Конусный ударный истирающий измельчитель



Конусный ударный истирающий измельчитель
Конусный ударный истирающий измельчитель

 


Владельцы патента RU 2489211:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Иркутский государственный технический университет" (ФГБОУ ВПО "ИрГТУ") (RU)

Изобретение относится к устройствам, предназначенным для измельчения материалов с разнообразными физическими свойствами, таких как горные породы различного минерального состава, а также мономинеральных и технологических упруго-пластичных материалов при получении особо чистых веществ. Конусный ударный истирающий измельчитель включает в себя вращающийся внешний конус, имеющий загрузочную воронку, цилиндрическую и коническую поверхности, а также внутренний вращающийся конус, имеющий цилиндрическую и коническую поверхности. Внутренний вращающийся конус жестко соосно соединен с ударной машиной, являющейся источником непрерывно повторяющегося ударного импульса с энергией единичного удара, достаточной для преодоления порога ударного разрушения измельчаемого материала. Внутренний ударный вращающийся конус может устанавливаться по отношению к внешнему конусу соосно либо с параллельным, либо с перекрещивающимся положением осей вращения. Отношение угловых скоростей вращения конусов должно составлять бесконечную иррациональную дробь, что наряду с относительно малой скоростью измельчаемого материала и рабочих поверхностей позволяет обеспечить высокую степень измельчения, малый абразивный износ рабочих поверхностей и, как следствие, низкую степень загрязнения измельчаемого материала. 4 з.п. ф-лы, 2 ил.

 

Изобретение относится к измельчительному оборудованию и может найти применение для измельчения широкого спектра материалов, хрупких малопрочных, хрупких особо прочных, пластичных малопрочных материалов. Изобретение может быть использовано при получении наноматериалов; при производстве композитов в электронной промышленности; при производстве стройматериалов; в лакокрасочной промышленности; при обогащении руд на горных предприятиях; в медицине при истирании твердых составляющих лекарственных средств и в других отраслях при измельчении особочистых веществ.

Изобретение относится к приоритетным направлениям развития науки и технологий: «Нанотехнологии и наноматериалы», «Технологии переработки и утилизации техногенных образований и отходов», «Технологии создания и обработки композиционных и керамических материалов», «Технологии создания и обработки кристаллических материалов», «Технологии создания электронной компонентной базы», поскольку позволяет получать требуемые размеры компонентов из различного сырья» [Алфавитно-предметный указатель к Международной патентной классификации по приоритетным направлениям развития науки и технологий / Ю.Г. Смирнов, Е.В. Скиданова, С.А. Краснов. - М.: ПАТЕНТ, 2008. - с. 18, 58, 71, 73, 94].

Широко известны из уровня техники конусные измельчители (дробилки, мельницы) различного конструктивного выполнения и принципа действия: с вращающимися соосно, параллельно или с перекрещивающимися осями, например, вибрационные, инерционные центробежные, с возвратно-поступательным движением дробящего конуса, с продувкой, мокрого измельчения и другие [И.А. Щупляк. Измельчение твердых материалов в химической промышленности. Изд. «Химия», Ленинград, 1972, стр.15], однако они имеют сравнительно низкую энергоэффективность и малопригодны при работе с особочистыми веществами.

Все известные аналоги реализуют принципы дробления сжатием, раздавливанием и истиранием без интенсивного ударного воздействия. В то же время известно, что реализация режима измельчения высокоскоростным ударом значительно повышает энергоэффективность процесса измельчения [Г.С.Ходаков. Тонкое измельчение строительных материалов. Издательство литературы по строительству, Москва, 1972 г., стр.134]. Указанный принцип дробления свободным высокоскоростным ударом реализован, например, в струйных мельницах, роторно-вихревых мельницах и т.п., имеющих достаточно высокую энергоэффективность. Измельчение в данных устройствах происходит при высоких взаимных скоростях измельчаемого материала и поверхностей рабочих тел, что резко увеличивает абразивный износ рабочих поверхностей и, соответственно, увеличивает заражение продуктами износа рабочих поверхностей обрабатываемогой материала.

Известна вибрационная дробилка [А.С. №627859, МПК В02С 19/16, опубликовано 15.10.78], предназначенная для дробления угля и тому подобных материалов.

