камере экструдера 12, так как при этом изменяется длина рабочей камеры, что в свою очередь вызывает различные по своей глубине физико-химические изменения в экструдате. Регулирование положения загрузочного бункера 10 в горизонтальной плоскости относительно корпуса экструдера 12 осуществляется при помощи привода 19 и исполнительного механизма 37, при этом величина положения загрузочного бункера 10 относительно корпуса экструдера 12 измеряется при помощи датчика 32. Вращение шнека 11 внутри загрузочного бункера 10 осуществляется при помощи привода 18 и исполнительного механизма 37. Это способствует избеганию образования «воздушных пробок» в загрузочном бункере 10, а также обеспечивает равномерность подачи сырья в экструдер 12.

Скорость движения обрабатываемого в экструдере 12 продукта определяется частотой вращения шнека 40, которая регулируется при помощи привода 20 и исполнительного механизма 37.

При этом устанавливают и постоянно поддерживают заданный тепловой режим в предматричной зоне экструдера при помощи датчика температуры 36, установленного в предматричной зоне экструдера 12, которую корректируют путем регулирования зазора и частоты вращения дорна 13. Микропроцессор 39 устанавливает заданный расход исходного сырья, контролирует влажность сырья, корректирует подачу сырья из одного технологического аппарата в другой.

В начале регулируют величину зазора между дорном и конической поверхностью матрицы, в результате чего изменяется величина давления и величина расхода сырья, которая компенсируется в результате изменения частоты вращения питателей секционных бункеров 1 и приводов: ленточного конвейера 2, смесителя 3, аппарата 5 для термовлажностной обработки, загрузочного шнека 11 и шнека 40 экструдера.

Изменение величины давления в предматричной зоне экструдера 12 помимо изменения расхода влияет также на температуру экструдата, которая в свою очередь определяет степень вспучивания готового продукта и его конечную влажность. Температуру экструдата корректируют в случае необходимости путем изменения частоты вращения дорна 13, в результате чего происходит тепловыделение за счет сил трения, что влияет на температуру экструдата, а следовательно, и конечную влажность готового продукта

В автоматизации управления экструдером можно выделить следующие этапы регулирования.

На первом этапе в аппарате 5 для термовлажностной обработки регулируется влажность смеси. Понижение влажности смеси происходит путем продува нагретого воздуха через продукт, находящийся на поверхности перфорированного транспортера, с помощью вентилятора 8 и калорифера 9, а повышение влажности смеси - за счет распыления воды через распылители воды 7.

На втором этапе регулируется величина зазора между внутренней поверхностью матрицы и наружной поверхности дорна 13, приводящая к изменению давления в рабочей камере экструдера 12, регулирование которого выполняется при помощи двухуровневого изменения расхода: за счет положения загрузочного бункера 10 и синхронного изменения производительности ленточного конвейера 2, смесителя 3, аппарата 5 для термовлажностной обработки. При уменьшении зазора между внутренней поверхностью матрицы и наружной поверхности дорна 13 давление в рабочей камере экструдера 12 увеличивается, а при увеличении - уменьшается, что также вызывает пропорциональное изменение величины расхода. Смещение загрузочного бункера 10 в сторону, противоположную дорну 13, увеличивает объем рабочей камеры экструдера 12 и, соответственно, приводит к увеличению расхода продукта. Регулирование расхода можно осуществлять как за счет изменения положения загрузочного бункера 10, так и за счет синхронного изменения производительности ленточного конвейера 2, смесителя 3 и аппарата 5 для термовлажностной обработки.

На третьем этапе идет регулирование величины температуры в предматричной зоне экструдера при помощи изменения частоты вращения дорна 13. Вращающийся дорн 13 своей поверхностью трется о тонкую пленку продукта, проходящего через зазор, в результате за счет преобразования механической энергии сил трения в тепловую энергию происходит нагрев продукта. Процесс тепловыделения влияет на окончательную температуру экструдата.

Рассмотрим способ автоматического управления процессом экструзии на примере экструдера ЭУМ-1, используемого для производства кукурузных палочек с различными пищевыми добавками.

Процесс осуществляется со следующими техническими характеристиками:

производительность по экструдату, кг/ч 50
установленная мощность, кВт 5
влажность исходного сырья, % 13,6
частота вращения шнеков, с-1 5
давление в предматричной зоне, МПа 7,5
температура в предматричной мне, °C 150

После выхода экструдера на рабочий режим значение расхода исходного сырья составляет 50 кг/ч, а - влажность 13,6%. По этим значениям устанавливают частоту вращения 5 с-1 шнека экструдера 12. Конечная влажность экструдата составляет 14%. Микропроцессор 39 корректируют влажность сырья в аппарате 5 для термовлажностной обработки до необходимой влажности 14% при помощи распылителей воды 7, при этом перемешивая смесь компонентов ворошителями 6.

