Способ управления движением судна по заданной траектории



Способ управления движением судна по заданной траектории

 


Владельцы патента RU 2483973:

Учреждение Российской академии наук Институт проблем управления им. В.А. Трапезникова РАН (RU)

Изобретение относится к области судовождения. Автоматическое управление движением судна по заданной траектории осуществляют путем управления по заданному углу курса с использованием кормовых рулей. Для обеспечения движения судна с углом дрейфа, близким к нулю, в предложенном способе применяют также подсистему стабилизации судна в поперечном направлении, в которой формируют управление подруливающим устройством с использованием сигналов: угла дрейфа из блока суммирования, на вход которого вводят угол курса из датчика курса и путевой угол из приемника спутниковой навигационной системы и, бокового смещения судна из интегратора. Оба сигнала вводят на вход второго сумматора, выход которого подключен к подруливающему устройству. При этом обеспечивается не только стабилизация нулевого дрейфа, но и стабилизация судна по нулевому боковому смещению относительно заданной траектории движения судна. 1 ил.

 

Предлагаемое изобретение относится к области судовождения - автоматическому управлению движением судна по заданному маршруту.

Известен способ автоматического управления движением судна по заданному путевому углу, реализованный в «Системе автоматического управления судном» (патент RU №2240953 С1, БИ №33, 27.11.2004 г.). Способ управления движением судна основан на использовании информации от приемника спутниковой навигационной системы, датчика угловой скорости, блока заданного значения путевого угла и сумматора, в котором по сигналам: текущего путевого угла, заданного путевого угла и угловой скорости судна формируется сигнал для управления рулевым приводом судна.

Известен также способ автоматического управления движением судна (патент RU 2292289 С1, БИ №3, 27.01.2007 г., принятый нами в качестве прототипа), в котором автоматическое управление движением судна осуществляется (аналогично описанному выше) с использованием: сумматора, рулевого привода, блока выработки угловой скорости, датчика руля, приемника спутниковой навигационной системы, блока заданного путевого угла. В способе управления движением судна корректируется заданное значение путевого угла в процессе плавания из точки «А» в точку «Б», затем «В»… по заданному маршруту.

Известные способы автоматического управления движением по заданной траектории обеспечивают точное движение к заданной точке. Однако серьезными недостатками рассмотренных способов управления движением судна по заданной траектории от точек «А» к точке «Б», затем «В»… являются:

- применение закона стабилизации судна на заданном направлении с использованием только кормового рулевого привода,

- при появлении поперечных возмущающих силовых воздействий, а также управляющих моментов, создается большой угол дрейфа судна, что приводит к уходу с заданной траектории движения и потерям в крейсерской скорости хода судна.

- затруднен проход судном узкостей из-за появления существенного угла дрейфа вблизи точек «А», «Б»… .

Приведенный ниже способ управления лишен этих недостатков, т.к. обеспечивает движение судна практически с нулевым углом дрейфа и нулевым поперечным уходом с заданной траектории движения.

Техническим результатом предлагаемого способа автоматического управления движением судна является:

- формирование управления судном кормовым рулевым приводом только по заданному углу курса и угловой скорости (при этом угол дрейфа и бокового сноса судна поддерживаются близкими к нулю подсистемой стабилизации нулевого дрейфа),

- минимизация отклонения судна от заданной траектории (в поперечном направлении),

- повышение крейсерской скорости хода судна (благодаря снижению сопротивления движению судна - β≈0),

- повышение безопасности проводки судна в узкостях (т.к. практически исключается боковое смещение судна при наличии поперечных управляющих и возмущающих сил).

Технический результат достигается благодаря:

- введению подсистемы стабилизации судна в поперечном направлении (в поперечном направлении подруливающее устройство или носовые рули в подсистеме стабилизации нулевого дрейфа автоматически устраняют угол дрейфа β и боковой снос У, даже при появлении поперечных сил, действующих на судно, β≈0 и У≈0),

- использованию кормового рулевого привода для управления судном только по углу курса.

Предлагаемый способ управления движением судна по заданной траектории (углу курса) осуществляется кормовым рулевым приводом с использованием: датчика руля δ, датчика угловой скорости ω, датчика курса ϕ и задатчика угла курса φзд. и сумматор на выходе которого формируется закон управления рулевым приводом вида:

d / d t δ = K 1 ( φ φ з д ) + K 2 ω K 3 δ ( 1 ) ,

где: δ - угол перекладки руля,

φ, φзд. - угол курса и заданный угол курса,

ω - угловая скорость судна,

К1, К2, К3 - коэффициенты регулирования.