Признаками известного аналога, совпадающими с существенными признаками заявляемого устройства, являются: внутренние и наружные конусообразные дробящие тела, привод, смонтированный на внутреннем дробящем конусе.

Недостатком аналога является то, что, несмотря на довольно высокую производительность, устройство мало пригодно для измельчения твердых и особо прочных пород и не позволяет получать твердые высокочистые материалы с высокой степенью измельчения, так как измельчение материала происходит раздавливанием и самоистиранием, что приводит к возникновению значительных механических усилий и, как следствие, низкой энергоэффективности при дроблении твердых материалов. Возможности измельчения высокочистых веществ резко снижаются с увеличением их прочностных и абразивных свойств и находятся в большой зависимости от наличия конструкционных материалов с необходимыми характеристиками. К недостаткам также можно отнести сложную кинематическую схему устройства.

Известна конусная дробилка [А.С. №612693, МПК В02С 2/10, опубликовано 30.06.78], предназначенная для производства кусковых, преимущественно нерудных строительных материалов, а также при механической обработке твердых полезных ископаемых.

Признаками известного аналога, совпадающими с существенными признаками заявляемого устройства являются: корпус в виде конуса, внутренний конус, выполненный с возможностью возвратно-поступательного перемещения от привода.

Недостатком аналога является то, что при работе устройства по А.С. №612693 достигается разрушение материала подобно по действию ударом, но механизм разрушения близок к статическому раздавливанию, но не к ударному разрушению, что приводит к возникновению значительных механических усилий и низкой энергоэффективности при дроблении твердых материалов. Абразивный износ рабочих тел, возникающий вследствие больших статических нагрузок, также ограничивает возможности использования аналога для измельчения твердых высокочистых веществ.

Наиболее близкой к заявляемому изобретению является конусная дробилка [Патент РФ №1827867, МПК В02С 2/04, опубликовано 10.09.1995], предназначенная для дробления и тонкого помола минерального материала для строительной индустрии при получении мелких и тонких фракций помола.

Признаками прототипа, совпадающими с существенными признаками заявляемого устройства, являются: корпус в виде конуса, внутренний конус, приводы вращения конусов, позволяющие выбирать любые скорости вращения, приводы осевого перемещения конусов для регулировки зазоров.

Недостатком аналога является невозможность измельчения крепких и особо крепких материалов из-за возникновения значительных нагрузок на резцы конусов и вероятности их выкалывания. При работе устройства по патенту РФ №1827867, хотя и достигается разрушение материала подобно воздействию ударом, но механизм разрушения близок к статическому раздавливанию, но не к ударному разрушению. Абразивный износ рабочих тел также ограничивает возможности использования прототипа для измельчения твердых высокочистых веществ.

Задачей изобретения является создание измельчителя, обеспечивающего повышение эффективности измельчения по производительности и энергозатратам при минимальной степени загрязнения конечного материала продуктами износа рабочих поверхностей.

Технический результат заявляемого изобретения заключается в уменьшении энергозатрат при повышении степени измельчения конечного материала и уменьшении степени загрязнения продуктами износа конструкционных деталей за счет реализации режима измельчения высокоскоростным несвободным ударом с энергией единичного удара, обеспечивающей объемное разрушение измельчаемого материала при относительно низких взаимных скоростях материала и рабочих поверхностей и кратковременности прилагаемой ударной нагрузки. Другими словами, в обеспечении режима измельчения «затянутым» ударным импульсом, то есть режима, создающего локальные, малоизносные, постоянно меняющиеся зоны измельчения со сверхвысокой концентрацией энергии.

Технический результат заявляемого изобретения достигается тем, что конусный ударный истирающий измельчитель, включающий внешний вращающийся конус с загрузочной воронкой и установленный в упругой опоре, внутренний вращающийся конус, приводы вращения конусов, привод осевого перемещения внутреннего вращающегося конуса для регулировки зазора, раму, согласно изобретению, дополнительно содержит ударную машину в качестве источника непрерывно повторяющихся ударных импульсов, при этом внутренний вращающийся конус жестко соосно закреплен на корпусе ударной машины.

Технический результат заявляемого изобретения достигается также тем, что отношение угловых скоростей вращения внешнего и внутреннего конусов образуют бесконечную иррациональную дробь.

