Способ инверсионно-вольтамперометрического определения бензилпенициллина



Владельцы патента RU 2425365:

Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Сибирский федеральный университет" (RU)

Изобретение относится к медицине и описывает способ инверсионно-вольтамперометрического определения бензилпенициллина, включающий приготовление раствора меди (II) и определение ее концентрации после предварительного электровосстановления по высоте пика анодного растворения, где медь (II) переводят в комплексное соединение с бензилпенициллином, и определение бензилпенициллина проводят по разности между первоначальной концентрацией ионов меди (II) (Сн) и остаточной концентрацией ионов меди (II), не вступивших в реакцию с бензилпенициллином (Со), в присутствии фонового электролита муравьиной кислоты, описываемой формулой CPen=2·(Сно). Изобретение позволяет определять бензилпенициллин из раствора анализируемого комплекса в интервале концентраций 0.0004-0.0012 ммоль/л. 1 табл.

 

Настоящее изобретение относится к области аналитической химии антибиотиков, в частности к определению бензилпенициллина, и может быть использовано при его определении в биологических жидкостях организма человека и животных, продуктах питания, сточных водах фармацевтических предприятий и других объектах.

В настоящее время известен способ определения меди на ртутно-пленочном углеситалловом электроде методом инверсионной вольтамперометрии [Каменев А.И. Определение меди и висмута на ртутно-пленочном углеситалловом электроде методом инверсионной вольтамперометрии. / А.И.Каменев, Р.Катеинаре, А.А.Ищенко. // Электр. журнал «Исследовано в России». - 2004, Т.7. - С.1144-1148].

При введении в стандартный раствор меди (II) анализируемого раствора бензилпенициллина протекает химическая реакция комплексообразования меди (II) с бензилпенициллином - Cu:Pen=1:2. Образующийся комплекс электрохимически неактивен в исследуемом диапазоне потенциалов от -0,4 В до +0,2 В. Не вступившую в реакцию медь (II) определяют методом инверсионной вольтамперометрии. Бензилпенициллин можно определять по уменьшению высоты пика анодного растворения меди.

Наиболее близким техническим решением, выбранным в качестве прототипа, является инверсионно-вольтамперометрический способ определения пенициллина G в водных растворах и биологических жидкостях [SU № 1746289, G01N 27/48, опубл. 07.07.1992].

Инверсионно-вольтамперометрический способ определения пенициллина G в водных растворах и биологических жидкостях включает электрохимическое концентрирование на поверхности электрода с последующей регистрацией катодных вольт-амперных кривых, концентрирование пенициллина осуществляют на ртутно-пленочном электроде в течение 240±20 с в перемешиваемом растворе в интервале потенциалов от +0,1 до +0,25 В на фоне димолярного раствора муравьиной кислоты с последующей регистрацией катодных вольт-амперных кривых при скорости развертки потенциала 45±10 мВ/с, а концентрацию пенициллина определяют по высоте катодного пика в интервале потенциалов от -0,32 до -0,36 (отн. Нас. К.Э.).

Техническим результатом заявляемого изобретения является использование вышеописанного способа для разработки более чувствительного способа инверсионно-вольтамперометрического определения бензилпенициллина.

Технический результат достигается тем, что способ инверсионно-вольтамперометрического определения бензилпенициллина включает приготовление раствора меди (II) и определение ее концентрации после предварительного электровосстановления по высоте пика анодного растворения, где медь (II) переводят в комплексное соединение с бензилпенициллинном, и определение бензилпенициллина проводят по разности между первоначальной концентрацией ионов меди (II) (Сн) и остаточной концентрацией ионов меди (II), не вступивших в реакцию с бензилпенициллином (Со), в присутствии фонового электролита муравьиной кислоты, описываемой формулой CPen=2·(Сно).

Сравнение заявляемого решения с другими техническими решениями показывает, что нет инверсионно-вольтамперометрического определения бензилпенициллина, основанного на взаимодействии с ионами меди (II), что позволяет сделать вывод о соответствии заявляемого технического решения критерию «новизна». Признаки, отличающие заявленное изобретение от прототипа, обеспечивают заявляемому решению соответствие критерию «изобретательский уровень».

Сущность способа заключается в использовании варианта инверсионной вольтамперометрии, включающего в себя несколько стадий. Вначале проводят предварительное электролитическое концентрирование Cu0 на поверхности электрода, затем последующее растворение концентрата с его поверхности. Анализ проводят на анализаторе вольтамперометрическом ТА-4 фирмы Томь-Аналит с применением трехэлектродной ячейки: рабочий индикаторный электрод - ртутно-пленочный, вспомогательный и электрод сравнения - хлоридсеребряные. Заявляемый способ позволяет определять концентрацию бензилпенициллина по уменьшению высоты пика анодного растворения предварительно восстановленной Cu0 и соответственно концентрации меди (II) в растворе, по причине протекания химической реакции меди (II) с бензилпенициллином. Это уменьшение пропорционально определяемой концентрации бензилпенициллина.