Сигнал вида d/dt δ (1) вводится с выхода сумматора на вход рулевого привода. Это обеспечивает автоматическое управление движением судна по заданному углу курса.

Отличительной особенностью рассматриваемого способа является использование подсистемы стабилизации судна в поперечном направлении, включающей: второй сумматор, блок суммирования, приемник спутниковой навигационной системы, интегратор и подруливающее устройство для формирования и поддержания угла дрейфа и бокового сноса судна близким к нулю. В этом случае производная поперечной управляющей силы - dP/dt, создаваемая во втором сумматоре, - формируется в виде:

d P d t = K 1 β + K 2 β d t K 3 P ( 2 ) ,

где Р - поперечная управляющая сила, создаваемая на выходе подруливающего устройства,

β - угол дрейфа судна, вырабатываемый на выходе блока суммирования,

К2∫βdt - интеграл по времени от угла дрейфа - боковое смещение судна У, вырабатываемое на выходе интегратора,

К1, К2, К3 - коэффициенты регулирования.

Сигнал угла дрейфа - β формируется в блоке суммирования с использованием сигналов с приемника спутниковой навигационной системы, на выходе которой вырабатывается путевой угол - ПУ, и датчика угла курса - φ, на выходе которого вырабатывается угол курса - φ:

β = П У φ ( 3 ) .

Боковое смещение судна - У формируется в интеграторе, на вход которого вводится сигнал угла дрейфа - β из суммирующего устройства:

У = K 2 β d t ( 4 ) .

Сигнал производной поперечной управляющей силы - d P d t , сформированный по зависимости (2) на выходе второго сумматора, поступает на вход подруливающего устройства, на выходе которого создается поперечная управляющая сила - Р, которая обеспечивает движение судна по заданной траектории с углом дрейфа и боковым сносом, близким к нулю.

Система автоматического управления движением судна по заданной траектории

Рассмотрим работу системы автоматического управления движением судна по заданной траектории, структура которой разработана с использованием предлагаемого способа управления движением судна по заданной траектории (с текущим углом дрейфа β≈0 и поперечным отклонением судна от заданной траектории У≈0 даже при наличии поперечных возмущающих сил, воздействующих на судно).

Система содержит: 1 - задатчик угла курса, 2 - датчик угла курса, 3 - датчик руля, 4 - первый сумматор, 5 - датчик угловой скорости (ДУС), 6 - рулевой привод, 7 - приемник спутниковой навигационной системы (СНС), 8 - блок суммирования, 9 - интегратор, 10 - второй сумматор, 11 - подруливающее устройство, 12 - объект управления - судно. Все связи между блоками системы приведены на фигуре. Реализация предлагаемой системы может быть осуществлена с использованием микросхем типа 140 УД-6 и 140 УД-8:

- сумматоры 4, 10,

- интегратор 9.

Датчик угловой скорости 5 - типовой датчик угловой скорости ДУС-5 с чувствительностью не ниже 0,05 гр/с. Задатчик угла курса 1 - программный блок формирования сигнала заданного значения угла курса для движения по заданной траектории от точки А к точке Б… . Датчик угла курса 2 - гирокомпас типа «Гиря». Штатные судовые системы:

- приемник СНС 7,

- рулевой привод 6,

- подруливающее устройство 11.

Система автоматически обеспечивает движение корабля по заданной траектории. На вход первого сумматора 4 поступают сигналы:

- угловой скорости судна ω - с датчика угловой скорости 5,

- угла перекладки руля δ - с датчика руля 3,

- текущего угла курса φ - с датчика угла курса 2,

- заданного угла курса φзд. - с задатчика угла курса 1.

На выходе первого сумматора 4 формируется заданное значение угловой скорости перекладки кормового руля d/dt δзд. (или угла перекладки кормового руля - δзд. в зависимости от типа рулевой машины).

В соответствии с зависимостью (1) руль будет автоматически перекладываться и обеспечивать удержание судна с углом курса, равным заданному углу курса:

φ=φзд.,

Одновременно осуществляется стабилизация судна на нулевом угле дрейфа и с нулевым поперечным смещением относительно заданной траектории движения. Это достигается благодаря использованию подсистемы стабилизации судна в поперечном направлении.

На выходе (подсистемы стабилизации судна в поперечном направлении) в подруливающем устройстве - 11 формируется управляющее воздействие на судно в виде поперечной управляющей силы - Р. Закон управления подруливающим устройством - 11 формируется во втором сумматоре - 10 в соответствии с зависимостью (2).

