Устройство для поиска мест утечек магистральных трубопроводов



Устройство для поиска мест утечек магистральных трубопроводов
Устройство для поиска мест утечек магистральных трубопроводов
Устройство для поиска мест утечек магистральных трубопроводов

 


Владельцы патента RU 2432558:

Аносов Виктор Сергеевич (RU)
Суконкин Сергей Яковлевич (RU)
Переяслов Леонид Павлович (RU)
Куценко Николай Николаевич (RU)
Чернявец Владимир Васильевич (RU)
Амирагов Алексей Славович (RU)
Воронин Василий Алексеевич (RU)
Тарасов Сергей Павлович (RU)
Леньков Валерий Павлович (RU)
Бродский Павел Григорьевич (RU)

Изобретение относится к контрольно-измерительной технике и предназначено для диагностики преимущественно подводных магистральных трубопроводов. Изобретение направлено на повышение достоверности определения мест утечек транспортируемого продукта из магистральных трубопроводов, что обеспечивается за счет того, что, согласно изобретению, акустические датчики выполнены в виде параметрического преобразователя, состоящего из микропроцессора, формирователя сигналов накачки, параметрического излучающего тракта, приемного тракта, при этом излучающий тракт содержит формирователь сигналов накачки и многоэлементную мозаичную антенну, приемный тракт включает антенну, выполненную в виде решетки пьезокерамических n приемников звука цилиндрической формы, каждый из которых имеет индивидуальную герметизацию и закрепленных на плите, снабженной акустическим экраном. При этом n приемников, расположенных рядом, смещены относительно друг друга в вертикальной и горизонтальной плоскостях, корпус антенны закрыт звукопрозрачной мембраной, дополнительно введен гидроакустический канал связи. 3 ил.

 

Изобретение относится к контрольно-измерительной технике и может быть использовано для определения места течи в подземных трубопроводах систем тепло- и водоснабжения, а преимущественно в магистральных трубопроводах, уложенных на дне водоемов, включая морские акватории.

Известны устройства для определения места течи в подземных трубопроводах [1-37], которые характеризуются тем, что содержат первичные вибропреобразователи, устанавливаемые на концах обслуживающего трубопровода, два усилителя, два фильтра, два аналого-цифровых преобразователя, шифратор, дешифратор, цифровой коррелятор и дисплей. В некоторых известных устройствах дополнительно введены передатчик и приемник. Применение радиоканала позволяет повысить мобильность устройства, расширить его функциональные возможности.

Однако устройствам, представляющим собой аналоги, присущ недостаток, заключающийся в том, что радиоканал подвержен сильному воздействию естественных и искусственных помех, особенно в условиях крупного мегаполиса, что делает возможным его работоспособность только на секциях трубопроводов малой длины.

Известно устройство поиска мест утечек магистральных трубопроводов [38], в котором технической задачей является повышение надежности радиоканала путем использования сложных сигналов с фазовой манипуляцией.

В известном устройстве [38] поставленная задача решается тем, что устройство для поиска мест утечек магистральных трубопроводов, содержащее первый и второй датчики вибрации, устанавливаемые на концах диагностируемой секции трубопровода, приемник, последовательно подключенные к выходу первого датчика вибрации первый усилитель, первый фильтр, первый аналого-цифровой преобразователь, цифровой коррелятор, второй вход которого соединен с выходом дешифратора, и дисплей, последовательно подключенные к выходу второго датчика вибрации второй усилитель, второй фильтр, второй аналого-цифровой преобразователь, шифратор и передатчик, снабжено удвоителем фазы, двумя измерителями ширины спектра, блоком сравнения, пороговым блоком, ключом, двумя перемножителями, узкополосным фильтром и фильтром нижних частот, причем передатчик выполнен в виде последовательно включенных генератора высокой частоты, фазового манипулятора, второй вход которого соединен с выходом шифратора, и усилителя мощности, к выходу приемника последовательно подключены удвоитель фазы, первый измеритель ширины спектра, блок сравнения, второй вход которого через второй измеритель ширины спектра соединен с выходом приемника, пороговый блок, ключ, второй вход которого соединен с выходом приемника, первый перемножитель, второй вход которого соединен с выходом фильтра нижних частот, узкополосный фильтр, второй перемножитель, второй вход которого соединен с выходом ключа, и фильтр нижних частот, выход которого соединен с выходом дешифратора.

