Фазовый способ формирования провалов в диаграмме направленности плоской фазированной антенной решетки

Изобретение относится к антенной технике. Техническим результатом является формирование провалов в диаграммах направленности (ДН) плоских фазированных антенных решеток (ФАР) в нескольких заданных направлениях, имеющих угловые координаты в сферической системе кординат. Способ формирования провалов в ДН плоской ФАР состоит в оценке уровня исходной диаграммы направленности N-элементной ФАР, выделении в раскрыве двух M-элементных подрешеток и введении фазовых поправок, со знаком минус для элементов одной подрешетки и со знаком плюс для элементов другой подрешетки. Для формирования провалов в ДН плоской ФАР в нескольких заданных направлениях оценку уровня исходной диаграммы направленности N-элементной ФАР осуществляют в К заданных направлениях, которые задают двумя угловыми координатами θнапр i и φнапр I, выбирают К эквивалентных линейных раскрывов, углы которых равны значениям координат К направлений φнапр i, вычисляют возбуждение этих раскрывов, после выделения в каждом эквивалентном линейном раскрыве двух M-элементных подрешеток, расположенных на его краях, величины их фазовых поправок выбирают равными по абсолютному значению из условия заданных глубины, ширины и координаты θнапр i провала. Фазовые поправки, вычисленные для формирования провалов, вносят на элементы ФАР, образующие данный эквивалентный линейный раскрыв, при условии что M-элементные подрешетки К эквивалентных линейных раскрывов формируются несовпадающими элементами ФАР, где θнапр i и φнапр i - заданные направления в сферической системе координат, a θнапр i отсчитывается от нормали к плоскости раскрыва ФАР; i - порядковый номер заданного направления, i=1…К; К - количество заданных направлений. 22 ил.

 

Изобретение относится к антенной технике и может быть использовано для решения задачи формирования провалов в диаграммах направленности (ДН) плоских фазированных антенных решеток (ФАР) путем изменения лишь фаз возбуждений ее элементов.

Известен способ [El-Azhary, M.S.Afifi, and P.S.Excell, A simple algorithm for sidelobe cancellation in a partially adaptive linear array, / IEEE Transactions on Antennas and Propagation, vol. Ap-36, No.10, October 1988, pp.1484-1486], в котором используются крайние элементы решетки для формирования протяженной области подавления боковых лепестков ДН линейной ФАР. Суть этого способа заключается в том, что сигналы, проходящие через крайние элементы, получают фазовые сдвиги, равные по величине, но противоположные по знаку. Максимум ДН, образуемой крайними элементами, смещается так, чтобы он совпал с направлением максимума подавляемого бокового лепестка, угловой диапазон которого охватывает направление прихода сигнала помехи. При этом амплитудная составляющая дополнительной ДН умножается на константу, чтобы дополнительная ДН имела одинаковую амплитуду с подавляемым боковым лепестком ДН всей решетки. Фазовая составляющая дополнительной ДН в области подавляемого бокового лепестка должна отличаться на 180° от фазовой составляющей подавляемого бокового лепестка ДН всей решетки.

Наиболее близким по технической сущности к предлагаемому способу является «Способ формирования нуля диаграммы направленности фазированной антенной решетки» [RU 2123743 C1, опубл. 20.12.1998 г.], основанный на оценке уровня ненормированной исходной диаграммы направленности N-элементной ФАР в направлении помехи f(θn), выделении двух адаптивных M-элементных подрешеток, расположенных на краях исходной, с учетом условия 2M≥f(θn), и введении фазовых поправок в элементы адаптивных подрешеток, причем фазовые поправки для m-ой от края пары излучателей (m=1,2,…M) выбираются в соответствии с соотношением

где:

λ, x0 - длина волны и шаг решетки;

θ - угол, отсчитываемый от нормали к раскрыву;

θ0, θп - направление главного максимума и помехи соответственно. Знак минус в соотношении соответствует элементам левой адаптивной подрешетки, а знак плюс - правой.

