Фенолорганосилоксаны и способ их получения



Фенолорганосилоксаны и способ их получения
Фенолорганосилоксаны и способ их получения
Фенолорганосилоксаны и способ их получения
Фенолорганосилоксаны и способ их получения
Фенолорганосилоксаны и способ их получения
Фенолорганосилоксаны и способ их получения
Фенолорганосилоксаны и способ их получения
Фенолорганосилоксаны и способ их получения
Фенолорганосилоксаны и способ их получения
Фенолорганосилоксаны и способ их получения
Фенолорганосилоксаны и способ их получения
Фенолорганосилоксаны и способ их получения
Фенолорганосилоксаны и способ их получения
Фенолорганосилоксаны и способ их получения
Фенолорганосилоксаны и способ их получения
Фенолорганосилоксаны и способ их получения
Фенолорганосилоксаны и способ их получения
Фенолорганосилоксаны и способ их получения
Фенолорганосилоксаны и способ их получения
Фенолорганосилоксаны и способ их получения
Фенолорганосилоксаны и способ их получения
Фенолорганосилоксаны и способ их получения
Фенолорганосилоксаны и способ их получения
Фенолорганосилоксаны и способ их получения
Фенолорганосилоксаны и способ их получения
Фенолорганосилоксаны и способ их получения
Фенолорганосилоксаны и способ их получения
Фенолорганосилоксаны и способ их получения
Фенолорганосилоксаны и способ их получения
Фенолорганосилоксаны и способ их получения
Фенолорганосилоксаны и способ их получения
Фенолорганосилоксаны и способ их получения
Фенолорганосилоксаны и способ их получения
Фенолорганосилоксаны и способ их получения
Фенолорганосилоксаны и способ их получения
Фенолорганосилоксаны и способ их получения
Фенолорганосилоксаны и способ их получения
Фенолорганосилоксаны и способ их получения
Фенолорганосилоксаны и способ их получения
Фенолорганосилоксаны и способ их получения
Фенолорганосилоксаны и способ их получения
Фенолорганосилоксаны и способ их получения
Фенолорганосилоксаны и способ их получения
Фенолорганосилоксаны и способ их получения
Фенолорганосилоксаны и способ их получения

 


Владельцы патента RU 2487901:

Общество с ограниченной ответственностью "ПЕНТА-91" (RU)

Изобретение относится к химии и технологии получения карбофункциональных силоксансодержащих фенолов с реакционно-способными гидроксифенильными группами. Предложены новые фенолорганосилоксаны, содержащие фталимидиновую структуру общей формулы (I), где R - силоксановый заместитель. Предложен также способ их получения взаимодействием 2-аллил-3,3-бис-(4- оксифенил)фталимидина с соответсвующими гидридсилоксанами в органических растворителях при мольном соотношении реагентов (1-8,8):(1-1,1) соответственно под действием платинового катализатора (1-50 мг на 1 кг реакционной смеси) при температуре 70-90°С, с последующей отгонкой растворителя при 90°С и остаточном давлении 2 мм рт.ст. Технический результат - предложенные соединения могут быть получены технологически простым способом из доступного сырья и могут использоваться в качестве исходных соединений для синтеза кремнийорганических сополимеров разного строения, а также в качестве модификаторов для различных полимеров. 2 н.п. ф-лы, 1 ил., 9 пр.

 

Предлагаемое изобретение относится к химии и технологии получения карбофункциональных силоксансодержащих фенолов (далее фенолорганосилоксаны) с реакционноспособными гидроксифенильными групппами, которые широко используются в качестве исходных мономеров и олигомеров для синтеза кремнийорганических сополимеров разного строения, а также модификаторов для различных полимеров.