Технический результат заявляемого изобретения достигается и тем, что при измельчении хрупких малопрочных пород внешний вращающийся конус установлен по отношению к внутреннему вращающемуся конусу соосно. При измельчении хрупких особо прочных пород внешний вращающийся конус установлен по отношению к внутреннему вращающемуся конусу параллельно. В то же время при измельчении пластичных малопрочных пород внутренний вращающийся конус установлен по отношению к внешнему вращающемуся конусу с перекрещивающимися осями.

Отличия от прототипа доказывают новизну заявляемого устройства.

В заявляемом устройстве в качестве источника непрерывно повторяющегося ударного импульса применяется ударная машина с энергией единичного удара, достаточной для преодоления порога ударного объемного разрушения измельчаемого материала, а внутренний дробящий конус жестко связан с корпусом ударной машины. Жесткое соосное закрепление на корпусе ударной машины внутреннего вращающегося конуса позволяет передать импульс от источника к измельчаемому материалу. Боек ударной машины наносит удар по корпусу машины, что приводит к «затягиванию удара» за счет инерции корпуса, что позволяет при коротком времени ударного импульса увеличить время силового воздействия на измельчаемый материал.

Применение ударной машины в качестве источника ударного импульса позволяет перейти от режима измельчения сжатием (раздавливанием) к режиму измельчения несвободным ударом, вызывающим ударно-волновое объемное разрушение материала при распространении упругих волн сжатия и разрежения в измельчаемом материале. Измельчение происходит при относительно низких взаимных скоростях измельчаемого материала и поверхностей рабочих тел, что позволяет резко уменьшить абразивный износ дробящих поверхностей и, соответственно, заражение продуктами износа рабочих поверхностей обрабатываемого материала, в отличие от струйных и центробежно-ударных мельниц, реализующих принцип дробления свободным ударом.

При ударном взаимодействии измельчаемого материала (кварц, гранаты, гранит и другие) с инструментом существует пороговое значение энергии удара, обеспечивающее объемное разрушение материала с минимальной энергоемкостью [Тимонин В.В. Обоснование параметров породоразрушающего инструмента и гидравлической ударной машины для бурения скважин в горных породах. Автореферат диссертации на соискание ученой степени кандидата технических наук, Новосибирск, 2009]. Согласно волновой теории удара, при соударении бойка ударника с наковальней в последней возникает волна сжатия, которая, перемещаясь по наковальне и корпусу ударной машины, достигает внутреннего ударного вращающегося конуса и передает импульс сжатия измельчаемому материалу. Эффективность передачи ударных импульсов зависит от состояния измельчаемого сырья в зазоре между рабочими поверхностями в момент удара. Оптимальная передача энергии удара достигается в том случае, если куски измельчаемого сырья плотно контактируют с рабочими поверхностями в момент прихода волны сжатия. Если такого контакта нет, волна сжатия отражается, не выполняя полезной работы, и хотя она через короткое время возвращается, но теряет часть своей энергии. Волна сжатия формируется в куске обрабатываемого материала, как минимум, с двух сторон (в точках контакта с рабочими поверхностями конусов). При отражении импульса сжатия от свободных поверхностей и структурных неоднородностей измельчаемого тела внутри него генерируются импульсные растягивающие напряжения (волны разрежения).

В твердых и крепких материалах, с высоким модулем упругости возникают большие напряжения сжатия и растяжения. При достижении критических значений напряжений, превышающих предел прочности измельчаемого материала на сжатие и растяжение, происходит разрушение его частиц. Для обеспечения минимальной степени загрязнения продуктами износа ударная вязкость материала рабочих поверхностей конусов должна превышать ударную вязкость измельчаемого материала.

Применение ударной машины позволяет легко регулировать силу и частоту ударов, значительно уменьшая энергоемкость дробления и оптимизируя процесс размола для конкретного вида сырья, что отличает от традиционных конусных мельниц. Так как при работе ударной машины продольный ход ударного конуса сведен к минимуму и действует только ударный разрушающий импульс на измельчаемый материал, исключается переизмельчение и недоизмельчение. Облегчается эвакуация раздробленного материала из рабочего зазора при отдаче рабочих тел во время обратного хода бойка ударной машины.