Известное устройство [38], в отличие от аналогов [1-37], ввиду того, что используются сложные сигналы с фазовой манипуляцией позволяет повысить надежность радиоканала для передачи зарегистрированных сигналов на диспетчерский пункт.

Однако для получения информации о дефектах в трубопроводах используются справочные материалы (толщины стенок трубопровода и т.д.), а вычисление расстояния до места течи от датчика вибрации определяется по времени на основе измеренного значения разности времен (Т), прихода ударных волн от течи до датчиков, с учетом скорости распространения ударной волны осуществляется на основании параметров, введенных в ручную в цифровой коррелятор-процессор, в котором автоматически вычисляется расстояние L до места течи от датчика вибрации, которое отображается на дисплее. При этом выделение рабочей полосы частоты, осуществляется посредством фильтров на основании оптимального значения, которое определяются параметрами трубопровода и «помеховой» обстановкой. И если параметры трубопровода могут быть установлены по технической документации, то «помеховая» обстановка является субъективным параметром и посредством известного устройства не может быть учтена, что существенно уменьшает достоинство известного устройства, заключающегося в использовании в устройстве [38] корреляционного метода для нахождения течи в трубах независимо от глубины их прокладки, вида грунта, интенсивности шума окружающей среды и обеспечении высокой производительности поиска течей на протяженных участках диагностируемого трубопровода, в сравнении с известными устройствами от акустических течеискателей [1-37].

Кроме того, выделение информации с фазовым детектированием сигналов представляет по своей сути перемножитель сигналов и фильтр низких частот, что приводит к основным дестабилизирующим факторам, основными из которых являются мгновенные флюктуации фазы приходящей волны и фазовая нестабильность в радиотехнических трактах приемника.

Задачей предлагаемого технического решения является повышение достоверности определения мест утечек транспортируемого продукта из магистральных трубопроводов, включая магистральные трубопроводы для транспортировки углеводородов, уложенных на дне водоемов.

Поставленная цель достигается за счет того, что в устройстве для поиска мест утечек магистральных трубопроводов, содержащее акустические датчики, устанавливаемые на магистральном трубопроводе, приемник, усилители, фильтры, аналого-цифровой преобразователь, дисплей, узкополосный фильтр и фильтр нижних частот, причем передатчик содержит усилители мощности радиоканала передачи зарегистрированных акустических сигналов посредством акустических датчиков, в отличие от аналогов и прототипа, акустические датчики выполнены в виде параметрического преобразователя, состоящего из микропроцессора, формирователя сигналов накачки, параметрического излучающего тракта, приемного тракта, при этом излучающий тракт содержит формирователь сигналов накачки и многоэлементную мозаичную антенну, приемный тракт включает антенну, выполненную в виде решетки пьезокерамических n приемников звука цилиндрической формы, каждый из которых имеет индивидуальную герметизацию и закрепленных на плите, снабженной акустическим экраном, n приемников, расположенных рядом, смещены относительно друг друга в вертикальной и горизонтальной плоскостях, корпус антенны закрыт звукопрозрачной мембраной, дополнительно введен гидроакустический канал связи.

Сущность предлагаемого технического решения поясняется чертежами (фиг.1-3).

Фиг.1 - блок-схема устройства. Устройство включает микропроцессор 1, предназначенный для формирования команд управления режимами работы и команд для трансляции зарегистрированной информации по радиоканалу 2 связи (для сухопутных условий) и по гидроакустическому каналу 3 связи (при размещении трубопровода на дне водоема), формирователь сигналов накачки 4, предназначенный для формирования двухчастотных зондирующих сигналов накачки заданной длительности и несущей частоты, формирования импульсов синхронизации и сигналов стробирования приемного тракта, параметрический излучающий тракт 5, предназначенный для усиления сигналов накачки (при этом в отдельных каналах восьмиканального усилителя мощности осуществляется коррекция разности фаз и регулировка амплитуд) и преобразования посредством многоэлементной мозаичной антенны накачки в акустические сигналы, приемный тракт 6, предназначенный для преобразования акустической энергии эхо-сигналов посредством широкополосной приемной антенны, частотной селекции, усиления и обработки сигналов.

