Способ управления сближением корабля с подвижной целью



Способ управления сближением корабля с подвижной целью
Способ управления сближением корабля с подвижной целью

 


Владельцы патента RU 2467917:

Учреждение Российской академии наук Институт проблем управления им. В.А. Трапезникова РАН (RU)

Изобретение относится к области судовождения. Способ управления сближением корабля с целью базируется на использовании системы автоматического управления движением корабля по путевому углу. Величина заданного значения путевого угла формируется как угол пеленга (азимута) - φ плюс приращение путевого угла - ΔПУзд. Величина приращения путевого угла ΔПУзд формируется как функция двух параметров процесса сближения корабля с целью: ΔПУзд=f(φ, ΔV), где ΔVкорабля/Vцели, Vкорабля - скорость хода корабля, Vцели - скорость хода цели, φ - пеленг цель-корабль. Изобретение обеспечивает формирование автоматического управления рулевым приводом при сближении корабля с подвижной целью по прямой, минимизацию времени сближения корабля с подвижной целью, определение на будущей траектории движения цели точки стыковки корабля с подвижной целью для оптимизации процесса сближения. 2 ил.

 

Изобретение относится к области судовождения - управлению движением корабля по заданному направлению с использованием приемника спутниковой навигационной системы и локатора, определяющего параметры движения цели.

Известен способ автоматического управления движением судна по заданному путевому углу, реализованный в «Системе автоматического управления движением судна» (патент RU 2240953 C1, 27.11.2004). Способ управления направлением движения судна основан на использовании информации от приемника спутниковой навигационной системы, блока заданного значения путевого угла и сумматора, в котором по сигналам текущего путевого угла, заданного путевого угла и угловой скорости судна формируется сигнал для управления рулевым приводом судна.

Известен также способ автоматического управления движением судна (патент RU 2292289 C1, 27.01.2007, принятый в качестве прототипа), в котором автоматическое управление направлением движения судна осуществляется с использованием: сумматора, рулевого привода, блока датчика руля, приемника спутниковой навигационной системы, задатчика точек поворота судна и блока заданного маршрута. Отличительной особенностью рассматриваемого способа управления движением судна является корректировка заданного значения путевого угла в процессе плавания из точки А в точку Б, затем В… по заданному маршруту.

Использование этого способа гарантирует выход судна в очередную заданную точку изменения направления движения даже при сильном волнении на море. Однако автоматизировать процесс управления кораблем при сближении с подвижной целью с использованием известных способов автоматического управления направлением движения судна нельзя, т.к. в блоке заданного маршрута отсутствует специальный задатчик путевого угла и связанная с ним подсистема формирования параметров движения цели.

Техническим результатом способа автоматического управления сближением корабля с подвижной целью является:

- формирование автоматического управления рулевым приводом при сближении корабля с подвижной целью по прямой «волчьей погони»,

- минимизация времени сближения корабля с подвижной целью,

- определение на будущей траектории движения цели точки стыковки корабля с подвижной целью, позволяющей оптимизировать процесс сближения.

Технический результат достигается тем, что способ управления сближением корабля с подвижной целью использует задатчик путевого угла (ПУзд), приемник спутниковой навигационной системы (СНС), датчик руля, рулевой привод и сумматор, на вход которого вводят сигналы:

- заданного путевого угла - ПУзд - из задатчика путевого угла (ПУзд),

- путевого угла - ПУ - из приемника спутниковой навигационной системы,

- угла перекладки руля (δ) - из датчика руля, сигнал с выхода сумматора вводят на вход рулевого привода, при этом используют блок формирования путевого угла цели (ПУц) и скорости движения цели (Vц), вычислитель коррекции заданного путевого угла (ΔПУзд) и формирователь пеленга (φ) и расстояния до цели (Lк-ц), в котором получают сигнал пеленга от корабля до цели - φк-ц и сигнал расстояния корабль-цель - Lк-ц, на первый вход блока формирования путевого угла цели (ПУц) и скорости движения цели (Vц) вводят сигналы - φк-ц и - Lк-ц из формирователя пеленга (φ) и расстояния до цели (Lк-ц), а на второй вход вводят сигналы широты и долготы корабля из приемника спутниковой навигационной системы, на вход вычислителя коррекции заданного путевого угла (ΔПУзд) вводят сигналы:

- путевого угла цели - ПУц и скорости движения цели - Vц - из блока формирования путевого угла цели (ПУц) и скорости движения цели (Vц),

- скорости корабля - Vк - из приемника спутниковой навигационной системы,

- пеленга от корабля до цели - φк-ц из и блока формирования пеленга (<p) и расстояния до цели (Lк-ц), сигнал коррекции заданного путевого угла - ΔПУзд,

- из вычислителя коррекции заданного путевого угла (ΔПУзд) вводят на вход сумматора.

Технический результат достигается тем, что формируют сигналы для создания способа автоматического управления сближением корабля с подвижной целью:

- коррекции заданного путевого угла (ΔПУзд),

- угла пеленга (азимута) (φк-ц),

- расстояния от корабля до подвижной цели (Lк-ц),

- путевого угла цели (ПУцели),

- скорости движения цели (Vцели),

- скорости движения корабля (Vкор).

Предлагаемый способ управления базируется на применении типового способа автоматического управления движением корабля с использованием:

- приемника спутниковой навигационной системы (СНС),

- задатчика путевого угла,

- сумматора,

- рулевого привода,

- датчика руля.

При формировании закона автоматического управления движением корабля используются сигналы:

- путевого угла (ПУ) и угловой скорости корабля (ω) - из приемника СНС,

- заданного путевого угла (ПУзд) - из задатчика путевого угла,

- угла перекладки руля (δ) - от датчика руля.

Все четыре сигнала вводят на вход сумматора, на выходе которого формируется сигнал управления рулевым приводом при движении по заданному направлению (ПУзд):

где

δзд - заданное значение угла перекладки руля.

Для формирования закона сближения корабля с подвижной целью в способе управления типовой закон управления движением корабля вида (1) дополняется и имеет вид:

где: ПУзд - сигнал заданного путевого угла (последний совпадает по направлению с пеленгом (азимутом) на цель (φк-ц)),

ΔПУзд - сигнал коррекции заданного путевого угла.

Использование закона управления движением корабля вида (1а) при ΔПУзд=0 позволяет осуществить автоматическое управление сближением корабля с целью по кривой «собачьей погони»:

где ПУзд - путевой угол корабля,

φк-ц - угол пеленга (азимута) корабль-цель.

При |ΔПУзд|>0 использование закона управления движением корабля вида (1а), позволяет осуществить сближение корабля с целью по прямой «волчьей погони».

На фиг.1 приведен корабль и подвижная цель с двумя возможными линиями сближения:

- по кривой «собачьей погони» (линия с изломами, касательная к кривой, всегда исходит из центра масс корабля и направлена на текущее положение цели, совпадает с направлением заданного путевого угла (ПУзд), равного углу азимута (φк-ц)),

- по прямой «волчьей погони».

Прямая «волчьей погони» исходит из первоначального положения корабля и пересекает траекторию движения цели в точке будущего одновременного (по времени) нахождения корабля и цели в процессе сближения. Прямая совпадает с направлением движения корабля - путевым углом корабля при сближении ПУкорабля=ПУзд+ΔПУзд.

Для формирования процесса сближения корабля (близкого к минимальному по времени) по прямой «волчьей погони» за подвижной целью следует формировать сигнал (|ΔПУзд|>0). С этой целью используем:

- вычислитель коррекции заданного путевого угла (ΔПУзд),

- формирователь:

а) расстояния между кораблем и подвижной целью (Lк-ц),

б) угла пеленга корабль-цель (φк-ц),

- блок формирования:

а) путевого угла цели (ПУц),

б) скорости движения цели (Vц).

Величина сигнала коррекции путевого угла корабля (ΔПУзд) (для формирования направления движения корабля по прямой при сближении с целью) является функцией двух переменных:

где φц.к - угол пеленга от подвижной цели к кораблю, ΔV=Vкор/Vцель.