Из уровня техники широко известно использование источников непрерывно повторяющегося удара в виде ударной машины, например, в перфораторах, предназначенных для пробивки отверстий в железобетонных стенах, отбойных молотках для разрушения монолитов, а также для проходки скважин в различных грунтах.

В известных объектах признак, сходный с отличительным признаком заявляемого устройства, выполняет функцию неконтролируемого по фракционному составу разрушения монолита с постоянным удалением разрушенного материала в процессе внедрения породоразрушающих штырей в монолиты под действием ударной нагрузки.

В заявляемом объекте использование источника импульсного удара позволяет обеспечить контролируемое высокоэффективное измельчение кускового материала путем реализации режима измельчения высокоскоростным несвободным ударом с энергией единичного удара, обеспечивающей объемное разрушение измельчаемого материала при относительно низких взаимных скоростях материала и рабочих поверхностей при кратковременности прилагаемой ударной нагрузки, уменьшающей износ рабочих поверхностей, и, как следствие, уменьшение заражения продуктами износа измельчаемого материала.

Таким образом, неизвестно влияние сходного признака на заявляемый технический результат, что подтверждает соответствие заявляемого решения условию патентоспособности «изобретательский уровень».

Изобретение поясняется чертежами, где на фиг.1 схематически показано заявляемое устройство в разрезе, на фиг.2 схематически показан разрез рабочего зазора между внешним вращающимся конусом и внутренним вращающимся конусом.

Элементы заявляемого измельчителя, представленные на фиг.1 и 2, обозначены следующими цифрами и буквами:

1 - внешний вращающийся конус;

2 - загрузочная воронка;

3 - внутренний вращающийся конус;

4 - упругая опора;

5 - корпус ударной машины;

6 - боек ударной машины;

7 - упругая опора ударной машины;

8 - окно разгрузки;

а - цилиндрический истирающий участок рабочей поверхности

внешнего вращающегося конуса;

б - цилиндрический истирающий участок рабочей поверхности

внутреннего вращающегося конуса;

в - конический дробящий участок рабочей поверхности с углом α

внешнего вращающегося конуса;

г - конический дробящий участок рабочей поверхности с углом α

внутреннего вращающегося конуса;

д - конический дробящий участок рабочей поверхности с углом β

внешнего вращающегося конуса;

е - конический дробящий участок рабочей поверхности с углом β

внутреннего вращающегося конуса.

Измельчитель (фиг.1) состоит из внешнего вращающегося конуса 1, имеющего загрузочную воронку 2, и внутреннего вращающегося конуса 3. Внешний вращающийся конус 1 установлен на упругой опоре 4 с возможностью вращения с угловой скоростью w1. Внутренний вращающийся конус 3 жестко соосно закреплен на корпусе ударной машины 5. Ударная машина размещена на упругой опоре 7 с возможностью вращения с угловой скоростью w2. Упругие опоры 4 и 7, демпфирующие ударные нагрузки жестко закреплены на раме (на чертеже не показана). Закрепление рабочих конусов 1 и 3 в упругих опорах 4 и 7 обеспечивает постоянное поджатие измельчаемого материала и сохранение рабочих настроек в зависимости от требуемых параметров измельчения. Приводы вращения конусов и привод осевого перемещения внутреннего вращающегося конуса для регулировки зазора между конусами 1 и 3 (приводы на чертеже не показаны) закреплены на раме. Окно разгрузки 8 для вывода измельченного материала размещено ниже рабочего зазора между конусами 1 и 3.

Рабочая поверхность внешнего вращающегося конуса 1 имеет цилиндрический истирающий участок а и не менее двух конических дробящих участков в и д (фиг.2). Рабочая поверхность внутреннего вращающегося конуса 3 имеет цилиндрический истирающий участок б и не менее двух конических дробящих участков г и е (фиг.2). Углы наклона конусных поверхностей выбираются исходя из характеристик измельчаемого материала и его исходной крупности, что позволяет одновременно измельчать частицы разных фракций по крупности, увеличивая степень измельчения, и облегчает своевременный вывод измельченной до нужных размеров фракции, увеличивая энергоэффективность процесса измельчения.

Внешний вращающийся конус 1 и внутренний вращающийся конус 3, жестко соосно закрепленный с корпусом ударной машины 5, могут быть установлены относительно друг друга следующими способами:

- соосно;

- с параллельным расположением осей вращения;

- с пересекающимися осями вращения.