После выхода экструдера на рабочий режим в предматричной зоне экструдера устанавливают и постоянно поддерживают заданный тепловой режим: величина давления в предматричной зоне составляет 7,5 МПа, а величина расхода исходного сырья - 60 кг/ч. При отклонении текущего значения давления от требуемого на 0,5 МПа осуществляется грубая регулировка за счет изменения положения дорна. Для более точной регулировки температуры в предматричной зоне изменяют частоту вращения дорна, при этом снижается температура экструдата до T=150°C и конечная влажность готового продукта составляет 6%.

Таким образом, предлагаемый способ автоматического управления экструдером позволяет:

- обеспечить многоканальное управление с учетом ограничений по управляемым переменным обусловленных как получение экструдатов высокого качества, так и экономической целесообразностью процесса;

- увеличить число потенциально-возможных управляющих воздействий за счет использования в качестве регулируемой величины живого сечения матрицы;

- создать условия для стабилизации коэффициента вспучивания экструдата как основного показателя качества;

- снизить вероятность противодавления за счет непрерывной коррекции величины давления в предматричной зоне путем оперативного регулирования величины кольцевого канала, образованного наружной поверхностью вращающегося дорна и внутренней поверхностью неподвижной матрицы.

Способ автоматического управления линией производства экструдированных текстуратов, предусматривающий измерение расхода и влажности исходного сырья и экструдата, температуры продукта в предматричной зоне экструдера, частоты вращения регулируемого привода экструдера, отличающийся тем, что сначала осуществляют подготовку исходной смеси, компоненты которой из производственных бункеров с помощью дозаторов и ленточного транспортера подают в смеситель, затем полученную смесь направляют в аппарат термовлажностной обработки, внутри которого установлены перфорированный транспортер, распылители воды и ворошители, аппарат снабжен патрубком для подачи теплоносителя из калориферно-вентиляционной станции, и далее смесь после аппарата для термовлажностной обработки подают в экструдер с дорном и матрицей, загрузочный бункер экструдера установлен с возможностью перемещения относительно корпуса экструдера, с помощью установленного в загрузочном бункере нагнетающего шнека и шнека экструдера обрабатываемый продукт подается в зазор между матрицей экструдера и дорном, выполненным с возможностью возвратно-поступательного и вращательного движения, при этом в процессе производства экструдированных текстуратов дополнительно измеряют расходы смешиваемых компонентов перед смесителем, расход и влажность полученной смеси после смесителя, частоту вращения приводной звездочки перфорированного транспортера, температуру и расход теплоносителя, подаваемого в аппарат термовлажностной обработки, влажность и расход смеси перед экструдером, параметры положения загрузочного бункера и дорна, частоту вращения нагнетающего шнека и шнека экструдера, температуру и давление перед дорном, расход и влажность готового экструдированного текстурата, устанавливают заданное соотношение расходов компонентов воздействием на частоту вращения дозаторов и приводной звездочки ленточного транспортера, по расходу подготовленной исходной смеси устанавливают частоту вращения вала смесителя, в зависимости от влажности смеси осуществляют либо подачу теплоносителя, либо подачу воды в аппарат термовлажностной обработки, по расходу и влажности смеси после аппарата термовлажностной обработки устанавливают положение загрузочного бункера относительно корпуса экструдера, частоту вращения нагнетающего шнека и шнека экструдера, а по текущему значению влажности экструдированных текстуратов осуществляют многоуровневую коррекцию технологических режимов линии, причем при отклонении влажности экструдированных текстуратов от заданного значения в сторону увеличения сначала увеличивают расход теплоносителя в аппарате термовлажностной обработки до достижения верхнего предельного значения перепада давления теплоносителя в слое продукта и прекращают подачу воды на увлажнение, затем увеличивают время пребывания продукта в экструдере путем увеличения длины рабочей камеры экструдера за счет изменения положения загрузочного бункера и далее снижают производительность линии путем синхронного изменения частоты вращения ленточного конвейера, смесителя и аппарата термовлажностной обработки, при отклонении влажности экструдированных текстуратов от заданного значения в сторону уменьшения сначала уменьшают расход теплоносителя в аппарате термовлажностной обработки до достижения нижнего предельного значения перепада давления теплоносителя в слое продукта и начинают подачу воды на увлажнение, затем уменьшают время пребывания продукта в экструдере путем уменьшения длины рабочей камеры экструдера за счет изменения положения загрузочного бункера и далее увеличивают производительность линии путем синхронного изменения частоты вращения ленточного конвейера, смесителя и аппарата термовлажностной обработки, а при отклонении температуры в сторону увеличения сначала уменьшают частоту вращения дорна и увеличивают зазор путем перемещения дорна относительно матрицы, а при отклонении температуры в сторону уменьшения сначала увеличивают частоту вращения дорна и уменьшают зазор путем перемещения дорна относительно матрицы.



 

Похожие патенты:

Изобретение относится к техническим средствам управления технологическим режимом работы червячных экструдеров. .

Изобретение относится к экструзионной установке с синхронизированными приводными агрегатами, а также к способу синхронизации приводов. .

Изобретение относится к гусеничному тянущему устройству, а также к способу отвода экструдированных изделий, в частности пластмассовых труб. .