Недостатком обоих известных способов является то, что с их помощью нельзя сформировать несколько провалов.

Техническим результатом предлагаемого способа является формирование провалов в ДН плоской ФАР в нескольких заданных направлениях, имеющих угловые координаты в сферической системе координат (θнапр i, φнапр i), причем фазы сигналов, проходящих через крайние элементы эквивалентного линейного раскрыва этой ФАР, изменяют на постоянную величину, что позволяет упростить и ускорить процесс формирования нескольких провалов.

Сущность предлагаемого фазового способа формирования провалов в ДН плоской ФАР состоит в оценке уровня исходной диаграммы направленности N-элементной ФАР, выделении в раскрыве двух M-элементных подрешеток и введении фазовых поправок, со знаком минус для элементов одной подрешетки и со знаком плюс для элементов другой подрешетки.

Новым в заявляемом изобретении является то, что оценку уровня исходной диаграммы направленности N-элементной ФАР осуществляют в К заданных направлениях, которые задают двумя угловыми координатами θнапр I и φнапр i, выбирают К эквивалентных линейных раскрывов, углы которых равны значениям координат К направлений φнапр I, вычисляют возбуждение этих раскрывов, после выделения в каждом эквивалентном линейном раскрыве двух M-элементных подрешеток, расположенных на его краях, величины их фазовых поправок выбирают равными по абсолютному значению из условия заданных глубины, ширины и координаты θнапр i провала, фазы элементов ФАР, образующих M-элементные подрешетки К эквивалентных линейных раскрывов, изменяют на величину фазовых поправок этих подрешеток, при условии что M-элементные подрешетки К эквивалентных линейных раскрывов формируются несовпадающими элементами ФАР, где θнапр i и φнапр i - заданные направления в сферической системе координат, a θнапр i, отсчитывается от нормали к плоскости раскрыва ФАР; i - порядковый номер заданного направления, i=1…К; К - количество заданных направлений.

На Фиг.1 показан пример плоской ФАР с вариантами формирования эквивалентных линейных раскрывов при К=3, где К - количество заданных направлений, равное количеству эквивалентных линейных раскрывов; i - порядковый номер заданного направления и соответствующего эквивалентного линейного раскрыва, i=1…К; φнапр 1, 2, 3 - углы эквивалентных линейных раскрывов, М - число элементов в подрешетках эквивалентных линейных раскрывов.

На Фиг.2 приведены:

а) - ФАР с эллиптической формой раскрыва, на которой расположены N=1458 элементов с равномерным фазовым распределением;

б) - пространственная ДН ФАР. Здесь и далее пространственные ДН ФАР приведены в координатах направляющих косинусов u, v, где u=sin(θ)cos(φ), v=sin(θ)sin(φ), прямыми линиями показаны сечения;

в) - ДН ФАР в азимутальном сечении (φ=0°). Здесь и далее, если не указано иное, при отображении ДН в каком-либо сечении по оси абсцисс отложена переменная θ в градусах;

г) - ДН ФАР в угломестном сечении (φ=90°).

На Фиг.3 приведен пример формирования двух провалов в ортогональных сечениях ДН ФАР, где

а) - раскрыв ФАР с фазовым распределением, измененным в соответствии с двумя эквивалентными линейными раскрывами, углы которых равны φнапр 1=0° и φнапр 2=90°, пронумерованные области показывают элементы с измененными фазами для формирования провалов с соответствующими номерами;

б) - пространственная ДН, координаты центров провалов: θнапр 1≈6°, φнапр 1=0° (uнапр 1=0.105, vнапр 1=0), θнапр 2≈16°, φнапр 2=90° (uнапр 2=0, vнапр 2=0.276), здесь и далее: центры окружностей указывают на центры провалов;

в) - ДН в сечении, угол которого равен значению координаты φнапр 1=0° для ФАР с измененным фазовым распределением (жирная линия), здесь и далее: ДН в данном сечении для ФАР с равномерным фазовым распределением показана тонкой линией, стрелка указывает направление центра провала в данном сечении;

г) - ДН в сечении, угол которого равен значению координаты φнапр 2=90°.