В соответствии с зависимостью (3) сигнал коррекции заданного путевого угла (ΔПУзд) формируется в вычислителе с использованием сигналов:

- путевого угла цели (ПУц) и скорости цели (Vц) - из блока формирования путевого угла цели и скорости хода цели,

- скорости корабля (Vк) - из приемника СНС,

- угла пеленга корабль-цель (φк-ц) (совпадающего с направлением путевого угла корабля в первоначальном состоянии схождения (ПУзд).

В вычислителе формируется библиотека набора возможных сигналов коррекции заданного путевого угла Σ(ΔПУзд)i в функции двух переменных: φц-к, ΔV (или набора функций одной переменной ΣΔПУздφi=f(ΔV) для набора областей различных значений угла пеленга подвижная цель-корабль (φцель-корабль). Библиотека с набором сигналов коррекции заданного путевого угла ∑{(ΔПУзд)i=f(φц.к.i, ΔVi)} создается путем моделирования возможных процессов сближения корабля с подвижной целью по прямой «волчьей погони» и вводится в вычислитель. Выбор конкретного сигнала коррекции заданного путевого угла (ΔПУзд)i из библиотеки набора сигналов производят по текущим значениям: φц-к.i, ΔVi перед началом процесса сближения с конкретной подвижной целью. Сигнал коррекции заданного путевого угла (ΔПУзд)i для конкретного данного случая сближения корабля с целью вводят на вход сумматора, на выходе которого формируется закон автоматического управления кораблем в режиме сближения с целью (1а) по прямой «волчьей погони».

Рассмотрим возможный вариант устройства, реализующего предложенный способ сближения корабля с подвижной целью.

На фиг.2 приведена блок-схема устройства автоматического управления сближением корабля с подвижной целью.

Устройство содержит задатчик 1 путевого угла ПУзд, приемник 2 спутниковой навигационной системы (СНС), датчик 3 руля, сумматор 4, рулевой привод 5, объект управления 6 - корабль, формирователь 7 пеленга (φ) и расстояния до цели (Lк-ц), блок 8 формирования путевого угла цели (ПУц) и скорости цели (Vц), вычислитель 9 коррекции заданного путевого угла (ΔПУзд).

Все связи между блоками устройства приведены на чертежах. Реализация предлагаемого устройства может быть осуществлена с использованием микросхем типа 140 УД 6 (сумматор 4, формирователь 7 пеленга и расстояния до цели, блок 8 формирования путевого угла цели (ПУц) и скорости цели (Vц) и вычислитель 9 коррекции заданного путевого угла (ΔПУзд). Блок выработки угловой скорости, датчик угловой скорости - типовой «ДУС»-5 с чувствительностью не ниже 0,05 гр/с). Штатные корабельные системы: приемник СНС-2, рулевой привод 5.

Автоматическое управление движением корабля осуществляется в соответствии с величиной заданного путевого угла (ПУзд), который устанавливается в задатчике 1 путевого угла равным азимуту на цель. Для формирования закона управления по путевому углу также используют:

- приемник спутниковой навигации СНС-2, в котором формируют текущий путевой угол корабля (ПУ) и угловую скорость (ω),

- датчик руля 3, на выходе которого вырабатывается угол перекладки руля (δ),

- сумматор 4, на вход которого подключены выходы трех перечисленных выше блоков. В этом случае на выходе сумматора 4 будет формироваться закон управления рулевым приводом 5 в соответствии с зависимостью (1). Режим сближения корабля с подвижной целью начинается с определения пеленга (азимута) на цель (φк-ц) и расстояния до цели (Lк-ц) в формирователе 7 пеленга (φк-ц) и расстояния (Lк-ц) до цели. Оба сигнала поступают на вход блока 8 формирования путевого угла цели (ПУц) и скорости движения цели (Vц), на вход которого также поступают сигналы текущей широты и долготы корабля из приемника СНС-2.

