Способ получения натрия-22 из облученной протонами алюминиевой мишени

Изобретение относится к радиохимии. Способ получения натрия-22 из облученной протонами алюминиевой мишени включает растворение облученной алюминиевой мишени в концентрированной соляной кислоте, осаждение части ионов алюминия и примесных тяжелых металлов из раствора алюминиевой мишени в виде гидратов окислов, сорбцию ионов алюминия и натрия-22 из полученного раствора на катионообменной смоле Dowex 50w и десорбцию натрия-22 с катионообменной смолы Dowex 50w. Изобретение позволяет упростить технологию выделения натрия-22. 3 з.п. ф-лы, 1 ил.

 

Изобретение относится к радиохимии и может быть использовано для получения натрия-22, применяемого для производства источников гамма и позитронного излучения.

Известен способ получения натрия-22 путем его отгонки из расплавленной облученной протонами алюминиевой мишени и последующего улавливания на холодной поверхности (Griffm H.C., Steiger Т.Д. «System for separating radioactiv Na from Al». US Patent 4894208).

Недостатки известного способа: сложное аппаратурное оформление и потенциальная опасность возможного выброса радиоактивного натрия в окружающую воздушную среду.

Наиболее близким по технической сущности заявленному способу является способ получения натрия-22 (Taylor W.A.; Heaton R.C. «Production of sodium-22 from proton irradiated alumunwn» US Patent 5487880).

Известный способ включает растворение облученной протонами алюминиевой мишени, осаждение части ионов алюминия из раствора алюминиевой мишени, сорбцию ионов алюминия и натрия-22 из полученного раствора на катионообменной смоле и десорбцию натрия-22 с катионообменной смолы.

Недостатки известного способа:

- часть ионов алюминия осаждают из раствора алюминиевой мишени в виде хлорида алюминия, что требует многократного повторения этой операции;

- раствор, полученный после осаждения части ионов алюминия, очищают от примесей меди и железа сорбцией на анионообменной смоле.

Технический результат изобретения заключается в упрощении технологии выделения натрия-22.

Для достижения технического результата в способе получения натрия-22 из облученной протонами алюминиевой мишени, включающем растворение облученной алюминиевой мишени, осаждение части ионов алюминия и примесных тяжелых металлов из раствора алюминиевой мишени, сорбцию натрия-22 и остаточных ионов алюминия из полученного раствора на катионообменной смоле и десорбцию натрия-22 с катионообменной смолы, предлагается ионы алюминия и примесных тяжелых металлов осаждать из раствора алюминиевой мишени в виде гидрата окиси алюминия и гидратов окислов тяжелых металлов.

В частных случаях применения способа предлагается:

- алюминиевую мишень растворять в концентрированной соляной кислоте;

- полученный кислый раствор натрия-22 очищать от следов катионов на катионообменной смоле;

- в качестве катионообменной смолы использовать Dowex 50w.

Сущность изобретения поясняется представленной на фиг.1 блок-схемой процесса получения раствора натрия-22.

На фигуре 1 приняты следующие обозначения: 1 - растворение облученной протонами алюминиевой мишени, 2 - упаривание раствора до минимального объема, 3 -осаждение части ионов алюминия и примесных тяжелых металлов в виде гидратов окислов, 4 - упаривание раствора натрия-22 и оставшегося алюминия с одновременным разложением избыточного карбоната аммония, 5 - корректировка кислотности раствора, 6 - очистка ионов натрия-22 от алюминия на катионообменной смоле (операции 5 и 6 повторяют дважды), 7 - очистка полученного кислого раствора натрия-22 от следов катионов сорбцией на катионообменной смоле.

Способ применяют следующим образом.

Растворяют облученную протонами алюминиевую мишень в 3÷12 М растворе соляной кислоты с образованием раствора, содержащего ионы алюминия и натрия.

Упаривают раствор алюминиевой мишени, содержащий ионы алюминия, натрия и примесных тяжелых металлов, до минимального объема.

Осаждают часть алюминия и примесных тяжелых металлов в виде гидратов окислов путем добавления к раствору 3÷4 кратного избытка карбоната аммония. Отфильтровывают осадок, промывают его 1÷2 М раствором карбоната аммония, промывной раствор объединяют с фильтратом.

Упаривают полученный раствор, содержащий ионы натрия, оставшиеся ионы алюминия и избыточный карбонат аммония досуха, при этом карбонат аммония разлагается и улетучивается в виде газов.

Растворяют сухой остаток в 0,01÷0,06 М соляной кислоте. Пропускают полученный раствор через колонку с катионообменной смолой, при этом ионы алюминия и натрия сорбируются на колонке. Промывают катионообменную колонку дистиллированной водой до появления ионов натрия на выходе из колонки.

Десорбируют натрий с катионообменной колонки 0,1÷0,5 М раствором соляной кислоты. Полученный десорбат упаривают досуха.