На Фиг.4 приведен пример формирования двух провалов в неортогональных сечениях ДН ФАР, где

а) - раскрыв ФАР с фазовым распределением, измененным в соответствии с двумя эквивалентными линейными раскрывами, углы которых равны φнапр 1=0° и φнапр 2=60°;

б) - пространственная ДН, координаты центров провалов: θнапр 1≈6°, φнапр 1=0° (uнапр 1=0.105, vнапр 1=0), θнапр 2≈15°, φнапр 2=60° (uнапр 2=0.129, vнапр 2=0.226);

в) - ДН в сечении, угол которого равен значению координаты φнапр 1=0°;

г) - ДН в сечении, угол которого равен значению координаты φнапр 2=60°

На Фиг.5 приведен пример формирования трех провалов в ДН ФАР, где

а) - раскрыв ФАР с фазовым распределением, измененным в соответствии с тремя эквивалентными линейными раскрывами, углы которых равны φнапр 1=0°, φнапр 2=45°, φнапр 3=90°, пронумерованные области показывают элементы с измененными фазами для формирования провалов с соответствующими номерами;

б) - пространственная ДН, координаты центров провалов: θнапр 1≈14°, φнапр 1=0° (uнапр 1=0.242, vнапр 1=0), θнапр 2≈25°, φнапр 2=45° (uнапр 2=0.299, vнапр 2=0.299); φнапр 3=90° (uнапр 3=0, vнапр 3=0,309);

в) - ДН в сечении, угол которого равен значению координаты φнапр 1=0°;

г) - ДН в сечении, угол которого равен значению координаты φнапр 2=45°;

д) - ДН в сечении, угол которого равен значению координаты φнапр 2=90°.

На Фиг.6 приведен пример формирования двух провалов в ортогональных сечениях ДН ФАР при сканировании, где

а) - пространственная ДН, координаты центров провалов: θнапр 1≈6°, φнапр 1=0° (uнапр 1=0.105, vнапр 1=0), θнапр 2≈15°, φнапр 2=90° (uнапр 2=0, vнапр 2=0.259);

б) - та же пространственная ДН, но после сканирования на угол θ1=30°, φ 1=0° (u 1=0.5, v 1=0);

в) - ДН в сечении v=0, по оси абсцисс отложена переменная и;

г) - ДН в сечении u=0.5, по оси абсцисс отложена переменная v.

Характерной чертой данного метода является неизменность возбуждения основной части элементов ФАР, поскольку возбуждение меняется лишь у тех элементов ФАР, которые образуют крайние элементы эквивалентных линейных раскрывов. При этом угловое положение центров провалов относительно луча ДН в системе координат направляющих косинусов (и, v) и величина подавления в центре каждого провала сохраняются при сканировании.

На Фиг.2а показана ФАР, имеющая раскрыв эллиптической формы, на котором расположены N=1458 элементов. В раскрыве ФАР создано спадающее к краям амплитудное распределение с КИП≈0.9. На Фиг.2б, в, г приведены пространственная ДН ФАР и ДН в главных - азимутальном и угломестном - сечениях. Исходный уровень максимальных боковых лепестков ДН при синфазном распределении составляет ≈-28дБ.

Используя предложенный способ можно одновременно формировать несколько (К) провалов в сечениях ДН, углы которых равны значениям координат φнапр i. Для этого вычисляют возбуждение К соответствующих эквивалентных линейных раскрывов (Фиг.1) и в ДН каждого из них формируют провал в направлении θнапр i - фазовые поправки, вычисленные для формирования провалов, вносят на элементы ФАР, образующие данный эквивалентный линейный раскрыв. Это иллюстрируется примером формирования 2-х провалов (К=2) в ортогональных сечениях (Фиг.3а-г). На Фиг.3а видно, что подрешетки эквивалентных линейных раскрывов образуют несовпадающие элементы раскрыва ФАР. В эквивалентном линейном, обеспечивающем формирование провала в направлении f=i (θнапр 1≈6°), число элементов в каждой из двух подрешеток М=9, в эквивалентном линейном раскрыве (i=2, θнапр 2≈16°)-M=3. В данном примере снижение бокового излучения в центре каждого провала составило более 16дБ. Величина подъема бокового излучения с противоположных относительно луча ДН и формируемого провала сторон составила ≈5-7 дБ. Снижение уровня луча ФАР составляет приблизительно 0.12 дБ.