Кремнийорганические фенолы со связью Si-арил известны с 50-х годов прошлого века, впервые полученые Спайером из галоидфенокси-силилхлорсиланов и хлорсиланов металлоорганическим синтезом, с последующим гидролизом продуктов реакции до целевых кремний-органических фенолов [J. Amer. Chem. Soc., 1952, 74, p.1003]. Такой металлоорганический синтез имеет ряд недостатков: процесс многостадийный и требует использования активных металлов. Затем такие же фенолы были синтезированы Спайером с сотр. [J. Amer. Chem. Soc., 1956, 78, р.2278] реакцией гидросилилирования алкенилфенолов гидридсиланами в присутствии платинохлористоводородной кислоты в качестве катализатора. Впоследствии метод был распространен на синтез фенолорганосилоксанов из непредельных оганических фенолов или их силиловых эфиров и гидридорганосилоксанов [пат. Франции 1387338, 1965; пат. Германии 1694306, 1969; пат. США 3819744, 1974; пат. РФ 2211845, 2001].

Известно также получение фенолорганосилоксанов путем внутримолекулярного гидросилилирования винилфеноксисилангидридов вначале до циклических продуктов, при гидролизе которых образуются целевые Кремнийорганические фенолы. [В.Ф.Миронов и др., Журн. общ. химии., 1971, 41, №10, с.2470]

Задача настоящего изобретения - синтез новых кремнийорганических фенолов технологически простым способом на основе доступного сырья.

Поставленная задача решена тем, что в результате проведенных нами исследований получены новые фенолорганосилоксаны, содержащие фталимидиновую структуру и соответствующие общей химической формуле:

,

где ; ; ; ;

, где m=1-8, n=1-30;

, где R' - фенил или трифторпропил, p=0-30, q=0-50.

Приведенные нами фенолорганосилоксаны имеют линейную или разветвленную структуру, содержат силоксановую группировку и включают разное количество и расположение реакционноспособных феноксигрупп (две, четыре и более). Это дает возможность использовать их в качестве исходных для синтеза блок-сополимеров, модификаторов, отвердителей органических смол и компаундов.

Часть заявленных фенолорганосилоксанов содержит у атома кремния реакционноспособные этоксигруппы, которые в процессе гидролиза позволяют получать полициклические продукты (полисилсесквиоксаны с фенольными группами).

Предложенные нами фенолорганосилоксаны исследованы методом ЯМР-спектроскопии, их состав подтвержден результатами элементного анализа (см. примеры). По результатам 1Н-ЯМР анализов, новые соединения имеют химические сдвиги протонов, подтверждающие строение целевых фенолорганосилоксанов.

Разработан также способ получения фенолорганосилоксанов путем взаимодействия 2-аллил-3,3-бис-(4-оксифенил)фталимидина /далее N-аллилфталимидин фенолфталеина/ с гидридорганосилоксанами следующих структурных формул:

где ; ; ; ;

, где m=1-8, n=1-30;

, R' - фенил или трифторпропил, p=0-30, q=0-50.

Процесс проводят в органическом растворителе при температуре реакционной смеси 70-90°С под действием платинового катализатора (Спайера или Карстеда), добавляемого в количестве 1-50 мг на 1 кг реакционной смеси, при мольном соотношении N-аллилфталимидина фенолфталеина к гидридсилоксану в пределах (1-8,8):(1-1,1) соответственно, с последующей отгонкой растворителя при 90°С и остаточном давлении 2 мм рт.ст.

Схема реакции:

,

где ; ; ; ;

, где m=1-8, n=1-30;

, где R' - фенил или трифторпропил, p=0-30, q=0-50.

Предлагаемый способ базируется на доступных исходных соединениях: 2-аллил-3,3-бис-(4-оксифенил)фталимидине и гидрид органосилоксанах.

Выход целевых продуктов превышает 90 мас.%.

Пример 1

Получение N-[3-(1,1,3,3,3-пентаметилдисилоксан)пропил] фталимидина фенолфталеина структурной формулы:

В реакционную колбу загружают 7,148 г (0,02 моль) N-аллилфталимидина фенолфталеина, 3,264 (0,022 моль) 1,1,3,3,3-пентаметилдисилоксана, 20 мл диоксана, 1,3 мг катализатора Карстеда. Реакционную массу при температуре 70°С перемешивают в течение 4 часов. Контроль за ходом реакции осуществляют методом Чугаева-Церевитинова. Растворитель и избыток гидридсилоксана отгоняют на роторном испарителе при температуре 90°С и давлении 2 мм рт.ст. Получают 9,6 г фенолорганосилоксана I с выходом 95 мас.%.