Выходные сигналы из:

- блока 8: ПУц и Vц,

- формирователя 7: φк-ц,

- приемника СНС-2: Vк (скорости хода корабля),

вводятся на вход вычислителя 9 для выбора из библиотеки сигналов коррекции заданного путевого угла (ΔПУзд), конкретного значения ΔПУзд i в соответствии с текущими сигналами: ΔV=Vкi/Vц, и φцель-, кор i (угла пеленга на корабль из подвижной цели). Выход вычислителя 9 подключен к входу сумматора 4. Таким образом, на выходе сумматора 4 формируется закон управления сближением:

и обеспечивается сближение корабля с целью по прямой «волчьей погони».

Способ управления сближением корабля с подвижной целью, использующий задатчик путевого угла (ПУзд.), приемник спутниковой навигационной системы (СНС), датчик руля, рулевой привод и сумматор, на вход которого вводят сигналы:
- заданного путевого угла (ПУзд.) - из задатчика путевого угла (ПУзд.),
- путевого угла (ПУ) - из приемника спутниковой навигационной системы,
- угла перекладки руля (δ) - из датчика руля, сигнал с выхода сумматора вводят на вход рулевого привода, отличающийся тем, что используют блок формирования путевого угла цели (ПУц) и скорости движения цели (Vц), вычислитель коррекции заданного путевого угла (ΔПУзд.) и формирователь пеленга (φ) и расстояния до цели (Lк-ц), в котором получают сигнал пеленга от корабля до цели (φк-ц) и сигнал расстояния корабль-цель (Lк-ц), на первый вход блока формирования путевого угла цели (ПУц) и скорости движения цели (Vц) вводят сигналы φк-ц и Lк-ц из формирователя пеленга (φ) и расстояния до цели (Lк-ц), а на второй вход вводят сигналы широты и долготы корабля из приемника спутниковой навигационной системы, на вход вычислителя коррекции заданного путевого угла (ΔПУзд.) вводят сигналы:
- путевого угла цели (ПУц) и скорости движения цели (Vц) из блока формирования путевого угла цели (ПУц) и скорости движения цели (Vц),
- скорости корабля (Vк.) - из приемника спутниковой навигационной системы,
- пеленга от корабля до цели (φк-ц) из блока формирования пеленга (φ) и расстояния до цели (Lк-ц),
сигнал коррекции заданного путевого угла - ΔПУзд. из вычислителя коррекции заданного путевого угла (ΔПУзд.) вводят на вход сумматора.



 

Похожие патенты:

Изобретение относится к техническим средствам судовождения. .

Изобретение относится к области судовождения, в частности к автоматическому управлению движением судна. .

Изобретение относится к средствам автоматического управления движением судов и динамического позиционирования судов. .

Изобретение относится к области судовождения, в частности к автоматическому управлению движением судна. .

Изобретение относится к области судостроения. .

Изобретение относится к технике ручного управления движением корабля по курсу. .

Изобретение относится к технике управления движением судов и может быть использовано, в частности, для обеспечения режимов плавания судов класса «река-море» в специфических условиях внутренних водных путей и прибрежных районов морей при управлении курсом и скоростью хода при прохождении узкостей и фарватеров с использованием вертикальных рулей (ВР) и пропульсивного комплекса (ПК), ограниченного навигационного комплекса в составе лага, указателей скорости поворота судна и приемоиндикаторов для определения местоположения судна.

Изобретение относится к технике автоматического управления движением широкого класса судов. .

Изобретение относится к области судовожения. .

Изобретение относится к автоматическому управлению движением корабля. .

Изобретение относится к водному транспорту и может быть использовано для управления траекторией движения буксируемого судна при выполнении буксирной операции

Изобретение относится к области судовождения

Изобретение относится к области судовождения - автоматическому управлению движением судна по заданному направлению