Провалы могут формироваться не только в ортогональных, но и в других сечениях при условии, что подрешетки эквивалентных линейных раскрывов формируются несовпадающими элементами ФАР. Пример формирования двух провалов (К=2) в азимутальном сечении (φнапр 1=0°) и сечении с углом φнапр 2=60° приведен на Фиг.4а-г. Случай формирования провалов в трех сечениях (К=3) представлен на Фиг.5а-г. Постоянство угловых положений центров провалов относительно луча ДН и величины подавления в центре каждого провала при сканировании подтверждается Фиг.6а-г.

Предлагаемый способ обеспечивает формирование нескольких провалов в ДН плоских ФАР в нескольких заданных направлениях, имеющих угловые координаты (θнапр i, φнапр i) в сферической системе координат. Кроме того, фазы сигналов, проходящих через крайние элементы эквивалентного линейного раскрыва этой ФАР, изменяют на постоянную величину, что позволяет упростить и ускорить процесс формирования провалов.

Фазовый способ формирования провалов в диаграмме направленности плоской фазированной антенной решетки (ФАР), основанный на оценке уровня исходной диаграммы направленности N-элементной ФАР, выделении в раскрыве двух M-элементных подрешеток и введении фазовых поправок, со знаком минус для элементов одной подрешетки и со знаком плюс для элементов другой подрешетки, отличающийся тем, что оценку уровня исходной диаграммы направленности N-элементной ФАР осуществляют в К заданных направлениях, которые задают двумя угловыми координатами θнапр i и φнапр i, выбирают К эквивалентных линейных раскрывов, углы которых равны значениям координат К направлений φнапр i, вычисляют возбуждение этих раскрывов, после выделения в каждом эквивалентном линейном раскрыве двух M-элементных подрешеток, расположенных на его краях, величины их фазовых поправок выбирают равными по абсолютному значению из условия заданных глубины, ширины и координаты θнапр i провала, фазовые поправки, вычисленные для формирования провалов, вносят на элементы ФАР, образующие данный эквивалентный линейный раскрыв, при условии что M-элементные подрешетки К эквивалентных линейных раскрывов формируются несовпадающими элементами ФАР, где
θнапр i и φнапр i - заданные направления в сферической системе координат, а θнапр i отсчитывается от нормали к плоскости раскрыва ФАР;
i - порядковый номер заданного направления, i=1…К;
К - количество заданных направлений.



 

Похожие патенты:

Изобретение относится к радиотехнике, в частности к средствам приема и передачи радиоволн. Приемо-передающий модуль активной фазированной антенной решетки содержит передающий и приемный каналы, первое, второе и третье направленное устройство разделения падающей и отраженной мощностей, защитное устройство, выпрямитель, согласованную нагрузку, обратноходовой преобразователь.

Использование: для формирования компенсационной диаграммы направленности в плоской антенной решетке. Сущность изобретения заключается в том, что осуществляют прием сигналов антенными элементами плоской антенной решетки с электронным сканированием лучом и суммируют их, формируя остронаправленную сканирующую диаграмму направленности плоской антенной решетки с использованием выбранных комплексных амплитуд антенных элементов с учетом требуемого превышения уровня компенсационной диаграммы направленности над уровнем боковых лепестков остронаправленной сканирующей диаграммы направленности.