Данное конструктивное исполнение разноугольных конических дробящих рабочих поверхностей и цилиндрических истирающих участков внешнего вращающегося конуса 1 и внутреннего вращающегося конуса 3 позволяет совместить в заявляемом устройстве функции ударного измельчения и истирания.

Требуемая крупность измельчения обеспечивается конструктивными размерами и регулировками рабочих зазоров в зависимости от поставленных задач и физических свойств измельчаемых материалов. При этом определяются требуемые угловые скорости вращения w1 и w2, энергия единичного удара ударной машины и частота единичных ударов, достаточных для измельчения при минимальном времени контакта измельчаемого материала с рабочими поверхностями. С целью дополнительного уменьшения абразивного износа рабочих поверхностей необходимо соблюдать следующие условия - отношение угловых скоростей (w1/w2) внутреннего и наружного конусов должно составлять бесконечную иррациональную дробь.

Наличие вращающихся с разной угловой скоростью измельчающих конусных тел, внутреннего и наружного, имеющих разноугольные конусные измельчающие поверхности, в сочетании с ударной машиной, обладающей «затянутым» ударным импульсом, позволяет создать локальные, малоизносные, постоянно меняющиеся зоны измельчения со сверхвысокой концентрацией энергии. В этих зонах измельчаемый материал испытывает периодические сверхкритические механические воздействия на очень высоких скоростях приложения ударных и истирающих нагрузок, обеспечивающих измельчение в очень короткие временные интервалы с высокой эффективностью. При соблюдении условия w1/w2 - бесконечная иррациональная дробь исключаются повторные контакты соприкасающихся точек, что позволяет снизить степень заражения за счет равномерного и очень малого износа.

Устройство работает следующим образом.

В процессе подготовки устройства к работе исходя из физических характеристик исходного материала и требуемой крупности измельчения определяются: рабочий зазор между внешним вращающимся конусом 1 и внутренним вращающимся конусом 3, угловые скорости вращения w1 и w2, энергия единичного удара ударной машины 5 и частота единичных ударов.

Исходный материал через загрузочную воронку 2 поступает в рабочий зазор, образованный внешним вращающимся конусом 1 и внутренним вращающимся конусом 3. В момент соударения бойка ударной машины 6 о верхнюю часть корпуса ударной машины 5 (наковальню) возникает ударный импульс. Снижение амплитуды ударного импульса происходит замедленно за счет инерции массы корпуса ударной машины 5. Другими словами, во время возврата бойка ударной машины 6, то есть во время холостого хода, еще осуществляется действие ударного импульса. В это же время происходит контакт рабочих поверхностей вращающихся конусов в и г, д и е соответственно с частицами измельчаемого материала. В этой зоне контакта происходит объемное разрушение и разупрочнение измельчаемого материала под действием ударного импульса и истирающих нагрузок при вращении конусов 1 и 3. Во время возврата бойка ударной машины 6 (холостого хода) раздробленный материал увлекается по спирали в сторону окна разгрузки 8. Окончательное измельчение до нужных фракций материала происходит в зазоре между цилиндрическими истирающими участками рабочих поверхностей конусов а и б. Измельченный материал выводится через разгрузочное окно 8. Недоизмельченный материал дробится в зазорах между коническими дробящими участками рабочих поверхностей в и г, д и е конусов 1 и 3 (фиг.2) при последующих постоянно повторяющихся рабочих циклах.

Получаемый продукт, при минимальном переизмельчении, будет иметь высокий процент содержания зерен кубовидной формы.

В качестве ударной машины могут быть использованы электрические, пневматические, газожидкостные и жидкостные машины, в которых боек, источник ударных нагрузок, совершает удар по наковальне корпуса ударной машины, то есть в качестве ударной машины используют ударную машину, в которой наковальня закреплена на внутренней поверхности верхней части корпуса.

Конструкция заявляемого конусного ударного истирающего измельчителя обеспечивает измельчение как в газовой, так в жидкой среде.

1. Конусный ударный истирающий измельчитель, включающий внешний вращающийся конус с загрузочной воронкой, установленный в упругой опоре, внутренний вращающийся конус, приводы вращения конусов, привод осевого перемещения внутреннего вращающегося конуса для регулировки зазора, раму, отличающийся тем, что он дополнительно содержит ударную машину в качестве источника непрерывно повторяющегося ударного импульса, при этом внутренний вращающийся конус жестко соосно закреплен на корпусе ударной машины.