Способ осуществляется следующим образом:

- готовят растворы: Cu(NO3)2·3H2O (C=0.6·10-3 ммоль/л) и бензилпенициллина натриевой соли (C=1·10-3 ммоль/л);

- в кварцевые стаканчики с проверенным на чистоту фоновым раствором, содержащим 0,02 мл концентрированной муравьиной кислоты в 10 мл бидистиллята, добавляют 0,04 мл раствора пробы, состоящей из Cu(NO3)2·3H2O и исследуемого раствора, содержащего бензилпенициллина натриевую соль в следующих соотношениях объемов: 1:1, 1:2, 1:3, 1:4 и 1:5, в подготовленные растворы опускают электроды и проводят регистрацию вольтамперограмм. Усредняют полученные вольтамперограммы пробы и, при необходимости, корректируют линии остаточного тока;

- далее в каждую электрохимическую ячейку вносят 0,04 мл раствора Cu(NO3)2·3H2O и регистрируют вольтамперограммы пробы с добавкой. Измерения проводят при следующих параметрах: подготовка - 30 с; очистка (ЭХО) 15 с - E1 - 0,05 В, Е2 - 1,200 В; растворение 20 с - E1 - 0,05 В; накопление 15 с - E1 - -1,150 В; успокоение 5 с - E1 - -0,850 В; параметры развертки: Ен - -0,400 В, Ек - 0,200 В, скорость 80 мВ/с. Получают три воспроизводимые вольтамперограммы, усредняют и корректируют линии остаточного тока. При введении бензилпенициллина в раствор, содержащий определенное известное избыточное количество меди (II), происходит взаимодействие меди (II) с бензилпенициллином в соотношении 1:2 [Арзамасцев А.П. Руководство к лабораторным занятиям по фармацевтической химии. / А.П.Арзамасцев. - М.: Медицина, 1995. - 320 с., СанПиН 2.1.3.1375-03].

Протекающая при этом реакция представлена ниже:

Количество меди (II), не вступившее в реакцию с бензилпенициллином, определяется вышеописанным методом инверсионной вольтамперометрии на анализаторе ТА-4.

Если обозначить исходную концентрацию меди (0.6·10-3 ммоль/л) Сн (начальная концентрация), а остаточную концентрацию меди, не вступившую в реакцию с бензилпенициллином Со, то определяемая концентрация бензилпенициллина может быть рассчитана по формуле: CPen=2·(Сно).

О содержании бензилпенициллина в исследуемом растворе судят по уменьшению высоты пика анодного растворения меди после добавления к ней анализируемого раствора бензилпенициллина и уменьшению концентрации свободных ионов меди, по причине протекания химической реакции меди (II) с бензилпенициллином. Данные инверсионно-вольтамперометрического определения бензилпенициллина приведены в таблице.

Результаты вольтамперометрического определения бензилпенициллина, основанного на образовании соединения с медью (II), введено V=0.04 мл, концентрации исходных растворов: CCu2+=0.6·10-3 ммоль/л, CPen=1·10-3 ммоль/л (n=3, P=0.95)
Введено Pen, ммоль/л Найдено Pen, ммоль/л Найдено Cu (II), ммоль/л Сно (Cu2+), ммоль/л Sr
0.0002 0.00030±0.00005 0.00035±0.00003 0.00012 0.13
0.0004 0.00045±0.00010 0.00038±0.00010 0.00022 0.15
0.0008 0.00091±0.00020 0.00017±0.00005 0.00045 0.10
0.0012 0.00096±0.00030 0.00014±0.00002 0.00048 0.12
0.0016 0.0013±0.00008 0.00011±0.00003 0.00051 0.07

Исходя из табличных значений следует, что бензилпенициллин можно определять из раствора анализируемого комплекса в интервале концентраций 0.0004-0.0012 ммоль/л, в котором не наблюдается систематических ошибок.

Заявляемый способ позволяет определить бензилпенициллин вольтамперометрическим способом на ртутно-пленочном электроде по уменьшению высоты пика меди (II) и соответственно по уменьшению ее исходной концентрации в растворе. Предлагаемый способ позволяет определять более низкие концентрации бензилпенициллина по-сравнению, например, с известным фотометрическим способом, позволяющим определять бензилпенициллин на уровне 1,4·10-2 ммоль/л [СанПиН 2.1.3.1375-03].

Способ инверсионно-вольтамперометрического определения бензилпенициллина, включающий приготовление раствора меди (II) и определение ее концентрации после предварительного электровосстановления по высоте пика анодного растворения, где медь (II) переводят в комплексное соединение с бензилпенициллином и определение бензилпенициллина проводят по разности между первоначальной концентрацией ионов меди (II) (Сн) и остаточной концентрацией ионов меди (II), не вступивших в реакцию с бензилпенициллином (Со), в присутствии фонового электролита муравьиной кислоты, описываемой формулой CPen=2·(Сно).