Фиг.2 - функциональная схема формирователя сигналов накачки. Высокостабильный кварцевый генератор опорной частоты 7 вырабатывает импульсы с частотой 2,048 МГц. Выбор тактовой частоты такой величины дает возможность перестраивать при необходимости частоты накачки с дискретностью 0,5 кГц в пределах от 140 до 147 кГц. Прямоугольные импульсы уровня ТТЛ подаются на вход формирователя периода следования импульсов 8, на выходе которого формируются короткие импульсы с периодом 100 мс. Они поступают на формирователь длительности пилот-сигнала 9, а также через формирователь импульса задержки 10, на вход устройства формирования длительности импульса 11, на выходе которого формируются прямоугольные импульсы, длительность которых может изменяться посредством команд из устройства управления параметрами микропроцессора 1. Сформированные таким образом прямоугольные импульсы заданной длительности и с определенной частотой повторения поступают на два канала формирования радиоимпульсов с частотами накачки, различающихся между собой тем, что в одном из них частота не регулируется и составляет 154 кГц, а во втором частота может изменяться в пределах от 140 до 147 кГц. Основу обоих каналов формирователя составляют накапливающие сумматоры 12 и 13. На вход накапливающего сумматора 12 первого канала через схему И 14 поступают, во-первых, короткие импульсы длительностью 0,1 мс с формирователя длительности пилот-сигнала 3 и, во-вторых, через время задержки, равное 2 мс, - импульсы с устройства формирователя длительности импульса 11. Накапливающий сумматор управляется тактовыми импульсами генератора опорной частоты 7. Восьмиразрядные коды адресов с накапливающего сумматора 12 поступают в ПЗУ 15, в котором записан период синусоиды. Благодаря этому производятся выборки (всего 256 выборок) и виде восьмиразрядных кодов данных подаются на вход ЦАП 16. С выхода ЦАП 16 через фильтр низких частот 17 прямоугольные импульсы поступают на вход резонансного четырехканального усилителя мощности 18. На вход накапливающего сумматора 13 второго канала поступают импульсы с формирователя длительности импульсов 11. Накапливающий сумматор 13 управляет тактовыми импульсами генератора опорной частоты 7. Коды адресов с накапливающего сумматора 13 поступают в ПЗУ 23, где производятся выборки синусоиды и в виде восьмиразрядных кодов данных подаются на вход ЦАП 20. С выхода ЦАП 20 через фильтр нижних частот 21 прямоугольные импульсы поступают на вход второго четырехканального усилителя мощности 22. С выхода формирователя длительности пилот-сигнала 9 импульсы поступают на стробирующее устройство 27 приемного тракта (приемника), которое служит для запирания усилителя мощности 22 на время посылки. Изменение частоты второго канала и длительности зондирующих импульсов производится соответствующими двоичными кодами, подаваемыми из микропроцессора 1.

Усилители мощности 18 и 22 образуют общий усилитель мощности, который состоит из восьми идентичных широкополосных блоков мощностью до 500 Вт каждый, разбитых на две группы по четыре блока для усиления частот накачки f1 и f2, и содержит восемь фазокомпенсационных устройств, выходные и предварительные усилители. Выходные усилители питаются напряжением +40 B и -40 B, а предварительные усилители питаются напряжением +20 B и -20 B. Выходной усилитель включает в себя комплементарную пару среднемощных транзисторов и параллельно включенные комплементарные пары мощных транзисторов. Предварительный усилитель состоит из операционного усилителя и двух пар среднемощных транзисторов.