Изобретение относится к технике управления подвижными объектами, например судами, работающими в неблагоприятных внешних условиях. Система содержит группу датчиков, блок сбора информации, связанный с аппаратурой спутниковой навигации и снабженный источником импульсного питания, подсистему инерциальной навигации и подсистему оптической коррекции. Входы-выходы блока сбора информации подключены к трем управляющим вычислителям, выходы которых через переключатель каналов вычислителей подключены к исполнительным органам объекта управления. Кроме того, выходы вычислителей и выходы встроенных в их состав средств оперативного контроля подключены к блоку контроля и управления. Выход этого блока подключен к управляющему входу упомянутого переключателя, дополнительный выход которого подключен к управляющему входу формирователя сигналов, связанного с датчиком внешнего воздействия. Система также содержит формирователь синхроимпульсов, входом подключенный к выходу переключателя, а выходами к вычислителям, блоку сбора информации и блоку контроля и управления. Изобретение позволяет повысить надежность и точность системы управления, а также расширить область ее практического использования. 10 з.п. ф-лы, 11 ил.

Изобретение относится к области судовождения по заданному маршруту. Предложенный способ базируется на автоматическом управлении движением судна с двумя законами управления - оптимальным (в смысле точности стабилизации судна на курсе при спокойном море) и «облегченным» (для сохранности работоспособности рулевого привода при сильном волнении на море). Переключение законов управления осуществляется автоматически благодаря использованию блока перестройки коэффициентов регулирования, в котором формируют два условия переключения законов управления. В первом условии сигнал от среднего значения модуля угла руля больше допустимого значения и сигнал от среднего значения модуля угла бортовой качки больше допустимого значения. Во втором условии сигнал от среднего значения модуля угла руля меньше допустимого значения или сигнал от среднего значения модуля угла бортовой качки меньше допустимого значения. При выполнении первого условия формируют «облегченный» закон управления рулевым приводом. При выполнении второго условия формируют оптимальный закон управления курсом судна. Изобретение позволяет осуществлять управление рулевым приводом с разными законами управления в зависимости от состояния моря (бортовой качки) и загрузки рулевого привода, что обеспечивает оптимальность управления не только при спокойном море, но и при появлении на нем волнения. 1 ил.

Изобретение относится к системам управления высокоманевренными объектами. Система содержит датчики входной информации и аппаратуру спутниковой навигации, подключенные к управляющему вычислительному устройству (УВУ), выходы которого подключены к устройству управления исполнительными механизмами (УУИМ). К УВУ подключено запоминающее устройство (ЗУ). К блокирующему входу ЗУ и УУИМ подключен выход формирователя сигнала блокировки (ФСБ), ко входам которого подключены выходы датчика внешнего воздействия и дополнительный выход УВУ, к входу обнуления/пуска которого подключен выход обнуления ФСБ. Датчик времени содержит три генератора импульсов, подключенных выходами к формирователям, выходы которых подключены к мажоритарному элементу. Формирователь содержит элемент И, первый вход которого является входом, подключенным к генератору. Выход элемента подключен к счетчику, выходы которого подключены к первому и второму дешифраторам. Выход первого дешифратора подключен к запускающему входу триггера останова, выход которого подключен к второму входу элемента И и первому входу мажоритарного элемента. Выход мажоритарного элемента подключен к входу триггера пуска, выход которого подключен к сбрасывающему входу триггера останова. Формирователь сигнала блокировки содержит последовательно соединенные регистр, вход которого является входом блока подключенным к УВУ, дешифратор и триггер, выход которого подключен к первому входу элемента И, второй вход которого является входом формирователя, подключенным к датчику внешнего воздействия, а выход элемента является выходом блока. Повышается надежность работы. 6 з.п. ф-лы, 7 ил.