Сигналы, поступающие на вход второго сумматора - 10:

- угол дрейфа β формируется в соответствии с зависимостью (3) в блоке суммирования 8, на вход которого вводится сигнал текущего угла курса - φ из датчика угла курса 2 и сигнал текущего путевого угла - ПУ из приемника спутниковой навигационной системы - 7,

- боковой снос - У формируется на выходе интегратора - 9, на вход которого поступает сигнал - β с выхода блока суммирования - 8,

- поперечная управляющая сила - P с выхода подруливающего устройства - 11.

С выхода второго сумматора - 10 сигнал производной поперечной управляющей силы d P d t поступает на вход подруливающего устройства - 11, обеспечивая тем самым поддержание нулевого дрейфа и нулевого поперечного смещения судна относительно заданной траектории даже при наличии поперечной силы, действующей на судно.

Моделирование рассмотренного выше способа автоматического управления движением судна, в котором обеспечивается стабилизация нулевого угла дрейфа и нулевого бокового сноса, подтвердило его работоспособность, а следовательно, и высокую эффективность использования предложенного способа управления движением судна по заданной траектории особенно при наличии поперечных сил, воздействующих на судно.

Способ управления движением судна по заданной траектории, характеризующийся тем, что используют датчик руля δ, датчик угловой скорости ω, датчик курса ϕ, задатчик угла курса ϕзд и первый сумматор, на выходе которого формируют сигнал управления рулевым приводом d/dt δ, который вводят на вход рулевого привода, на вход первого сумматора вводятся сигналы:
угла перекладки руля δ с датчика руля,
угловой скорости ω с датчика угловой скорости,
угла курса ϕ с датчика курса,
заданного угла курса ϕзд с задатчика угла курса,
отличающийся тем, что используют второй сумматор, блок суммирования, приемник спутниковой навигационной системы, интегратор и подруливающее устройство, на вход которого вводят сигнал производной поперечной силы dP/dt с выхода второго сумматора, на вход последнего поступают сигналы:
угла дрейфа β из блока суммирования, на вход последнего вводят сигналы угла курса ϕ из датчика курса и путевого угла ПУ из приемника спутниковой навигационной системы,
бокового смещения судна У из интегратора, на вход которого вводят сигнал угла дрейфа β из блока суммирования.



 

Похожие патенты:

Изобретение относится к водному транспорту и может быть использовано для управления траекторией движения буксируемого судна при выполнении буксирной операции. .

Изобретение относится к области судовождения. .

Изобретение относится к техническим средствам судовождения. .

Изобретение относится к области судовождения, в частности к автоматическому управлению движением судна. .

Изобретение относится к средствам автоматического управления движением судов и динамического позиционирования судов. .

Изобретение относится к области судовождения, в частности к автоматическому управлению движением судна. .

Изобретение относится к области судостроения. .

Изобретение относится к технике ручного управления движением корабля по курсу. .

Изобретение относится к технике управления движением судов и может быть использовано, в частности, для обеспечения режимов плавания судов класса «река-море» в специфических условиях внутренних водных путей и прибрежных районов морей при управлении курсом и скоростью хода при прохождении узкостей и фарватеров с использованием вертикальных рулей (ВР) и пропульсивного комплекса (ПК), ограниченного навигационного комплекса в составе лага, указателей скорости поворота судна и приемоиндикаторов для определения местоположения судна.

Изобретение относится к технике автоматического управления движением широкого класса судов. .

Изобретение относится к области судовождения - автоматическому управлению движением судна по заданному направлению

Изобретение относится к технике управления подвижными объектами, например судами, работающими в неблагоприятных внешних условиях. Система содержит группу датчиков, блок сбора информации, связанный с аппаратурой спутниковой навигации и снабженный источником импульсного питания, подсистему инерциальной навигации и подсистему оптической коррекции. Входы-выходы блока сбора информации подключены к трем управляющим вычислителям, выходы которых через переключатель каналов вычислителей подключены к исполнительным органам объекта управления. Кроме того, выходы вычислителей и выходы встроенных в их состав средств оперативного контроля подключены к блоку контроля и управления. Выход этого блока подключен к управляющему входу упомянутого переключателя, дополнительный выход которого подключен к управляющему входу формирователя сигналов, связанного с датчиком внешнего воздействия. Система также содержит формирователь синхроимпульсов, входом подключенный к выходу переключателя, а выходами к вычислителям, блоку сбора информации и блоку контроля и управления. Изобретение позволяет повысить надежность и точность системы управления, а также расширить область ее практического использования. 10 з.п. ф-лы, 11 ил.