Параметрический излучающий тракт 5 включает формирователь накачки 4 и излучатель, выполненный в виде мозаичной антенны 24, которая излучает волну накачки с частотой fн. Поскольку частота накачки довольно высока, то волна накачки отражается от границы раздела транспортируемый продукт - внутренняя поверхность трубопровода и распространяется в сторону приемного тракта 6. Волна накачки будет взаимодействовать вследствие нелинейности среды распространения с низкочастотными сигналами с частотой F, отраженными от участков трубопровода с дефектами. Результатом взаимодействия будут волны с комбинационными частотами fн±F либо изменения фазы волны накачки. Антенна представляет собой многоэлементную решетку, состоящую из четырех двухчастотных каналов каждая. Элементы в каждой подрешетке расположены в порядке чередования типов с разной частотой и рассчитаны так, чтобы обеспечить наибольшую однородность акустического поля по обеим частотам. Активная часть двухчастотной мозаичной антенны выполнена из пьезокерамики стержневого типа. Разделение антенны на восемь каналов позволяет добиться получения необходимой мощности и высокой надежности при работе транзисторных усилителей мощности. Антенна накачки имеет прямоугольную форму с площадью активной поверхности 260×160 мм. Ширина характеристики направленности по уровню - 3 дБ составляет 2×4 градуса и постоянна в диапазоне рабочих частот. Конструктивно антенна накачки выполнена в прямоугольном сварном корпусе. Конструкция антенны предусматривает работу при избыточном статическом давлении 2 МПа. С этой целью для обеспечения одностороннего излучения используется акустический экран, выполненный в виде перфорированной пластины из гетинакса.

Фиг.3 - структурная схема приемного тракта 6. Приемный тракт 6 предназначен для приема, усиления, частотной селекции и обработки отраженных сигналов разностной частоты в полосе частот 7-14 кГц. Чувствительность его по акустическому давлению составляет не менее 0,02 Па. Приемник выполнен по схеме прямого усиления. Приемный тракт включает приемную антенну 25, полосовые фильтры 26 и 27, антенный усилитель 28, стробирующее устройство 29, основной усилитель 30, преобразователи кодов 31 и 32, блок фильтров 33, фильтр нижних частот 34, амплитудный детектор 35. Полосовые фильтры 25 и 26 служат для подавления частот сигналов накачки, а также помех ниже частот рабочего диапазона и представляют собой пассивные фильтры верхних и нижних частот, включенных последовательно. Подавление сигналов частот накачки не хуже 60 дБ.

Антенный усилитель 28 представляет собой малошумящий предварительный усилитель. Для ослабления синфазной помехи последний его каскад выполнен в дифференциальном включении. Уровень приведенных ко входу шумов усилителя в полосе 7-14 кГц составляет 1,5 мкВ. Коэффициент усиления 26 дБ.

Основной усилитель 30 выполнен трехкаскадным с регулировкой усиления, которая осуществляется цифровыми кодами. Диапазон регулировки составляет 0-90 дБ.

Стробирующее устройство 29 служит для запирания основного усилителя 30 в момент посылки и вырабатывает запирающие импульсы необходимой длительности и полярности. Синхронизация стробирующего устройства 29 осуществляется импульсом запуска формирователя длительности пилот-сигнала 3. Блок фильтров 33 представляет собой набор фильтров верхних и нижних частот, которые с помощью коммутации объединяются в полосовые фильтры с переменной полосой пропускания. Управление коммутаторами, а следовательно, и полосой пропускания блока фильтров 33 осуществляется цифровыми кодами. Частота среза фильтров верхних частот составляет 6, 9 и 13 кГц, а частота среза фильтров нижних частот составляет 8, 12 и 15 кГц. Преобразователи кодов 31 и 32 служат для преобразования кодов управления от микропроцессора 1 в необходимые коды для цифровых входов основного усилителя 30 и блока фильтров 33.

Амплитудный детектор 35 и фильтр нижних частот 34 образуют линейный детектор, который служит для выделения огибающей отраженных сигналов ВРЧ в динамическом диапазоне 40 дБ.