Продукт реакции - белое порошкообразное вещество, растворимое в ацетоне, ДМСО, диоксане, этиловом спирте. Строение и состав соединения I подтверждены и охарактеризованы методами ЯМР-спектроскопии в дейтеро-ацетоне и элементного анализа (см. рис.1).

Сигналы протонов на ЯМР спектре соединения I в дейтеро-ацетоне - Н1:7,03-7,06; Н2:6,79-6,82; Н3:7,70-7,72; Н4:7,48-7.52; Н5:7,40-7,44; Н6:7,36-7,38; Н7:3,33-3,38; Н8:0,92; Н9:0,26; Н10:-0,12; Н11:-0,01; Н12:8,45.

Состав в мас.%, вычислено/найдено: С 66,49/66,30; Н 6,98/6,90; N 2,77/2,90; Si 11,11/11,30

Пример 2

Получение N-[3-(1,1,1,3,5,5,5-гептаметилтрисилоксан)пропил]-фталимидина фенолфталеина структурной формулы:

В реакционную колбу загружают 7,148 г (0,02 моль) N-аллилфталимидина фенолфталеина, 4,851 (0,022 моль) 1,1,1,3,5,5,5-гептаметилтрисилоксана, 20 мл диоксана, 1,3 мг катализатора Карстеда. Реакционную массу при температуре 80°С перемешивают в течение 3 часов. Ход реакции контролируют методом Чугаева-Церевитинова. Растворитель и избыток гидридсилоксана отгоняют на роторном испарителе при температуре 90°С и давлении 2 мм рт.ст. Получают 12,45 г бисфенолсилоксана II с выходом 94 мас.%.

Продукт реакции - белое порошкообразное вещество, растворимое в ацетоне, ДМСО, диоксане, этиловом спирте, метиленхлориде и хлороформе. Строение и состав соединения II подтверждены и охарактеризованы методами ЯМР-спектроскопии в дейтеро-ДМСО и элементного анализа.

Сигналы протонов на ЯМР спектре соединения II в дейтеро-ДМСО - Н1:6,94-6,96; Н2:6,72-6,74; Н3:7,68-7,70; Н4:7,48-7,53; Н5:7,40-7,44; Н6:7,34-7,37; Н7:3,26-3,29; Н8:0,88; Н9:0,15; Н10:-0,01; Н11:-0,18; Н12:9,53.

Состав в мас.%, вычислено/найдено: С 62,13/62,20; Н 7,13/7,24; N 2,42/2,35; Si 14,53/14,45

Пример 3

Получение N-[3-(трис-(триметилсилокси)силан)пропил]фталимидина структурной формулы:

В реакционную колбу загружают 7,148 г (0,02 моль) N-аллилфталимидина фенолфталеина, 6,5252 (0,022 моль) трис-триметилсилоксисилана, 20 мл диоксана, 1,3 мг катализатора Карстеда. Реакционную массу при температуре 75°С перемешивают в течение 3 часов. Ход реакции контролируют методом Чугаева-Церевитинова. Растворитель и избыток гидридсилоксана отгоняют на роторном испарителе при температуре 90°С и давлении 2 мм рт.ст. Получают 12,45 г бисфенолсилоксана III с выходом 93 мас.%.

Продукт реакции - белое порошкообразное вещество, хорошо растворимое в ацетоне, ДМСО, диоксане, этиловом спирте. Строение и состав соединения III охарактеризован методом ЯМР-спектроскопии в дейтеро-ДМСО и методом элементного анализа.

Сигналы протонов на ЯМР спектре соединения III в дейтеро-ДМСО -Н1:6,94-6,96; Н2:6,72-6,74; Н3:7,68-7,70; Н4:7,48-7,53; Н5:7,40-7,44; Н6:7,34-7,37; Н7:3,26-3,29; Н8:0,88; Н9:0,15; Н10:-0,20; Н11:9,52.