Изобретение относится к полосковой СВЧ антенной технике, в частности к распределительной системе для фазированной антенной решетки. Технический результат - формирование оптимальных амплитудных распределений для суммарной и разностной диаграмм направленности (ДН), возможность реализации в сантиметровом и дециметровом диапазонах длин волн.

Изобретение относится к радиолокации, точнее к фазированным антенным решеткам (ФАР) СВЧ диапазона, и может быть использовано в пассивной и активной радиолокации для осуществления непрерывного параллельного контроля пространства.

Изобретение относится к радиолокации, а именно к широкополосным антенным системам, рабочий диапазон частот которых перекрывает несколько октав. Технический результат - расширение диапазона рабочих частот комбинированной антенной системы, работающей в активном и пассивном режимах.

Изобретение относится к области радиотехники. Технический результат - повышение предела подавления помеховой импульсной мощности в узкополосных приемно-передающих каналах радиотехнических систем, работающих в диапазоне СВЧ, в условиях короткоимпульсных помеховых воздействий большой мощности при проведении испытаний на электромагнитную совместимость.

Изобретение относится к фазированным (ФАР) и активным фазированным антенным решеткам (АФАР), состоящим из приемных каналов, выходные сигналы которых оцифровываются с помощью аналогово-цифровых преобразователей и обрабатываются в процессорах бортовых цифровых вычислительных машин радиолокационных станций, головок самонаведения или систем радиопротиводействия.

Изобретение относится к антенной технике и может быть использовано для пространственного подавления помех путем формирования провалов («нулей») в диаграммах направленности фазированных антенных решеток (ФАР) в направлениях источников помех.

Изобретение относится к антенной технике и может быть использовано для управления комплексными взвешивающими устройствами в каналах антенных решеток по критерию максимума заданного энергетического функционала.

Изобретение относится к антенной технике, в частности к активным пространственным передающим антенным решеткам миллиметрового диапазона волн, и может быть использовано при создании антенн с немеханическим качанием луча антенны для сверхскоростной (более 15 Гбит/с) спутниковой информации.

Изобретение относится к области радиосвязи. Заявлены антенная система и базовая станция, содержащая данную антенную систему; причем особенностью заявленной антенной системы является то, что модуль массива TRX выполнен с возможностью передавать сигналы передачи во входной порт модуля матрицы Батлера; модуль матрицы Батлера выполнен с возможностью генерировать первые сигналы посредством обработки сигналов передачи и передавать первые сигналы во входные порты модуля фидерной сети через выходные порты модуля матрицы Батлера; а модуль фидерной сети выполнен с возможностью генерировать вторые сигналы посредством обработки первых сигналов и передавать вторые сигналы в модуль массива антенных элементов через выходные порты модуля фидерной сети; модуль матрицы Батлера выполнен так, что сигналы, подаваемые на первый входной порт и второй входной порт модуля матрицы Батлера, представляют собой разные сигналы передачи, а сигналы, выводимые из выходных портов с первого по четвертый модуля матрицы Батлера, представляют собой первые сигналы, соответствующие упомянутым разным сигналам передачи. Техническим результатом является уменьшение потерь в фидере, обеспечение более удобной возможности регулирования вертикальной и горизонтальной характеристик лучей антенны. 2 н. и 2 з.п. ф-лы, 6 ил.

Настоящее изобретение относится к области систем радиосвязи, более конкретно к устройствам систем радиосвязи, содержащим антенну с возможностью электронного управления лучом. Техническим результатом изобретения является создание устройства системы радиосвязи со сканирующей антенной с большим коэффициентом усиления, обеспечивающей возможность суммирования мощности сигналов от нескольких выходов приемопередатчика без ухудшения его линейности. Устройство системы радиосвязи с управляемым лучом содержит множество антенных элементов на фокальной поверхности фокусирующего элемента, схему формирования луча, выполненную с возможностью распределения принятого сигнала от по меньшей мере одного антенного порта на все свои диаграммообразующие порты или суммирования передаваемых сигналов от всех своих диаграммообразующих портов на по меньшей мере один выбранный антенный порт, блок управления и приемопередатчик, содержащий по меньшей мере один радиочастотный модуль, выполненный с возможностью управления фазами на своем выходе, и схему суммирования/распределения принимаемых/передаваемых сигналов, а также необходимые связи между ними. 22 з.п. ф-лы, 6 ил.