2. Измельчитель по п.1, отличающийся тем, что отношение угловых скоростей вращения внешнего и внутреннего конусов образует бесконечную иррациональную дробь.

3. Измельчитель по п.1, отличающийся тем, что при измельчении хрупких малопрочных пород внешний вращающийся конус установлен по отношению к внутреннему вращающемуся конусу соосно.

4. Измельчитель по п.1, отличающийся тем, что при измельчении хрупких особо прочных пород внешний вращающийся конус установлен по отношению к внутреннему вращающемуся конусу параллельно.

5. Измельчитель по п.1, отличающийся тем, что при измельчении пластичных малопрочных пород внешний вращающийся конус установлен по отношению к внутреннему вращающемуся конусу с перекрещивающимися осями.



 

Похожие патенты:

Изобретение относится к измельчению металлов цветной металлургии, в частности проб губчатого титана. .

Изобретение относится к технике измельчения и может быть использовано в комбикормовой, мукомольной, пищевой, медицинской, химической и горнодобывающей промышленности.

Изобретение относится к целлюлозно-бумажной промышленности, в частности к устройствам для механической обработки волокносодержащих материалов, и может быть использовано в химической, строительной промышленности и других отраслях.

Изобретение относится к конической дробилке твердой породы. .

Изобретение относится к дробилкам конусного типа и может быть использовано для более мелкого дробления рудного или каменного материала. .

Изобретение относится к средствам измельчения и калибровки различных материалов и может найти применение в самых различных областях народного хозяйства. .

Изобретение относится к строительной и горной технике. .

Изобретение относится к дробилкам мелкого дробления и может быть наиболее широко использовано в металлургической промышленности для производства мелкодисперсных порошков из ферросплавов, имеющих прочность более 2000 МПа.

Изобретение относится к средствам, ответственным за удерживание и регулирование положения конусной головки дробилки, преимущественно, крупного и мелкого дробления.

Изобретение относится к технике дробления и может найти применение на обогатительных и дробильно-сортировочных фабриках, перерабатывающих руды цветных и черных металлов, а также нерудные строительные материалы.

Изобретение относится к конусным дробилкам, в частности к упорному подшипнику конусной дробилки и способу поддержания ее вертикального вала. Конусная дробилка содержит дробящий конус с дробящей броней, жестко прикрепленный к верхнему участку вертикального вала 2, станину, на которой установлена вторая дробящая броня, образующая вместе с броней разгрузочную щель, упорный подшипник 24, первое пространство 40 и второе пространство 44. Ширина щели регулируется посредством изменения вертикального положения брони относительно вертикального положения брони. Упорный подшипник 24, состоящий из горизонтальных опорных дисков 26, 27, 28, расположен между вертикальным валом 2 и поршнем 30 и выполнен с возможностью передачи усилий от дробящего конуса на станину. При этом первое пространство 40 выполнено с возможностью приема изменяющегося количества жидкости под давлением и образовано поршнем 30 и корпусом 32 поршня, а второе пространство 44 выполнено с возможностью приема через канал 46 жидкости под давлением из первого пространства 40 и расположено между вертикальным валом 2 и поршнем 30. Способ поддержания вертикального вала заключается в передаче жидкости между первым пространством 40 и вторым пространством 44 в процессе работы дробилки 1. Упорный подшипник и способ поддержания вертикального вала позволяет снять нагрузку, действующую в вертикальном направлении, от дробящего конуса 12. 2 н. и 10 з.п. ф-лы, 7 ил.

Изобретение относится к области дробления материалов. Технический результат - повышение эффективности дробления. Способ управления относится к дробилке, состоящей, как минимум, из рамы (6), инструмента дробления (4) и исполнительного механизма (10) для перемещения инструмента дробления. Измеряют данные, относящиеся к значению потребляемой мощности исполнительного механизма и/или дробящего усилия, или гранулометрического состава измельченного материала, изготовленного дробилкой, или количества измельченного материала, изготовленного дробилкой. Изменение частоты цикла перемещения инструмента дробления (4) осуществляют на основе измеренных данных. 3 н. и 6 з.п. ф-лы, 9 ил.