Состав в мас.%, вычислено/найдено: С 58,76/58,62; Н 7,24/7,29; N 2,14/2,19; Si 17,18/17,25

Пример 4

Получение N-[3-триэтоксисилоксан)пропил]фталимидина структурной формулы:

В реакционную колбу загружают 7,148 г (0,02 моль) N-аллилфталимидина фенолфталеина, 3,615 (0,022 моль) триэтоксисилана, 20 мл диоксана, 1,3 мг катализатора Карстеда. Реакционную массу при температуре 80°С перемешивают в течение 4 часов. Ход реакции контролируют методом Чугаева-Церевитинова. Растворитель и избыток гидридсилана отгоняют на роторном испарителе при температуре 90°С и давлении 2 мм рт.ст. Получают 10,90 г бисфенолсилоксана II с выходом 95 мас.%.

Продукт реакции - белое порошкообразное вещество, растворимое в ацетоне, ДМСО, диоксане, этиловом спирте. Строение и состав соединения IV охарактеризовано методом ЯМР-спектроскопии в дейтеро-ДМСО и методом элементного анализа.

Сигналы протонов на ЯМР спектре соединения IV в дейтеро-ДМСО - Н1:6,94-6,96; Н2:6,72-6,74; Н3: - 7,68-7,70; Н4:7,48-7,53; Н5:7,40-7,44; Н6:7,34-7,37; Н7:3,26-3,29; Н8:1,54; Н9:0,60; Н10:3,71-3,94; Н11:1,24; Н12:9,53.

Состав в мас.%, вычислено/найдено: С 66,77/66,30; Н 6,76/6,62; N 2,68/2,61; Si 5,38/5,40

Пример 5

Получение тетрафенолорганосилоксана структурной формулы:

В реакционную колбу загружают 7,148 г (0,02 моль) N-аллилфталимидина фенолфталеина, 1,343 (0,01 моль) 1,1,3,3-тетраметилдисилоксана, 20 мл диоксана, 1,3 мг катализатора Карстеда. Реакционную массу при температуре 85°С перемешивают в течение 4,5 часов. Ход реакции контролируют методом Чугаева-Церевитинова. Растворитель и избыток гидридсилоксана отгоняют на роторном испарителе при температуре 90°С и давлении 2 мм рт.ст. Получают 8,06 г тетрафенолсилоксана V с выходом 95 мас.%.

Продукт реакции - белое порошкообразное вещество, растворимое в ДМСО и диоксане. Строение и состав соединения V охарактеризовано методом ЯМР-спектроскопии в дейтеро-ДМСО и методом элементного анализа.

Сигналы протонов на ЯМР спектре соединения V в дейтеро-ДМСО - Н1:6,91-6,93; Н2:6,70-6,72; Н3:7,65-7,67; Н4:7,51-7,54; Н5:7,41-7,45; Н6:7,36-7,38; Н7:3,22-3,26; Н8:0,70; Н9:0,10; Н10: - 0,25; Н11:9,51.

Состав в мас.%, вычислено/найдено: С 70,72/70,25; Н 6,17/6,10; N 3,30/3,28; Si 6,62/6,50

Пример 6

Получение тетрафенолорганосилоксана структурной формулы:

В реакционную колбу загружают 7,148 г (0,02 моль) N-аллилфталимидина, 39,1262 (0,01 моль) α,ω-олигодигидридсилоксана, 20 мл диоксана, 2,0 мг катализатора Карстеда. Реакционную массу при температуре 90°С перемешивают в течение 4 часов. Ход реакции контролируют методом Чугаева-Церевитинова. Растворитель отгоняют на роторном испарителе при температуре 90°С и давлении 2 мм рт.ст. Получают 42,9 г тетрафенолорганосилоксана VI с выходом 93 мас.%.

Продукт реакции - прозрачная, вязкая жидкость. Строение и состав соединения VI охарактеризовано методом ЯМР-спектроскопии в дейтеро-ДМСО и методом элементного анализа.

Сигналы протонов на ЯМР спектре соединения VI в дейтеро-ДМСО - Н1:6,91-6,93; Н2:6,70-6,72; Н3:7,65-7,67; Н4:7,51-7,54; Н5:7,41-7,45; Н6:7,36-7,38; Н7:3,22-3,26; Н8:0,69; Н9:0,10; Н10: - 0,27; Н11:9,51; Н12:0,32.