Приемный тракт 6 работает следующим образом. Акустические эхо-сигналы принимаются приемной антенной 25 и поступают на полосовые фильтры 26 и 27, в которых осуществляется частотная селекция, и на вход двухканального дифференциального антенного усилителя 28 для предварительного усиления и подавления синфазной помехи. С выхода антенного усилителя 28 сигнал поступает на вход основного усилителя 30, коэффициент усиления которого зависит от кода, поступающего на цифровые входы антенного усилителя с преобразователя кодов 31. Запирание основного усилителя 30 на время посылки осуществляет стробирующее устройство 29, которое синхронизируется импульсом запуска формирователем длительности пилот-сигнала 3. С выхода основного усилителя 30 усиленный сигнал поступает на вход полосовых фильтров 26 и 27 с регулируемой полосой пропускания. На цифрой вход коммутатора блока фильтров 33 необходимый код поступает с преобразователя кодов 32. С выхода блока фильтров 33 сигнал подается на вход амплитудного детектора 35, который выделяет модуль знакопеременного сигнала. Продетектированный сигнал поступает на фильтр нижних частот 34, в котором осуществляется выделение огибающей. Затем полученная информация поступает в микропроцессор 1 для последующей трансляции на дисплей диспетчерского пункта по радиоканалу 2 связи (для сухопутных условий) и по гидроакустическому каналу 3 связи (при размещении трубопровода на дне водоема).

Аналогом конструкции радиоканала является конструкция радиоканала, описанная в источнике информации [38], а аналогом конструкции гидроакустического канала связи является конструкция, приведенная в описании к патенту RU №2300781.

Антенна 25 представляет собой решетку пьезокерамических приемников звука, каждый из которых имеет индивидуальную герметизацию. Пьезокерамические приемники собраны в две группы и подключаются к дифференциальным входам предварительного усилителя для снижения синфазной электрической помехи. Антенна 25 содержит десять цилиндрических приемников, закрепленных на плите. Для экранирования сигналов, проходящих с тыльной стороны антенны, применен акустический экран. Приемники, расположенные рядом, смещены относительно друг друга для снижения уровня боковых лепестков в характеристике направленности. Корпус антенны 25 закрыт звукопрозрачной мембраной. Чувствительность приемной антенной решетки по акустическому давлению составляет не менее 500 мкВ/Па в полосе частот от 7 до 14 кГц.

Конструктивное исполнение параметрического излучающего тракта 5 обеспечивает дискретное сканирование внутреннего пространства, которое осуществляется путем шагового обзора за счет облучения узкой характеристикой направленности излучателя ограниченной зоны пространства и приема эхо-сигналов в пределах всего сектора, в котором осуществляется обзор. Цикл обзора равен промежутку времени между двумя последовательными излучениями: Тобз=2xmax/c, где xmax - максимальная дальность излучения. Перед каждым излучением сигнала характеристика направленности антенны 24 поворачивается на угол, равный ее ширине (шаг поиска). Полное время обзора заданного сектора определяется циклом обзора и отношением величины сектора к ширине характеристики направленности.

При обнаружении дефекта микропроцессором 1 формируется команда на формирование высокой направленности, что обеспечивает более надежное определение местоположения выявленного дефекта.

Источники информации

1. Авторское свидетельство SU №336463.

2. Авторское свидетельство SU №380910.

3. Авторское свидетельство SU №411268.

4. Авторское свидетельство SU №417675.

5. Авторское свидетельство SU №724957.

6. Авторское свидетельство SU №724959.

7. Авторское свидетельство SU №930034.

8. Авторское свидетельство SU №932098.

9. Авторское свидетельство SU №941776.

10. Авторское свидетельство SU №947666.

11. Авторское свидетельство SU №1079946.

12. Авторское свидетельство SU №1208402.

13. Авторское свидетельство SU №1368685.

14. Авторское свидетельство SU №1657988.

15. Авторское свидетельство SU №1778597.

16. Авторское свидетельство SU №1781577.

17. Авторское свидетельство SU №1800219.