Группа изобретений относится к способу управления работой конусной дробилки, управляющему устройству и конусной дробилке. Способ управления работой дробилки, содержащей первую (4) и вторую (5) дробящие брони, установленные на дробящем конусе (3) и станине (16) станка соответственно, заключается в том, что сначала измеряют параметр, характеризующий напряжения, которым подвергается дробилка во время измельчения материала. Затем определяют среднее значение указанного параметра и величину его отклонения. После этого рассчитывают максимальное значение на основе среднего значения и величины отклонения. Сравнивают максимальное значение с контрольным значением и регулируют работу дробилки на основе сравнения между максимальным значением и контрольным значением. Управляющее устройство содержит средство для приема измерений параметра, характеризующего напряжения, средство для определения среднего значения указанного параметра, средство для определения величины отклонения указанного параметра, средство для расчета максимального значения на основе среднего значения и величины отклонения, средство для сравнения максимального значения с контрольным значением и средство для управления работой дробилки на основе сравнения между максимальным значением и контрольным значением. Дробилка характеризуется наличием вышеуказанного управляющего устройства. Способ и управляющее устройство обеспечивают снижение опасности преждевременного выхода дробилки из строя вследствие усталости металла. 3 н. и 10 з.п. ф-лы, 6 ил.

Группа изобретений относится к дробильному оборудованию и включает конусную дробилку, опорное устройство и эксцентрик для использования в конусной дробилке. Опорное устройство конусной дробилки (10) обеспечивает увеличенный контакт между эксцентриком (22) и нижней втулкой (44) подвижного конуса (24) во время работы в режиме холостого хода. Эксцентрик, вращающийся вокруг неподвижного основного вала (20), вызывает гирационное движение подвижного конуса в сборе для дробления скальной породы внутри разгрузочной щели (34). Нижняя втулка подвижного конуса контактирует с наружной поверхностью эксцентрика. Для увеличения контакта между эксцентриком и нижней втулкой во время условий работы без нагрузки эксцентрик имеет контактную площадку. Для увеличения контакта во время условий работы без нагрузки, сохраняя при этом полный контакт между нижней втулкой подвижного конуса и наружной поверхностью эксцентрика во время работы с полной нагрузкой в дробящем режиме, контактная площадка включает контактную поверхность, углубленную относительно наружной поверхности эксцентрика. 3 н. и 21 з.п. ф-лы, 13 ил.

Изобретение относится к устройствам для дробления и измельчения различных материалов, в частности к конусным дробилкам. Конусная дробилка 10 содержит расположенный с возможностью вращения на вертикальном валу 18 дробильный конус 22, на котором закреплена первая футеровка 30, и корпус 12, на котором закреплена вторая футеровка 32. Вторая футеровка 32 вместе с первой футеровкой 30 образуют рабочий зазор 34. Опорный поршень 36 расположен внутри полости 40 вала 18 и выполнен с возможностью перемещения в вертикальном направлении для регулирования ширины рабочего зазора. Эксцентрик 20 посредством, по меньшей мере, одного радиального подшипника 42 установлен с возможностью вращения вокруг вала 18. Конусная дробилка 10 содержит маслопровод 44, расположенный в полости 40 и проходящий через содержащуюся в опорном поршне 36 поршневую пластину 37 для подачи смазочного масла в камеру 46. Камера 46 расположена, по меньшей мере, частично в полости 40 над пластиной 37 опорного поршня 36. При этом камера 46 для смазочного масла соединена с радиальным подшипником 42 посредством выполненного в валу 18 канала 50. Конусная дробилка характеризуется уменьшенным механическим истиранием и износом радиальных подшипников. 11 з.п. ф-лы, 4 ил.

Изобретение относится к системе для головки конусной дробилки, содержащей корпус, верхний кожух и вертикальный вал, установленные в корпусе, в котором коническая головка расположена внутри верхнего кожуха, образуя полость дробления между ними, с возможностью колебаний посредством эксцентрикового элемента. При этом система также содержит тормозную втулку и кольцевую колодку, прижатые друг к другу посредством действия внутренней центробежной силы, действующей на конусную головку при работе дробилки «без нагрузки» с возможностью образования тормозящей силы трения, противоположной влекущей силе трения, образуемой между конусной головкой и эксцентриковым элементом. Причем тормозная втулка и кольцевая колодка имеют осевое расстояние от центра масс конусной головки, которое меньше, чем осевое расстояние между упомянутым центром масс и областью, в которой действует влекущая сила трения в области минимального эксцентриситета эксцентрикового элемента, таким образом, что упомянутая тормозная сила трения превосходит влекущую силу трения. Система предотвращает вовлечение во вращение конусной головки посредством эксцентрикового элемента. 9 з.п. ф-лы, 7 ил.