Пример 7

Получение олигофенолорганосилоксана формулы:

В реакционную колбу загружают 31,41 г (0,088 моль) N-аллилфталимидина, 28,54 (0,01 моль) олигогидридсилоксана, 60 мл диоксана, 2,4 мг катализатора Карстеда. Реакционную массу при температуре 90°С перемешивают в течение 6 часов. Ход реакции контролировали методом Чугаева-Церевитинова. Растворитель отгоняют на роторном испарителе при температуре 90°С и давлении 2 мм рт.ст. Получают 54,2 г олигофенолсилоксана VII с выходом 95 мас.%.

Продукт реакции - смолообразная масса. Состав соединения VII охарактеризован методом элементного анализа.

Состав в мас.%, вычислено/найдено: С 52,40/52,20; Н 7,18/7.05; N 2,02/2,10; Si 20,21/20,50

Пример 8

Получение фторсодержащего тетрафенолорганосилоксана структурной формулы:

В реакционную колбу загружают 7,148 г (0,02 моль) N-аллилфталимидина, 47,47 (0,01 моль) α,ω-олигодигидридсилоксана, 100 мл тетрагидрофурана, 3,0 мг катализатора Карстеда. Реакционную массу при температуре 85°С перемешивают в течение 4 часов. Ход реакции контролируют методом Чугаева-Церевитинова. Растворитель отгоняют на роторном испарителе при температуре 90°С и давлении 2 мм рт.ст. Получают 49,6 г тетрафенолорганосилоксана VI с выходом 90 мас.%.

Продукт реакции - вязкая жидкость.

Пример 9

Получение тетрафенолорганосилоксана структурной формулы:

В реакционную колбу загружают 7,148 г (0,02 моль) N-аллилфталимидина, 64.542 г (0,01 моль) α,ω-олигодигидридсилоксана, 100 мл тетрагидрофурана, 3,0 мг катализатора Карстеда. Реакционную массу при температуре 80°С перемешивают в течение 5 часов. Ход реакции контролируют методом Чугаева-Церевитинова. Растворитель отгоняют на роторном испарителе при температуре 90°С и давлении 2 мм рт.ст. Получают 65,9 г тетрафенолорганосилоксана IX с выходом 92 мас.%.

Продукт реакции - смолообразная масса.

1. Фенолорганосилоксаны, содержащие фталимидиновую структуру, общей формулы
,
; ; ; ;
где

где m=1-8, n=1-30;

где R' - фенил или трифторпропил, p=0-30, q=0-50.

2. Способ получения фенолорганосилоксанов, содержащих фталимидиновую структуру, по п.1, характеризующийся тем, что 2- аллил-3,3-бис-(4'-оксифенил) фталимидин подвергают взаимодействию с гидридорганосилоксанами следующих химических формул:
; ; ; ;

где m=1-8, n=1-30;

где R' - фенил или трифторпропил, p=0-30, q=0-50.
в органическом растворителе при температуре реакционной смеси 70-90°С под действием платинового катализатора, добавляемого в количестве 1-50 мг на 1 кг реакционной смеси, при соотношении реагентов в пределах (1,0-8,8):(1,0-1,1) соответственно, с последующей отгонкой растворителя при температуре 90°С и остаточном давлении 2 мм рт.ст.



 

Похожие патенты:

Изобретение относится к области получения отверждающих агентов эпоксидных смол и композиций на их основе. .

Изобретение относится к водорастворимым олигомерным этоксисилоксанам. .

Изобретение относится к улучшенным композициям нанокомпозита и способам их получения и применения. .

Изобретение относится к полиаммоний/полисилоксановым сополимерам, к способу их получения и их применению. .

Изобретение относится к соединениям, которые используются как стабилизаторы для органических полимеров против действия ультрафиолетового излучения и тепла, содержащие в молекуле стерически затрудненные пиперидиновые группы и реакционноспособные группы, которые могут быть связаны с полимерной структурой, которую надо стабилизировать.

Изобретение относится к кремнийорганической химии, в частности к получе1Ш10гомо?|дав елевой кислоты Si~Mop~ фояинйометил-31^51-дигидроксисиланата]., который может найти применение в ка~ честве стабилизирующей добавки к смазочным маслам.