18. Патент RU №2011110.

19. Патент RU №2026372.

20. Патент RU №2047039.

21. Патент RU №2047815.

22. Патент RU №2053436.

23. Патент RU №2084757.

24. Патент RU №2010227.

25. Патент RU №2121105.

26. Патент US №3045116.

27. Патент US №3744298.

28. Патент US №4289019.

29. Патент GB №1349120.

30. Патент GB №2311135,

31. Патент FR №2374628.

32. Патент FR №2504651.

33. Патент DE №3112829.

34. Патент JP №4611795.

35. Патент JP №556856.

36. Патент JP №6322531.

37. Волошин В.И. и др. Акустический определитель местоположения развивающегося дефекта // Дефектоскопия, 1980, 8. - С.69-74 и другие).

38. Патент RU №2196312.

Устройство для поиска мест утечек магистральных трубопроводов, содержащее акустические датчики, устанавливаемые на магистральном трубопроводе, приемник, усилители, фильтры, аналого-цифровые преобразователи, дисплей, узкополосный фильтр и фильтр низких частот, причем передатчик содержит усилители мощности радиоканала передачи зарегистрированных акустических сигналов посредством акустических датчиков, отличающееся тем, что акустические датчики выполнены в виде параметрического преобразователя, состоящего из микропроцессора, формирователя сигналов накачки, параметрического излучающего тракта, приемного тракта, при этом излучающий тракт содержит формирователь сигналов накачки и многоэлементную мозаичную антенну, приемный тракт включает антенну, выполненную в виде решетки пьезокерамических n-приемников звука цилиндрической формы, каждый из которых имеет индивидуальную герметизацию, закрепленных на плите, снабженной акустическим экраном, n-приемников, расположенных рядом, смещенных относительно друг друга в вертикальной и горизонтальной плоскостях, корпус антенны закрыт звукопрозрачной мембраной, дополнительно введен гидроакустический канал связи.



 

Похожие патенты:

Изобретение относится к контрольно-измерительной технике и направлено на повышение помехоустойчивости. .

Изобретение относится к области контрольно-измерительной техники и предназначено для использования утечек в линиях воздушных систем летательных аппаратов. .

Изобретение относится к области испытательной техники и предназначено для использования при испытании трубопроводов с помощью акустических течеискателей. .

Изобретение относится к области испытательной техники и направлено на снижение влияния шумов на уровень полезного акустического сигнала. .

Изобретение относится к области испытаний и неразрушающего контроля с помощью ультразвука и может быть использовано для обнаружения утечек и протечек газов и жидкостей в гидрогазовых системах.

Изобретение относится к области космической техники и предназначено для определения на борту космического объекта координат места пробоя высокоскоростной микрометеороидной или техногенной частицей гермооболочки модуля космического объекта.

Изобретение относится к области космической техники и предназначено для определения на борту космического объекта координат места пробоя высокоскоростной микрометеороидной или техногенной частицей гермооболочки модуля космического объекта.

Изобретение относится к области испытаний и неразрушающего контроля с помощью ультразвука и может быть использовано для обнаружения утечек и протечек газов и жидкостей в гидрогазовых системах.

Изобретение относится к трубопроводному транспорту и может быть использовано для выявления и прогноза появления опасного состояния у магистральных трубопроводов (МТ) в местах их перехода через дороги или в местах пересечений нескольких трубопроводов.

Изобретение относится к трубопроводному транспорту и может быть использовано для контроля за техническим состоянием пересечений магистральных трубопроводов (МТ).

Изобретение относится к трубопроводному транспорту и может быть использовано для диагностики технического состояния магистрального трубопровода (МТ) при его переходе через естественные или искусственные преграды, например через автомобильные или железные дороги.

Изобретение относится к контрольно-измерительной технике и направлено на повышение помехоустойчивости. .

Изобретение относится к трубопроводному транспорту. .

Изобретение относится к контрольно-измерительной технике и предназначено для дистанционного определения места утечки жидкости или газа из магистрального трубопровода, находящегося в траншее под грунтом
Наверх