Изобретение относится к области судовождения по заданному маршруту. Предложенный способ базируется на автоматическом управлении движением судна с двумя законами управления - оптимальным (в смысле точности стабилизации судна на курсе при спокойном море) и «облегченным» (для сохранности работоспособности рулевого привода при сильном волнении на море). Переключение законов управления осуществляется автоматически благодаря использованию блока перестройки коэффициентов регулирования, в котором формируют два условия переключения законов управления. В первом условии сигнал от среднего значения модуля угла руля больше допустимого значения и сигнал от среднего значения модуля угла бортовой качки больше допустимого значения. Во втором условии сигнал от среднего значения модуля угла руля меньше допустимого значения или сигнал от среднего значения модуля угла бортовой качки меньше допустимого значения. При выполнении первого условия формируют «облегченный» закон управления рулевым приводом. При выполнении второго условия формируют оптимальный закон управления курсом судна. Изобретение позволяет осуществлять управление рулевым приводом с разными законами управления в зависимости от состояния моря (бортовой качки) и загрузки рулевого привода, что обеспечивает оптимальность управления не только при спокойном море, но и при появлении на нем волнения. 1 ил.

Изобретение относится к системам управления высокоманевренными объектами. Система содержит датчики входной информации и аппаратуру спутниковой навигации, подключенные к управляющему вычислительному устройству (УВУ), выходы которого подключены к устройству управления исполнительными механизмами (УУИМ). К УВУ подключено запоминающее устройство (ЗУ). К блокирующему входу ЗУ и УУИМ подключен выход формирователя сигнала блокировки (ФСБ), ко входам которого подключены выходы датчика внешнего воздействия и дополнительный выход УВУ, к входу обнуления/пуска которого подключен выход обнуления ФСБ. Датчик времени содержит три генератора импульсов, подключенных выходами к формирователям, выходы которых подключены к мажоритарному элементу. Формирователь содержит элемент И, первый вход которого является входом, подключенным к генератору. Выход элемента подключен к счетчику, выходы которого подключены к первому и второму дешифраторам. Выход первого дешифратора подключен к запускающему входу триггера останова, выход которого подключен к второму входу элемента И и первому входу мажоритарного элемента. Выход мажоритарного элемента подключен к входу триггера пуска, выход которого подключен к сбрасывающему входу триггера останова. Формирователь сигнала блокировки содержит последовательно соединенные регистр, вход которого является входом блока подключенным к УВУ, дешифратор и триггер, выход которого подключен к первому входу элемента И, второй вход которого является входом формирователя, подключенным к датчику внешнего воздействия, а выход элемента является выходом блока. Повышается надежность работы. 6 з.п. ф-лы, 7 ил.

Изобретение относится к области судостроения. Способ заключается в использовании задатчика глубины, первого фильтра оценки сигнала глубины, четвертого фильтра оценки сигнала угла дифферента и сумматора, на вход которого вводят сигналы. С выхода сумматора сигнал заданной скорости перекладки руля вводят на вход рулевого привода. Затем используют дополнительно установленные два резервных датчика глубины, два измерителя угла дифферента, четыре фильтра, блок диагностики и коммутации, на вход которого вводят сигналы. В блоке диагностики и коммутации формируют сигналы модуля разности: | h 1 − h _ 1 _ | , | h 1 − h _ 1 _ | , | h 2 − h _ 2 _ | , | ψ 3 − ψ _ 3 _ | , | ψ 2 − ψ _ 2 _ | , | ψ 3 − ψ _ 3 _ | , которые сравнивают с заданной постоянной C1 и C2, если модули разности удовлетворяют условию: | h i − h _ i _ | < C 1 и | ψ i − ψ _ i _ | < C 2 , то сигналы ∑ h _ i _ вводят в блок формирования среднего значения оценки глубины hср. Сигналы ∑ ψ _ i _ вводят в блок формирования среднего значения оценки угла дифферента ψ _ с р _ . Сигнал среднего значения оценки глубины h _ с р _ из блока среднего значения оценки глубины вводят на вход сумматора. Сигнал среднего значения оценки угла дифферента ψ _ с р _ из блока среднего значения оценки угла дифферента вводят на вход сумматора. Повышается точность и надёжность управления движением корабля. 1 ил.

