Способ перемешивания шлаковой ванны при электрошлаковом переплаве расходуемого электрода

Авторы патента:

 


Владельцы патента RU 2483125:

Открытое акционерное общество "Научно-производственное объединение "Центральный научно-исследовательский институт технологии машиностроения" ОАО НПО "ЦНИИТМАШ" (RU)

Изобретение относится к спецэлектрометаллургии и может быть использовано при изготовлении слитка стали электрошлаковым переплавом расходуемого электрода. В способе продувку ведут смесью азота с кислородом с расходом 0,7-1,2 л на 1 кг переплавляемого расходуемого электрода при 1,43-2,45 л/мин, а количество кислорода в смеси поддерживают в пределах 0,5-10 об.% от общего количества вдуваемой в шлаковую ванну смеси. Изобретение позволяет снизить энергозатраты, повысить температурную стабильность шлаковой ванны, эффективность рафинирующего действия шлака и качества поверхности выплавляемого слитка.

 

Изобретение относится к электрометаллургии и может быть использовано при изготовлении слитка электрошлаковым переплавом расходуемого электрода.

Известен способ электрошлакового переплава расходуемого электрода, включающий перемешивание расплава шлаковой ванны путем продувки через расплав, в том числе через зону плавления расходуемого электрода, инертного газа. Способ реализуют путем подачи инертного газа (аргона) в шлаковую ванну по каналу, выполненному в теле расходуемого электрода.

(US 3867976, C22B 9/18, опубликовано 25.02.1975).

Наиболее близким по технической сущности и достигаемому результату является способ перемешивания шлаковой ванны при электрошлаковом переплаве, включающий продувку через шлаковую ванну, в том числе через зону плавления расходуемого электрода, инертного газа. Способ реализуют подачей инертного газа через несколько трубчатых элементов, равномерно размещенных в шлаковой ванне вдоль расходуемого электрода.

(JP 52124423 (A), B22D 23/10, 07/02, C22B 9/18, опубликовано 19.10.1977)

Недостатком известных способов является заметное снижение температуры шлака при продувке газа, что приводит к увеличению энергозатрат, снижает эффективность усреднения температуры шлаковой ванны и эффективность рафинирующего действия шлака на расплавленный металл электрода и, в конечном счете, снижает качества металла в слитке и качество поверхности выплавляемого слитка.

Задачей изобретения и его техническим результатом является снижение энергозатрат, повышение температурной стабильности шлаковой ванны, эффективности рафинирующего действия шлака и качества поверхности выплавляемого слитка.

Технический результат достигается тем, что способ перемешивания шлаковой ванны при электрошлаковом переплаве расходуемого электрода включает продувку газа через шлаковую ванну, причем продувку ведут смесью азота с кислородом в количестве 0,7-1,2 л на 1 кг расходуемого электрода с расходом 1,43-2,45 л/мин, а количество кислорода в смеси поддерживают в пределах 0,5-10 об.% от общего количества продуваемой смеси.

Перемешивание шлаковой ванны, в том числе продувкой через нее инертного или нейтрального газа, усредняет ее температуру, что в целом благоприятно сказывается на электрических параметрах переплава расходуемого электрода, стабилизируя вводимую в шлаковую ванну электрическую мощность и улучшая качество поверхности выплавляемого слитка. Использование азота как основы газовой смеси удешевляет процесс переплава и снижает стоимость выплавляемого слитка, а кислород в смеси в количестве 0,5-10 об.% обеспечивает дополнительное тепловыделение в шлаковой ванне, что положительно влияет на температурную стабильность шлаковой ванны, эффективность рафинирующего действия шлака и качество поверхности выплавляемого слитка. Кроме того, наличие кислорода в смеси предотвращает зарастание шлаком продувочных отверстий, то есть снижение эффективности или даже прекращение процесса перемешивания шлаковой ванны.

Расход газовой смеси азота с кислородом в количестве 0,7-1,2 л на 1 кг переплавляемого расходуемого электрода является оптимальным. Уменьшение количества используемой смеси меньше 0,7 л на 1 кг переплавляемого расходуемого электрода при расходах 1,43-2,45 л/мин не дает эффективного перемешивания. Это приводит к недостаточному прогреву периферийной части шлаковой ванны в сравнении с ее центральной частью, формированию гарнисажа, в том числе на продувочных отверстиях, различной толщины и образованию гофров и шлаковых включений на поверхности выплавляемого слитка.

Увеличение количества используемой смеси больше 1,2 л на 1 кг переплавляемого расходуемого электрода при расходах 1,43-2,45 л/мин уменьшает теплоотдачу шлаковой ванны из-за ее чрезмерного охлаждения вводимой смесью и требует дополнительных энергозатрат для получения требуемого качества слитка.

Поддержание расхода газовой смеси меньше 1,43 л/мин уменьшает ее кинетическую энергию и не обеспечивает образование обратных газошлаковых потоков, что ухудшает эффективность усреднения температуры шлаковой ванны в ее полном объеме и ухудшает качество поверхности выплавляемого слитка из-за образования гофр и шлаковых включений.