Изобретение относится к области кремнийорганических соединеьшй, в частности к получению гомо[_1да8елевойкислоты Si~aгв^ниoмeтил-Si,Si-^диэтоксисиланатов"!- Гощава ди:эгоксисиланатовф-лы,CH2v^®/''' \N-RZV°^ Ч^Nгде R f, R ^- ОН J или вместе составляютR.И R-СН^СН^-.

Изобретение относится к обработке различных материалов (стекло, текстиль, полимерные материалы, керамика, дерево, металлы, кожа) для придания гидрофильных свойств поверхностям этих материалов. Осуществляют последовательное нанесение на поверхность материалов водного или спиртового раствора олиго(аминопропил)этоксисилоксана, сушку и термообработку его. Далее осуществляют смачивание модифицированной таким образом поверхности спиртовым раствором глицидола. Затем осуществляют сушку и термообработку. В результате на поверхности материалов образуется слой модификатора, придающий гидрофильные свойства поверхностям материалов. Непосредственно на поверхности происходит формирование модификатора путем молекулярной сборки органосилоксановых покрытий с N,N-бис(1,2-дигидроксипропил)аминоалкильными группами. Изобретение позволяет обеспечить модификацию обрабатываемых материалов с получением на их поверхностях микро/наноразмерного покрытия с различными гидрофильными свойствами. 5 ил., 1 табл.

Изобретение относится к отвердителям для эпоксидных смол и композиций на их основе. Предложен способ получения кремнийорганического отвердителя для эпоксидных смол средней молекулярной массы взаимодействием в течение 2-3 ч при температуре 80-100°C в присутствии щелочного катализатора аминосодержащего кремнийорганического соединения (I), кремнийорганического соединения с фенильной группой у атома кремния (II) и кремнийорганического соединения, содержащего две метильные группы у атома кремния (III) при мольном соотношении компонентов I:II:III=1,0:(0,5-1,0):(0,5-2,0) и суммарном содержании алкоксигрупп к общему числу атомов кремния 1-1,5. Технический результат - упрощение способа получения стабильных при хранении кремнийорганических отвердителей, позволяющих получать лакокрасочные покрытия с хорошей адгезией к различным подложкам и высокими физико-механическими свойствами. 3 табл., 14 пр.

Изобретение относится к композициям, содержащим специфично функционализированные заряженные частицы и противоионы, применяемым в электрофорезе, например в электрофорезных дисплеях. Композиция для электрофорезных дисплеев содержит заряженную частицу объемом от 5 нм3 до 50 миллионов нм3, предпочтительно имеющую неорганическое ядро из SiO2, Аl2O3 и/или ТiO2, или смешанное SiO2, Аl2O3 и/или ТiO2 ядро, или ядро, главным образом состоящее из органического пигмента и/или производного пигмента, и противоион, отделяемый от частицы и не связанный с частицей ковалентно, при этом указанный противоион содержит полисилоксан, содержащий атом кремния, который непосредственно связан с атомом углерода. Изобретение позволяет получить композицию, содержащую окрашенные заряженные частицы, подходящие для энергетически эффективных электрофорезных дисплеев. 4 н. и 10 з.п. ф-лы, 23 пр.

Изобретение относится к химической технологии волокнистых материалов и касается способа получения привитых силоксановых покрытий с сорбционными N-пропиламиноди(метиленфосфоновыми) группами на волокнах. Способ включает на первой стадии обработку волокон спиртовым раствором олиго(аминопропил)этоксисилоксана, удаление растворителя, протонирование модифицированной поверхности водным раствором HCl и просушивание, на второй стадии - получение на протонированной поверхности N-пропиламиноди(мстиленфосфоновой) кислоты кипячением с параформом и H3PO3 в среде бензола и диглима, отгонку азеотропа, промывку волокон диглимом и этанолом и сушку при 100°C. В качестве волокнистого материала используют материал из органического и неорганического волокна в виде моноволокна, комплексной нити, ленты, пряжи, ткани, нетканого полотна, трикотажного полотна. Изобретение обеспечивает придание волокну сорбционных свойств, характерных для класса фосфорсодержащих сорбентов. Обработанные волокна обладают совокупностью уникальных сорбционных и эксплутационных свойств, так как являются селективными сорбентами для ряда цветных металлов, редкоземельных элементов, урана, актиноидов, что делает их перспективными сорбентами для многих отраслей промышленности. 2 н. и 2 з.п. ф-лы, 2 ил., 3 табл.