Изобретение относится к сельскохозяйственному производству, а именно к машинам для измельчения концентрированных кормов. Измельчитель фуражного зерна содержит корпус, выполненный в виде трубы, жестко закрепленной на раме. Сбоку к корпусу крепится загрузочная воронка. Внутри по оси корпуса находится вал, вращающийся в подшипниковых узлах. В верхней части вала последовательно друг за другом закреплены приемный скребок, распределительный конус, имеющий винтовые насечки, напротив которого на внутренних стенках корпуса зафиксирована распределительная коническая втулка, имеющая гладкую поверхность. Ниже, непосредственно примыкая к распределительному конусу, зафиксирован рабочий конус, имеющий основные насечки в виде пазов. Напротив рабочего конуса на внутренних стенках корпуса закреплена рабочая коническая втулка, имеющая также, как и рабочий конус, основные и дополнительные насечки в виде аналогичных пазов, но направленных в противоположную сторону к пазам рабочего конуса и обеспечивающих угол защемления материала между пазами рабочего конуса и конической втулки не менее 45º. В нижней части вала под рабочим конусом установлен выгрузной скребок, напротив которого в корпусе имеется выгрузной лоток. Для осуществления вертикальной регулировки зазора между рабочими органами используется винт. Величина зазора фиксируется гайкой. На раме установлен электродвигатель, соединенный с валом при помощи клиноременной передачи. Устройство обеспечивает снижение энергоемкости процесса измельчения фуражного зерна и повышение производительности. 2 ил.

Изобретение относится к устройствам для тонкого измельчения, смешивания и механической активации материалов, в том числе с наноструктурой, и может быть использовано в различных отраслях промышленности, где применяется дезинтеграторная технология. Дезинтегратор содержит корпус с загрузочным и разгрузочным отверстиями, в котором вертикально установлены конической формы нижний и верхний рабочие органы, имеющие ребра V-образной формы, зазор между рабочими органами, сужающийся книзу и образующий рабочую камеру. Под рабочими органами в нижней части корпуса установлен сито-разделитель с желобами для разделения измельчаемого материала по фракциям. Валы рабочих органов установлены на двух опорах. При этом вал нижнего рабочего органа расположен внутри вала верхнего рабочего органа. Дезинтегратор обеспечивает повышенное качество дробления и измельчения. 2 з.п. ф-лы, 2 ил.

Сборный противовес (48) конусной дробилки (10) для дробления горной породы содержит корпус, выполненный из основного материала. Первый и второй балласты расположены на корпусе и выполнены из различных материалов, отличных от основного. Плотность материала первого балласта больше, чем плотность второго. Корпус содержит две секции, объединенные для образования кольцевой формы. Одна из секций снабжена грузом и включает множество открытых отсеков. Каждый из балластов расположен в, по меньшей мере, одном из отсеков. Изобретение позволяет регулировать массу противовеса без увеличения его размера и обеспечивает баланс движения эксцентрика и головки конусной дробилки. 3 н. и 17 з.п. ф-лы, 5 ил.

Изобретение относится к устройствам для дробления и измельчения различных материалов и может быть использовано в горно-обогатительной, строительной, дорожной и других отраслях промышленности. Конусная дробилка содержит корпус 3 с дебалансными вибраторами 5 и коническим кольцом 4, внутри которого помещен дробящий конус 11, смонтированный на станине 1, и гидроцилиндр 15 вертикального перемещения конуса 11. Дробилка оборудована радиально поршневым насосом 17, состоящим из вала с эксцентриком 19, поршня 23 и цилиндра 24, причем цилиндр 24 непосредственно соединен с гидроцилиндром 15. В конусной дробилке обеспечивается повышение степени измельчения сырья и увеличение срока службы конуса. 1 ил.
Наверх