 

Похожие патенты:

Изобретение относится к области медицины и фармакологии и представляет собой способ выделения смеси для получения водных дисперсий сферических наночастиц из смеси плохорастворимых в воде тритерпеноидов березовой коры, включающий инжекцию избытка воды в раствор тритерпеноидов березовой коры в смешивающихся с водой органических растворителях с формированием дисперсии, содержащей сферические наночастицы и кристаллы из тритерпеноидов березовой коры, отличающийся тем, что полученную дисперсию фильтруют или центрифугируют, отделяя от кристаллов фракцию сферических наночастиц, отделенные наночастицы упаривают с получением твердой смеси тритерпеноидов для формирования морфологически однородных сферических наночастиц путем повторной инжекции.

Изобретение относится к области аналитической химии. .

Изобретение относится к медицине и биотехнологии представляет собой способ оценки качества производства медицинских иммунобиологических препаратов (МИБП), характеризующийся тем, что он включает в себя применение статистических методов: причинно-следственной диаграммы Исикавы, диаграммы Парето, контрольного листка и контрольных карт Шухарта, которые предполагают сбор необходимой информации о процессе производства, ее обработку, анализ и образуют единый алгоритм оценки качества производства МИБП.

Изобретение относится к области биотехнологии, более конкретно к средствам доставки лекарственных и диагностических субстанций на основе наночастиц, и описывает метод определения распределения веществ, в том числе лекарственных и диагностических субстанций, в сферических аморфных наночастицах с помощью последовательной экстракции дисперсий этих частиц органическими растворителями несмешивающимися с дисперсионной средой и ограниченно растворяющими материал наночастиц, с последующим определением концентраций высвобожденного вещества в экстрактах.

Изобретение относится к фармакологии и касается способа определения веществ-кандидатов в качестве профилактических и терапевтических агентов при панкреатите, включающий: определение активности связывания (pKis) тестируемого вещества с рецепторами 5-НТ2А и 5-НТ2В; и определение тестируемого вещества как вещества-кандидата в качестве профилактического и терапевтического агента при панкреатите, если активность связывания с 5-НТ2А рецептором, по меньшей мере, на 1,0 больше активности связывания с 5-НТ2В рецептором.

Изобретение относится к области исследования биологических материалов, а именно к спектрофотометрическим способам определения антирадикальной активности экстрактов пищевых и лекарственных растений.

Изобретение относится к области экспериментальной биологии и медицины, конкретно к фармакологии и клеточным технологиям, и описывает способ определения эффективности гемостимуляторов при цитостатической миелосупрессии, заключающийся в исследовании клеток крови, при этом исследуют содержание и дифференцировку стволовых кроветворных клеток и коммитированных предшественников, и при дифференцировке стволовых кроветворных клеток преимущественно в предшественники гранулоцитарно-макрофагального и гранулоцитарного типа препараты относят к гемостимуляторам, стимулирующим грануломоноцитопоэз, а при дифференцировке только в гранулоцитарные клетки к гемостимуляторам гранулоцитарного ростка кроветворения.

Изобретение относится к контролю качества лекарственных средств в процессе их производства, обращения, хранения и применения указанного для них срока годности. .

Изобретение относится к медицине и описывает способ количественного определения сульфамидных препаратов в таблетках путем обработки анализируемой пробы растворами соляной кислоты, нитрита натрия с последующим фотометрированием полученного раствора, причем анализируемую пробу дополнительно обрабатывают раствором хромотроповой кислоты в присутствии карбоната натрия, измеряют оптическую плотность полученного раствора при длине волны 530 нм относительно воды и определяют количество исследуемого вещества с помощью градуировочного графика.

Изобретение относится к аналитической химии, а именно к способам определения ионов металлов сурьмы, висмута, меди, и может быть использовано для определения их содержания в водных растворах в присутствии растворенного кислорода методом инверсионной анодно-катодной вольтамперометрии (АКВА).

Изобретение относится к области аналитической химии и может быть использовано в пищевой, фармакологической, медицинской и химической промышленности при определении микроколичеств селена и йода в пищевых продуктах, биологических объектах, лекарственных препаратах, БАДах, объектах окружающей среды.

Изобретение относится к аналитической химии и может быть использовано для экспресс-анализа технологических растворов, сточных и оборотных вод предприятий свинцово-цинковой отрасли цветной металлургии.
Изобретение относится к методам вольтамперометрического определения олова в водных растворах и может быть рекомендовано для определения микроконцентраций олова в питьевой, природной и сточной воде.

Изобретение относится к области аналитической химии и может быть использовано для количественного определения тяжелых металлов в объектах технического и природного происхождения.

Изобретение относится к области физических измерений. .

Изобретение относится к области аналитической химии, а именно к подготовке поверхности индикаторного электрода для вольтамперометрического анализа природных и сточных вод.

Изобретение относится к аналитической химии, а именно к способам определения содержания ионов металлов для определения в питьевых и природных водах, технических сливах методом инверсионной вольтамперометрии (ИВА).

Изобретение относится к области измерительной техники и может быть использованы для высокоточного определения различных физических свойств (плотности, концентрации, смеси веществ, влагосодержания и др.) веществ (жидкостей, газов), находящихся в емкостях (технологических резервуарах, измерительных ячейках и т.п.) и перемещаемых по трубопроводам.
Наверх