Растворяют сухой остаток в 0,01÷0,06 М соляной кислоте. Пропускают полученный раствор через вторую колонку с катионообменной смолой. Промывают колонку дистиллированной водой до появления ионов натрия на выходе из колонки.

Десорбируют натрий с колонки 0,1÷0,5 М раствором соляной кислоты. Десорбат упаривают досуха.

Сухой остаток растворяют в требуемом объеме соляной или азотной кислоты необходимой концентрации.

Пример конкретного применения способа получения натрия-22.

Растворяют облученную на ускорителе протонами алюминиевую мишень в 12 М растворе соляной кислоты с образованием раствора, содержащего ионы алюминия и натрия.

Упаривают полученный раствор, содержащий ионы алюминия, натрия-22 и примесных тяжелых металлов до минимального объема.

Осаждают часть ионов алюминия и примесных тяжелых металлов в виде гидратов окислов путем добавления к раствору 3, 5-кратного избытка карбоната аммония. Отфильтровывают осадок гидрата окиси алюминия. Промывают осадок гидрата окиси алюминия 1,5 М раствором карбоната аммония, при этом промывной раствор объединяют с фильтратом.

Упаривают полученный раствор, содержащий ионы натрия, оставшиеся ионы алюминия и избыточный карбонат аммония, досуха, при этом карбонат аммония разлагается и улетучивается в виде газов.

Растворяют сухой остаток в 0,01 М растворе соляной кислоты. Пропускают полученный раствор через колонку с катионообменной смолой Dowex 50w.

Промывают колонку дистиллированной водой до появления ионов натрия на выходе из колонки. Десорбируют натрий с катионообменной колонки 0,2 М раствором соляной кислоты. Полученный десорбат упаривают досуха.

Растворяют сухой остаток в 0,01 М растворе соляной кислоты. Пропускают полученный раствор через вторую колонку с катион обменной смолой Dowex 50w. Промывают колонку дистиллированной водой до появления ионов натрия на выходе из колонки. Десорбируют натрий-22 с катионообменной колонки 0,2 М раствором соляной кислоты. Десорбат упаривают досуха.

Сухой остаток растворяют в требуемом объеме соляной или азотной кислоты необходимой концентрации. Полученный раствор является готовым раствором натрия-22.

1. Способ получения натрия-22 из облученной протонами алюминиевой мишени, включающий растворение облученной алюминиевой мишени, осаждение части ионов алюминия и примесных тяжелых металлов из раствора алюминиевой мишени, сорбцию натрия-22 и остаточных ионов алюминия из полученного раствора на катионообменной смоле и десорбцию натрия-22 с катионообменной смолы, отличающийся тем, что ионы алюминия и примесных тяжелых металлов осаждают из раствора алюминиевой мишени в виде гидрата окиси алюминия и гидратов окислов тяжелых металлов.

2. Способ по п.1, отличающийся тем, что алюминиевую мишень растворяют в концентрированной соляной кислоте.

3. Способ по п.1, отличающийся тем, что полученный кислый раствор натрия-22 очищают от следов катионов на катионообменной смоле.

4. Способ по п.1, отличающийся тем, что в качестве катионообменной смолы используют Dowex 50w.



 

Похожие патенты:

Изобретение относится к радиохимии и может быть использовано для получения радиофармпрепарата на основе радионуклида рений-188. .

Изобретение относится к области технологии изготовления закрытых радионуклидных источников фотонного и бета-излучений. .

Изобретение относится к ядерной технике, а именно к промышленной гамма-дефектоскопической аппаратуре. .

Изобретение относится к области ядерной техники и радиохимии. .

Изобретение относится к области ядерной энергетики, в частности к конструкции ампулы облучательного устройства ядерного реактора, и предназначено для производства источников гамма-излучения.

Изобретение относится к области изготовления источников излучения, а именно к области изготовления источников позитронного излучения. .
Изобретение относится к области атомной техники. .

Изобретение относится к атомной технике и может быть использовано для изготовления радионуклидных источников. .

Изобретение относится к атомной технике и может быть использовано в гамма-установках для радиационной обработки материалов. .
Изобретение относится к области медицины. .
Изобретение относится к области радиоактивных источников, в частности к радионуклидным источникам гамма-излучения, и может найти применение для радиационной гамма-дефектоскопии. Заявленный радионуклидный источник излучения для радиационной гамма-дефектоскопии включает герметичную капсулу из ванадия, содержащую в качестве излучающего вещества облученный сплав селен-ванадий, причем облученный сплав селен-ванадий дополнительно содержит, по меньшей мере, один редкоземельный элемент, выбранный из группы: лантан, церий, самарий, неодим и гадолиний, при следующем соотношении компонентов, мас.%: ванадий 13-20, редкоземельный элемент из группы: лантан, церий, неодим, самарий, гадолиний 0,01-0,1, селен остальное. Технический результат заключается в снижении интенсивности взаимодействия излучающего вещества на основе селена с ванадиевой капсулой, повышении выхода годного при изготовлении источника излучения, обеспечении целостности, устойчивости формы и стабильности излучения источника на основе гамма-радиоактивного изотопа селена. 1 з.п. ф-лы.