Антенна // 2605944
Изобретение относится к области техники сверхвысоких частот. Особенностью заявленной антенны является то, что в нее дополнительно введен идентичный отрезок коаксиальной линии, расположенный перпендикулярно той же широкой стенке волновода и соединенный с ним идентично первому отрезку, при этом для обеспечения согласования с волноводом оба отрезка смещены от оси симметрии его широкой стенки к его узкой стенке, расстояние между погруженными во внутриволноводное пространство нижними концами внутренних проводников отрезков равно половине длины волны в волноводе, а удаленные концы излучающих проводников соединены гальванически с верхними концами внутренних проводников отрезков, верхние концы наружных проводников которых разомкнуты. Техническим результатом является создание антенны, имеющей меньшую ширину диаграммы направленности в плоскости вектора Е. 7 ил.

Изобретение относится к области радиотехники и связи. Особенностью заявленного способа обработки сигналов в модульной адаптивной антенной решетке при приеме коррелированных сигналов и помех является то, что сигналы, соответствующие ответвленной части мощности, преобразуют в М сигналов, в которых исключена составляющая полезного сигнала, выполняют с учетом информации о диаграммах направленности модулей такое изменение М преобразованных сигналов в Ма помеховых сигналов, чтобы комплексные амплитуды составляющих помех в них приближались к комплексным амплитудам помех в выходных сигналах соответствующих модулей, а с помощью полученных Ма сигналов формируют ковариационную матрицу помех А размером Ма×Ма, находят оптимальный для модульной адаптивной антенной решетки по критерию максимума отношения сигнал/(помеха+шум) вектор комплексных весовых коэффициентов, сигналы, соответствующие прошедшей части мощности, суммируют в Ма модулях с заданными комплексными весовыми коэффициентами. Техническим результатом является повышение эффективности подавления помех, коррелированных с полезным сигналом. 6 ил.

Изобретение относится к области антенной техники. Особенностью заявленного способа определения диаграммы направленности фазированной антенной решетки является то, что задают набор направлений луча, охватывающий область видимости фазированной антенной решетки, плоскость раскрыва фазированной антенной решетки, электрические длины от элементов которой до входа измерительной аппаратуры произвольны, располагают под углом относительно фронта плоской электромагнитной волны, изменяя с помощью фазовращателей сдвиги фаз сигналов, проходящих через элементы фазированной антенной решетки, устанавливают луч фазированной антенной решетки в одно из направлений набора, измеряют амплитуду и фазу сигнала, затем операции повторяют, каждый раз устанавливая луч фазированной антенной решетки последовательно в остальные направления, амплитуды сигнала, измеренные при каждом направлении луча, умножают на заранее определенные для этих направлений амплитуды сигнала от одного элемента в составе фазированной антенной решетки, а фазы сигнала, измеренные при каждом направлении луча, складывают с заранее определенными для этих направлений фазами сигнала от одного элемента в составе фазированной антенной решетки. Техническим результатом является повышение точности и уменьшение времени определения диаграммы направленности фазированных антенных решеток. 1 ил.

Способ формирования многолучевой диаграммы направленности самофокусирующейся адаптивной антенной решетки, заключающийся во взвешенном суммировании сигналов, принятых элементами антенной решетки весовым вектором, являющимся главным вектором пучка эрмитовых форм, соответствующим максимальному характеристическому числу пучка, причем в качестве второй эрмитовой формы пучка выбирается среднее значение ДН по мощности, при этом при определении главного вектора пучка эрмитовых форм, соответствующего максимальному характеристическому числу пучка, используются оценки амплитудно-фазового распределения формируемого сигнала источников излучения на элементах самофокусирующейся адаптивной антенной решетки, а в качестве первой эрмитовой формы пучка выбирается взвешенная сумма значений средней диаграммы направленности по мощности, вычисленная на основе оценок векторов амплитудно-фазовых распределений, создаваемых сигналами источников излучений на элементах самофокусирующейся адаптивной антенной решетки. 1 з.п. ф-лы, 4 ил.