Изобретение относится к зерноперерабатывающей промышленности, а именно к автоматизации процессов получения экструдированных комбикормов, и может быть использовано в устройствах для производства пищевых концентратов, а также в других производствах, использующих экструзию.

Изобретение относится к пищевой промышленности, а именно к автоматизации процессов переработки пищевых концентратов, и может быть использовано в устройствах для производства экструдированных продуктов, а также в других производствах, использующих экструзию.

Изобретение относится к автоматическому регулированию и может быть использовано для управления экструзией биополимеров и наложением полимерных оболочек на заготовки кабелей и проводов.

Изобретение относится к пищевой промышленности, а именно к автоматизации процессов переработки пищевых концентратов. .

Изобретение относится к пищевой промышленности, а именно к автоматизации процессов переработки пищевых концентратов. .

Изобретение относится к пищевой промышленности, а именно к автоматизации процессов экструзионной переработки термолабильных продуктов. .

Изобретение относится к пищевой промышленности, а именно к автоматизации процессов переработки биополимеров. .

Изобретение относится к автоматизированному контролю и управлению технологическими процессами промышленной переработки полимеров

Изобретение относится к способам экструзии пластмассовых труб и касается установки для экструзии труб с отделяемой охлаждающей заглушкой

Изобретение относится к способу изготовления шин и устройству для изготовления эластомерных смесей. Техническим результатом является улучшение качества эластомерной смеси. Технический результат достигается способом изготовления шин, в котором изготавливают множество конструктивных элементов шин, один из которых содержит эластомерную смесь. При изготовлении этого конструктивного элемента изготавливают эластомерную смесь, устанавливают рабочие параметры смесительного экструдера, превращают эластомерную смесь в кусочки регулируемых размеров и непрерывно питают этими кусочками смесительный экструдер, который непрерывно их обрабатывает. При этом обнаруживают значение величины, свидетельствующей о степени заполнения смесительного экструдера, и регулируют скорость превращения эластомерной смеси в кусочки для поддержания обнаруживаемого значения величины в заранее установленной области заранее предварительно определенного значения. Причем обнаруживаемой величиной является крутящий момент шнеков смесительного экструдера и/или обнаруживаемой величиной является уровень заполнения входного приемника смесительного экструдера. 2 н. и 29 з.п. ф-лы, 18 ил., 1 пр.

Механический мини-экструдер предназначен для автоматизированного процесса экструзии низкомолекулярных или высокомолекулярных соединений, имеющих жидкокристаллическую или частично-кристаллическую структуру. Мини-экструдер представляет собой каркасную конструкцию с закрепленным на ней шаговым двигателем, винтовым передаточным механизмом, хомутовым нагревателем, зафиксированным вокруг цилиндрической теплопроводящей печи с высокой теплоемкостью, в активной области которого закреплены основной экструзионный механизм поршневого мини-экструдера и термопара. В данном устройстве реализована система контроля и поддержания постоянной температуры экструзионного процесса, а также регулировки и контроля постоянной скорости экструзии. Конструкция креплений, расположенных на каркасе установки, позволяет расположить его под различным наклоном на различных типах поверхности. Технический результат, достигаемый при использовании экструдера по изобретению, заключается в возможности получения высококачественного волокна, характеризующегося однородной структурой и постоянным диаметром по длине волокна. 4 з.п. ф-лы, 3 ил.

Изобретение относится к экструзионной технике и предназначено для производства пищевых и кормовых продуктов с применением экструзии. Техническим результатом является снижение энергоемкости процесса, повышение однородности и качества готовых изделий. Технический результат достигается шнековым экструдером, содержащим подшипниковый узел, загрузочную воронку, разъемный корпус шнековой камеры, привод, формующую головку, шнек с витками, выполненными в зоне загрузки и транспортирования с возможностью осевого перемещения. При этом экструдер оснащен устройствами для измерения крутящего момента, установленными на расстоянии 0,08 м, 0,3 м, и 0,6 м от загрузочного устройства, датчиками для измерения температуры и исполнительным элементом, регулирующим угол наклона витков шнека посредством вращения резьбового вала, расположенного в теле шнека. Причем угол наклона витков шнека в зоне загрузки и транспортирования меняется в пределах от 18 до 40°. 2 з.п. ф-лы, 2 ил., 2 табл.

Изобретение относится к способу стабилизации давления в экструзионной плоскощелевой головке. Способ характеризуется регулированием давления в узких пределах с помощью подпружиненных верхнего и нижнего штоков, упирающихся соответственно в верхний и нижний уголки, формирующие плоскую щель головки. При этом также осуществляют дополнительно регулирование давления в широких пределах с помощью датчика давления, установленного через резьбовое отверстие во входной корпус рядом с корпусом головки и соединенного электрически с регулятором давления, установленным на экструзионной машине. Технический результат, достигаемый при использовании способа по изобретению, заключается в обеспечении сглаживания пульсации давления, возникающей при работе экструзионной машины. 1 ил.
Наверх