Способ управления движением судна по широте и долготе позволяет управлять движением судна по заданной траектории с корректировкой скорости движения по времени. Корректировка по времени обеспечивает нахождение судна в заданной точке в заданное время. Использование в качестве навигационной информации широт и долгот повышает точность управления движением как в пространстве, так и во времени. Точное управление с использованием текущих и заданных во времени широт и долгот судна реализуется с учетом текущего нахождения путевого угла в одном из четырех секторов в диапазоне от 0° до 360°. При больших угловых изменениях заданной траектории движения обеспечивается автоматический переход на штатное управления движением по заданному путевому углу и заданной скорости хода судна. Достигается минимизация отклонения судна от заданной траектории, повышение экономичности и безопасности управления движением, прохождение судна в узкостях и управление перехода на типовое (штатное) движение судна. 1 ил.

Изобретение относится к области судовождения. Система содержит приемник (1) спутниковой навигационной системы, задатчик (2) маршрута с выходами заданного сигнала путевого угла (ПУ) и заданного угла φзд угла курса, регулятор (3) угла δзд перекладки руля, рулевой привод (4), регулятор (5) оборотов nзд гребного вала, привод (6) гребного вала, регулятор (7) оборотов nподр, подруливающего устройства, подруливающее устройство (8), блок (9) сравнения, блок (10) разностей, блок (11) коррекции законов управления угла δ перекладки руля, оборотов nзд гребного вала, оборотов nподр подруливающего устройства, блок (12) четырех секторов граничных значений углов положения вектора путевого угла (ПУ), формирователь (13) коэффициентов управления и судно (14), соединенные между собой. В системе осуществляют штатное и точное управление движением судна в зависимости от результатов сравнения модуля разности путевого угла (ПУ) из приемника (1) спутниковой навигационной системы и сигнала заданного курса φзд из задатчика (1) маршрута с постоянной С и расположения вектора путевого угла (ПУ) в соответствующей зоне четырех граничных значений сигнала путевого угла (ПУ), определяя коэффициенты регулирования по каждому из трех каналов управления судном. Повышается точность и безопасность управления движением судна по расписанию. 2 н.п. ф-лы, 1 ил.

Изобретение относится к системам автоматического управления, работающих длительное время при воздействии неблагоприятных внешних факторов. Система управления, содержащая три управляющих вычислителя с подключенными к ним через блок сбора информации датчиками, аппаратурой спутниковой навигации, подсистемой инерциальной навигации, подсистемой оптической коррекции, содержит формирователь синхроимпульсов, переключатель каналов вычислителей, подключенный входами к вычислителям, а выходом - к исполнительным органам с датчиками обратной связи и формирователю синхроимпульсов, блок контроля и управления. Блок контроля и управления подключен входами к выходам вычислителей и их контрольных устройств, а выходами - к управляющему входу переключателя, причем выходы датчиков и датчиков обратной связи подключены к входам блока сбора информации, токовая шина которого последовательно проходит через датчики и датчики обратной связи исполнительных органов и возвращается в блок сбора информации, входы-выходы которого подключены к вычислителям. Достигается повышение надежности и точности работы системы управления. 5 з.п. ф-лы, 6 ил.

Изобретение относится к области судостроения, а именно к автоматическому управлению угловым движением судна. Для отказоустойчивого умерения крена судна на подводных крыльях используют: блок датчиков угла поворота закрылков, датчик угла крена, блок дифференцирования, блок приводов закрылков, блок регуляторов, на входы которого вводят сигналы: отклонения углов закрылков и производную оценку угла крена. Также используют датчик скорости хода судна, датчик угла крена, два блока диагностики оценки угла крена и два фильтра оценки угла крена, на первые входы которых вводят сигналы: отклонения углов закрылков и скорость хода судна. Достигается точность стабилизации, исправность системы умерения качки, датчика крена и системы автоматического управления судном. 1 ил.

Изобретение относится к области судовождения, а именно к автоматическому управлению движением судна по заданному маршруту. Отказоустойчивая система автоматического управления движением судна содержит датчик руля, датчик угловой скорости, датчик скорости хода, датчик угла курса, задатчик угла курса, сумматор, рулевой привод. Датчик руля подключен к первому входу сумматора, ко второму входу которого подключен задатчик угла курса. Выход сумматора подключен к входу рулевого привода. Также система дополнительно имеет датчик угла курса, два фильтра оценки угла курса и два фильтра оценок угловой скорости, блок среднего значения оценки угловой скорости и блок среднего значения угла курса, два датчика поперечной скорости судна и два фильтра оценки поперечной скорости судна, блок среднего значения оценки поперечной скорости судна, датчик оборотов подруливающего устройства, регулятор, привод подруливающего устройства и датчик угловой скорости. Достигается формирование отказоустойчивого автоматического управления движением судна. 1 ил.
Наверх