Изобретение относится к области активных антенн с регулировкой фазы. Предложен способ калибровки фазового центра активной антенны (20), содержащей множество субэлементов (21), способных принимать полезный сигнал, испускаемый спутником (25). Причем упомянутая калибровка определяется в зависимости от коэффициента усиления при приеме и фазы при приеме опорного сигнала на уровне каждого субэлемента (21). Упомянутый опорный сигнал испускается тем же спутником (25) в полосе частот, по существу, равной полосе частот полезного сигнала, и его теоретические фаза и амплитуда при приеме известны. Технический результат заключается в упрощении калибровки. 2 н. и 5 з.п. ф-лы, 4 ил.

Изобретение относится к области радиотехники и связи и может быть использовано в системах радиосвязи, функционирующих в сложной помеховой обстановке. Осуществляют прием сигналов с известного направления четным числом модулей, расположенных симметрично относительно фазового центра модульной фазированной антенной решетки с симметричным относительно фазового центра раскрыва амплитудным и комплексно сопряженным фазовым распределением. Для каждой пары симметрично расположенных модулей формируют суммарный и разностный сигналы пар модулей. Суммируют по мощности суммарные сигналы пар модулей, образуя исходный суммарный сигнал модульной фазированной антенной решетки. Находят ковариационную матрицу разностных сигналов пар модулей и вектор коэффициентов ковариации исходного суммарного сигнала модульной фазированной антенной решетки и разностных сигналов пар модулей. Суммируют ковариационную матрицу разностных сигналов пар модулей с диагональной матрицей, при этом чем больше вес диагонали, тем меньше значения корректирующих фаз. Формируют матрицу коэффициентов и определяют вектор корректирующих фаз сигналов пар модулей путем умножения обратной матрицы коэффициентов на вектор коэффициентов ковариации исходного суммарного сигнала модульной фазированной антенной решетки и разностных сигналов пар модулей. Изменяют, согласно найденному вектору корректирующих фаз, фазы сигналов модулей и суммируют сигналы пар модулей с измененными фазами, образуя выходной сигнал модульной фазированной антенной решетки. Технический результат заключается в возможности адаптивной обработки сигналов в модульной фазированной антенной решетке, реализующей обработку сигналов на основе действительной арифметики, при сохранении ее быстродействия. 5 ил.

Изобретение относится к области антенной техники. Осуществляют прием или излучение сигналов фазированной антенной решеткой. Изменяют сдвиги фаз сигналов, проходящих через один или несколько элементов фазированной антенной решетки. Измеряют амплитуды и фазы сигнала, переданного или принятого вспомогательной антенной. Определяют амплитуды и фазы возбуждения элементов. При этом фазированная антенная решетка располагается в такой области, где излучаемое или принимаемое электромагнитное поле представляет собой плоскую электромагнитную волну. Электрические длины от элементов фазированной антенной решетки до входа измерительной аппаратуры произвольны, а плоскость раскрыва фазированной антенной решетки располагают под углом относительно фронта плоской электромагнитной волны. Задают набор из Р направлений луча с координатами (us, vs), охватывающий область видимости фазированной антенной решетки. При этом направления луча располагают в области видимости по сетке. Изменяют с помощью фазовращателей сдвиги фаз сигналов, проходящих через элементы фазированной антенной решетки, устанавливая луч фазированной антенной решетки в одно из направлений набора и измеряют амплитуду Fs и фазу ψs сигнала. Затем операции повторяют, каждый раз устанавливая луч фазированной антенной решетки последовательно в остальные направления, определяют амплитудно-фазовое распределение (An, ϕn) на раскрыве фазированной антенной решетки путем обратного дискретного преобразования Фурье. Технический результат заключается в повышении точности и уменьшении времени определения АФР в раскрыве ФАР. 5 ил.