Изобретение относится к области судостроения. Способ заключается в использовании задатчика глубины, первого фильтра оценки сигнала глубины, четвертого фильтра оценки сигнала угла дифферента и сумматора, на вход которого вводят сигналы. С выхода сумматора сигнал заданной скорости перекладки руля вводят на вход рулевого привода. Затем используют дополнительно установленные два резервных датчика глубины, два измерителя угла дифферента, четыре фильтра, блок диагностики и коммутации, на вход которого вводят сигналы. В блоке диагностики и коммутации формируют сигналы модуля разности: | h 1 − h _ 1 _ | , | h 1 − h _ 1 _ | , | h 2 − h _ 2 _ | , | ψ 3 − ψ _ 3 _ | , | ψ 2 − ψ _ 2 _ | , | ψ 3 − ψ _ 3 _ | , которые сравнивают с заданной постоянной C1 и C2, если модули разности удовлетворяют условию: | h i − h _ i _ | < C 1 и | ψ i − ψ _ i _ | < C 2 , то сигналы ∑ h _ i _ вводят в блок формирования среднего значения оценки глубины hср. Сигналы ∑ ψ _ i _ вводят в блок формирования среднего значения оценки угла дифферента ψ _ с р _ . Сигнал среднего значения оценки глубины h _ с р _ из блока среднего значения оценки глубины вводят на вход сумматора. Сигнал среднего значения оценки угла дифферента ψ _ с р _ из блока среднего значения оценки угла дифферента вводят на вход сумматора. Повышается точность и надёжность управления движением корабля. 1 ил.

Способ управления движением судна по широте и долготе позволяет управлять движением судна по заданной траектории с корректировкой скорости движения по времени. Корректировка по времени обеспечивает нахождение судна в заданной точке в заданное время. Использование в качестве навигационной информации широт и долгот повышает точность управления движением как в пространстве, так и во времени. Точное управление с использованием текущих и заданных во времени широт и долгот судна реализуется с учетом текущего нахождения путевого угла в одном из четырех секторов в диапазоне от 0° до 360°. При больших угловых изменениях заданной траектории движения обеспечивается автоматический переход на штатное управления движением по заданному путевому углу и заданной скорости хода судна. Достигается минимизация отклонения судна от заданной траектории, повышение экономичности и безопасности управления движением, прохождение судна в узкостях и управление перехода на типовое (штатное) движение судна. 1 ил.

Изобретение относится к области судовождения. Система содержит приемник (1) спутниковой навигационной системы, задатчик (2) маршрута с выходами заданного сигнала путевого угла (ПУ) и заданного угла φзд угла курса, регулятор (3) угла δзд перекладки руля, рулевой привод (4), регулятор (5) оборотов nзд гребного вала, привод (6) гребного вала, регулятор (7) оборотов nподр, подруливающего устройства, подруливающее устройство (8), блок (9) сравнения, блок (10) разностей, блок (11) коррекции законов управления угла δ перекладки руля, оборотов nзд гребного вала, оборотов nподр подруливающего устройства, блок (12) четырех секторов граничных значений углов положения вектора путевого угла (ПУ), формирователь (13) коэффициентов управления и судно (14), соединенные между собой. В системе осуществляют штатное и точное управление движением судна в зависимости от результатов сравнения модуля разности путевого угла (ПУ) из приемника (1) спутниковой навигационной системы и сигнала заданного курса φзд из задатчика (1) маршрута с постоянной С и расположения вектора путевого угла (ПУ) в соответствующей зоне четырех граничных значений сигнала путевого угла (ПУ), определяя коэффициенты регулирования по каждому из трех каналов управления судном. Повышается точность и безопасность управления движением судна по расписанию. 2 н.п. ф-лы, 1 ил.

Изобретение относится к системам автоматического управления, работающих длительное время при воздействии неблагоприятных внешних факторов. Система управления, содержащая три управляющих вычислителя с подключенными к ним через блок сбора информации датчиками, аппаратурой спутниковой навигации, подсистемой инерциальной навигации, подсистемой оптической коррекции, содержит формирователь синхроимпульсов, переключатель каналов вычислителей, подключенный входами к вычислителям, а выходом - к исполнительным органам с датчиками обратной связи и формирователю синхроимпульсов, блок контроля и управления. Блок контроля и управления подключен входами к выходам вычислителей и их контрольных устройств, а выходами - к управляющему входу переключателя, причем выходы датчиков и датчиков обратной связи подключены к входам блока сбора информации, токовая шина которого последовательно проходит через датчики и датчики обратной связи исполнительных органов и возвращается в блок сбора информации, входы-выходы которого подключены к вычислителям. Достигается повышение надежности и точности работы системы управления. 5 з.п. ф-лы, 6 ил.
Наверх