Поддержание расхода вдуваемой в шлаковую ванну смеси больше 2,45 л/мин ухудшает рафинирующие способности шлака.

Поддержание количества кислорода в смеси меньше 0,5% от общего количества продуваемой смеси приводит к зашлакованности продувочных отверстий и снижению эффективности процесса перемешивания шлаковой ванны.

Достижение поставленного технического результата можно проиллюстрировать следующим примером выплавки полого слитка массой 170 кг с использованием перемещаемого уширенного водоохлаждаемого кристаллизатора. Масса расходуемого электрода с учетом несплавляемой части составила 200 кг. Продувку смесью азота с кислородом вели через отверстия, размещенные в уширении кристаллизатора на уровне зоны плавления расходуемого электрода. При времени переплава 83 мин количество использованной для продувки смеси азота с кислородом составило 138,6 л, что составляет 0,9 л на 1 кг переплавляемого расходуемого электрода, при этом расход вдуваемой в шлаковую ванну смеси составлял 2,31 л/мин.

Количество используемого кислорода составило 5 л, что составляет 6,93% от общего количества продуваемой смеси. При переплаве толщина гарнисажа в верхней части шлаковой ванны составила около 0,9 мм, а в нижней части около 1,0 мм, что свидетельствует о температурной стабильности всего объема шлаковой ванны за счет удовлетворительного перемешивания смесью кислорода с азотом. Поверхность выплавленного полого слитка была гладкой, блестящей, без гофр и шлаковых включений и не требовала дополнительной механической обработки.

Способ перемешивания шлаковой ванны при электрошлаковом переплаве расходуемого электрода, включающий продувку шлаковой ванны газом, отличающийся тем, что продувку ведут смесью азота с кислородом с расходом 0,7-1,2 л на 1 кг переплавляемого расходуемого электрода при 1,43-2,45 л/мин, а количество кислорода в смеси поддерживают в пределах 0,5-10 об.% от общего количества вдуваемой в шлаковую ванну смеси.



 

Похожие патенты:

Изобретение относится к области металлургии, в частности к способу и устройству индукционного перемешивания жидкого металла в ванне печи отражательного типа под действием бегущего магнитного поля частотой 50-60 Гц.

Изобретение относится к области специальной электрометаллургии и может быть использовано для выплавки слитков тугоплавких и высокореакционных металлов и сплавов, преимущественно титановых, применяемых в аэрокосмической технике.

Изобретение относится к металлургии легких металлов, в частности к получению литий-борного композита. .

Изобретение относится к области металлургии, а именно к комплексному оборудованию для плавки шихты, содержащей как черные, так и цветные металлы. .

Изобретение относится к специальной электрометаллургии и может быть использовано при вакуумно-дуговой гарнисажной плавке металлов, например титана и его сплавов. .
Изобретение относится к электрометаллургии и может быть использовано при выплавке слитков электрошлаковым переплавом расходуемых электродов. .

Изобретение относится к производству электрошлакового металла и может быть использовано для электрошлаковой сварки металла, электрошлаковой наплавки. .

Изобретение относится к электрометаллургии и может быть использовано для электрошлаковой выплавки крупных полых слитков с толщиной стенки более 300 мм и сплошных слитков с диаметром больше 300 мм.

Изобретение относится к специальной электрометаллургии и может быть использовано для электрошлаковой выплавки слитков. .

Изобретение относится к специальной электрометаллургии и может быть использовано при выплавке крупных полых заготовок с толщиной стенки больше 100 мм. .

Изобретение относится к специальной электрометаллургии и может быть использовано при производстве котельных и паропроводных труб методом электрошлакового переплава.

Изобретение относится к электрометаллургии, в частности к способам получения слоистых слитков импульсно-электрошлаковым переплавом. .

Изобретение относится к области электрошлакового переплава, в частности к конструкциям печей электрошлакового переплава. .

Изобретение относится к электрометаллургии, конкретнее к электрошлаковым печам. .

Изобретение относится к электрометаллургии и может быть использовано для электрошлаковой выплавки крупных полых слитков с толщиной стенки более 300 мм и сплошных слитков с диаметром больше 300 мм.

Изобретение относится к области машиностроения и может быть использовано для изготовления сложных по геометрии штамповых вставок и элементов пресс-форм из литых заготовок, получаемых методом электрошлакового кокильного литья (ЭКЛ).
Изобретение относится к области металлургии и может быть использовано в литейном производстве при изготовлении отливок из сталей. .

Изобретение относится к специальной электрометаллургии и может быть использовано при выплавке крупных полых заготовок с толщиной стенки больше 100 мм. .

Изобретение относится к специальной электрометаллургии и может быть использовано при производстве котельных и паропроводных труб методом электрошлакового переплава.

Изобретение относится к области изготовления тонкостенных высокопрочных корпусов с использованием электрошлаковой технологии получения стальных трубных заготовок с тонкой стенкой.
Наверх