Изобретение относится к области радиотехники СВЧ и КВЧ диапазонов. Определяют амплитудно-фазовое распределение в раскрыве фазированной антенной решетки, при котором заданная диаграмма направленности ориентирована в направлении u0, выбирают пространственные положения парциальных лучей только в области главного луча заданной диаграммы направленности. Формирование расширенной диаграммы направленности производят тремя парциальными лучами, причем центральный парциальный луч ориентирован в заданном направлении u0, а два боковых парциальных луча смещены в противоположных относительно центрального луча направлениях на угол u1. Значение угла u1 выбирают из решения оптимизационной задачи по критерию минимума , где ƒ(u-u0), ƒ(u-u0+u1), ƒ(u-u0-u1) - соответственно диаграммы направленности центрального парциального и двух боковых парциальных лучей; u0=0,5kLsinθ0 - направление максимума формируемой диаграммы направленности и центрального парциального луча в обобщенных координатах; u1=0,5kLsinθ1 - смещение боковых парциальных лучей относительно максимума формируемой диаграммы направленности в обобщенных координатах; а - амплитуды отклоненных боковых парциальных лучей; u=0,5kLsinθ - обобщенная координата; L - размер раскрыва фазированной антенной решетки в плоскости формируемой расширенной диаграммы направленности; k - волновое число. Амплитуды боковых парциальных лучей определяют в соответствии с выражением а=(ƒ(Δ)-0,707)(0,707(ƒ(u1)+ƒ(-u1))-(ƒ(Δ+u1)+ƒ(Δ-u1)))-1, где Δ - полуширина диаграммы направленности суммарного луча по уровню половинной мощности. Результирующее амплитудно-фазовое распределение в раскрыве фазированной антенной решетки рассчитывают по формуле А(x)=A0(x)(1+a(exp(ikxsinθ1)+exp(-ikxsinθ1)))=A0(x)(1+2acos(kxsinθ1)), где A0(x) - амплитудно-фазовое распределение в раскрыве, обеспечивающее формирование центрального парциального луча в направлении u0. Технический результат заключается в повышении быстродействия. 7 ил.

Изобретение относится к антенной технике. Техническим результатом является формирование провалов в диаграммах направленности плоских фазированных антенных решеток в нескольких заданных направлениях, имеющих угловые координаты в сферической системе кординат. Способ формирования провалов в ДН плоской ФАР состоит в оценке уровня исходной диаграммы направленности N-элементной ФАР, выделении в раскрыве двух M-элементных подрешеток и введении фазовых поправок, со знаком минус для элементов одной подрешетки и со знаком плюс для элементов другой подрешетки. Для формирования провалов в ДН плоской ФАР в нескольких заданных направлениях оценку уровня исходной диаграммы направленности N-элементной ФАР осуществляют в К заданных направлениях, которые задают двумя угловыми координатами θнапр i и φнапр I, выбирают К эквивалентных линейных раскрывов, углы которых равны значениям координат К направлений φнапр i, вычисляют возбуждение этих раскрывов, после выделения в каждом эквивалентном линейном раскрыве двух M-элементных подрешеток, расположенных на его краях, величины их фазовых поправок выбирают равными по абсолютному значению из условия заданных глубины, ширины и координаты θнапр i провала. Фазовые поправки, вычисленные для формирования провалов, вносят на элементы ФАР, образующие данный эквивалентный линейный раскрыв, при условии что M-элементные подрешетки К эквивалентных линейных раскрывов формируются несовпадающими элементами ФАР, где θнапр i и φнапр i - заданные направления в сферической системе координат, a θнапр i отсчитывается от нормали к плоскости раскрыва ФАР; i - порядковый номер заданного направления, i1…К; К - количество заданных направлений. 22 ил.

Наверх