Изобретение относится к способу получения силанмодифицированного полиуретанового связующего (СПУ-полимер), содержащего концевые реакционно-способные алкоксисилановые группы, которое может быть использовано в качестве полимерной основы в составах адгезивов, герметиков и покрытий различного назначения, отверждаемых под действием влаги. Способ заключается во взаимодействии бифункционального полимера формулы (I) X-R-X, где R означает остаток цепи простого полиэфира, X означает гидроксильную группу, с органоалкоксисиланом формулы (II) Y-R1-Si(R2)m(OR3)3-m, где Y означает изоцианатную группу, в присутствии винилалкоксисилана формулы (III) CH2=CH-Si(R4)n(OR5)3-n. В соединениях (II) и (III) каждый из R1, R2, R3, R4, R5 имеет одинаковые или различные значения и означает углеводородную группу, содержащую от 1-12 атомов углерода, m, n = 0, 1 или 2. Технический результат - предложенный способ позволяет получить СПУ-полимер с более низкой вязкостью, стабильный при хранении и переработке. При этом не образуется дополнительных внутренних подшивок, сокращается продолжительность синтеза и обеспечивается стабильность результатов процесса синтеза, а также снижается стоимость получаемого продукта (за счет снижения времени синтеза и сокращения его стадийности). 11 з.п. ф-лы, 2 ил., 2 табл., 12 пр.

Изобретение относится к способам получения влагоотверждаемого полиуретанового связующего с концевыми реакционноспособными алкоксисилановыми группами. Предложенный способ включает реакцию бифункционального полимера формулы (I) X-R-X, где R означает остаток цепи простого полиэфира, X означает гидроксигруппу, с соответствующим диизоцианатом формулы (II) X-R6-X, где X означает изоцианатную группу, R6 означает углеводородную группу, содержащую до 16 атомов углерода, и органоалкоксисиланом формулы (III) Y-R1-Si(R2)m(OR3)3-m, где Y означает первичную или вторичную аминогруппу, в присутствии винилалкоксисилана формулы (IV) СН2=СН-Si(R4)n(OR5)3-n, при этом в соединениях (III) и (IV) каждый из R1, R2, R3, R4, R5 имеет одинаковые или различные значения и означает углеводородную группу, содержащую 1-12 атомов углерода, m, n=0, 1 или 2. Технический результат - предложенный способ позволяет получить полимер с низкой вязкостью, стабильный при хранении и переработке. При этом не требуется дополнительных внутренних подшивок, сокращается продолжительность синтеза с 12 часов до 5-6 часов, улучшается воспроизводимость и обеспечивается стабильность результатов процесса синтеза. Также снижается стоимость получаемого продукта за счет снижения времени синтеза и сокращения его стадийности. 16 з.п. ф-лы, 1 ил., 3 табл., 18 пр.

Изобретение относится к способам получения модифицированных фталонитрилов, содержащих кремнийорганические фрагменты, и связующих на их основе. Предложен модифицированный кремнийорганическими фрагментами фталонитрильный мономер общей формулы I, где X - двухвалентный ароматический радикал, выбранный из группы, включающей и ; Y - кремнийорганический фрагмент, выбранный из группы, включающей -SiR1R2 и SiR1R2-O-SiR1R2, где R1 и R2 - радикалы, выбранные из группы, включающей СН3, С6Н5, и НС=СН2. Предложен также способ получения заявленного фталонитрильного мономера, связующее на его основе и препрег. Технический результат - предложенный фталонитрил сочетает свойства традиционных типов фталонитрилов - высокую термостойкость - с преимуществами кремнийорганических полимеров, демонстрирующих хорошую растворимость, сохранение термостойкости, низкой температуры стеклования, обеспечивающей агрегатное состояние при комнатной температуре в виде вязкой жидкости или полутвердых веществ. 4 н. и 7 з.п. ф-лы, 1 табл., 9 пр. I
Наверх