Изобретение относится к радиохимии. Способ получения стронция-82 включает выполнение следующих операций: облучение в потоке ускоренных заряженных частиц мишени, представляющей собой стальную оболочку, заполненную металлическим рубидием, вскрытие оболочки облученной мишени в среде газа, не взаимодействующего с металлическим рубидием, плавление облученного металлического рубидия в оболочке и подачу его расплава в химический реактор, подачу в химический реактор закиси азота порциями, по меньшей мере, до прекращения роста температуры в химическом реакторе при подаче свежей порции закиси азота, растворение в химическом реакторе образовавшихся взрывобезопасных и пожаробезопасных солей рубидия и находящегося в них стронция-82 1,5÷4,5 М раствором азотной кислоты, выделение стронция-82 из полученного раствора сорбцией. В частных случаях реализации способ включает: использование стронций-специфического сорбента 4,4′(5′)-ди(трет-бутилциклогексано)-18-краун-6, нанесенного на полимер полиакрилатной структуры, очистку раствора стронция-82 от следов краун-эфира на колонке с катионообменной смолой, корректировку объема и кислотности раствора стронция-82. 3 з.п. ф-лы, 1 ил.

Изобретение относится к области коммунального хозяйства и может использоваться для сортировки твердых отходов, преимущественно бытового, промышленного и коммерческого контейнерного мусора. Заявленный способ сортировки отходов включает использование площадки выгрузки отходов полигона (1) в качестве дополнительного сортировочного модуля и буферной емкости для отходов. При этом в указанном процессе используется гидромеханическое фракционирование отходов. Техническим результатом является обеспечение возможности непрерывного осуществления процесса сортировки отходов, повышение эффективности и качества сортировки отходов, сокращение использования ручного труда и уменьшение габаритов оборудования для сортировки отходов. 2 з.п. ф-лы, 3 ил.

Изобретение относится к области коммунального хозяйства и может использоваться для сортировки твердых отходов, преимущественно бытового, промышленного и коммерческого контейнерного мусора. Заявленная линия сортировки отходов включает площадку выгрузки отходов полигона (1), используемую в качестве дополнительного сортировочного модуля и буферной емкости для отходов. При этом в заявленном изобретении предусмотрено использование подземного модуля гидромеханического фракционирования отходов (8). Техническим результатом является обеспечение непрерывности процесса сортировки отходов, повышение эффективности и качества сортировки отходов, а также сокращение габаритов оборудования для сортировки. 7 з.п. ф-лы, 3 ил.

Изобретение относится способу переработки радиоактивного щелочного металла. Заявленный способ включат подачу газа-реагента в нижнюю камеру (6) химического реактора, заполнение верхней камеры (1) химического реактора газом-реагентом из нижней камеры (6) через газопроницаемую перегородку (2) и подачу радиоактивного расплавленного щелочного металла в верхнюю камеру (1) химического реактора. Далее осуществляют распыление расплавленного щелочного металла отбойником (7) струи щелочного металла в верхней части верхней камеры (1), взаимодействие в верхней камере (1) химического реактора распыленного щелочного металла и газа-реагента при постоянном поддерживании избыточного давления газа-реагента в верхней камере (1) с получением твердых продуктов переработки. Накопление твердых продуктов переработки предусмотрено в нижней части верхней камеры (1) с возможностью их извлечения. Техническим результатом является повышение производительности периодического способа переработки радиоактивного щелочного металла, отсутствие калиброванных забивающихся отверстий для подачи расплавленного щелочного металла, а также отсутствие циркуляции газа через химический реактор и уноса из него с газом радиоактивных частиц. 2 з.п. ф-лы, 1 ил.

Изобретение относится к химическому реактору для переработки радиоактивного щелочного металла. Заявленное устройство включает корпус реактора (5), полость которого разделена газопроницаемой перегородкой (2) на нижнюю камеру (8) и верхнюю камеру (1). При этом нижняя камера оснащена трубопроводом подачи в нее газа-реагента (14); верхняя камера оснащена трубопроводом подачи в нее расплавленного щелочного металла (15). Для охлаждения корпуса реактора в заявленном устройстве предусмотрена рубашка (11). Напротив трубопровода подачи расплавленного щелочного металла (15), в верхней части верхней камеры (1), с зазором от трубопровода установлен отбойник струи щелочного металла (9) и патрубок (10) с шибером (16). В частных случаях исполнения химического реактора под отбойником струи щелочного металла может быть установлена жалюзийная решетка (3) с изменяемым углом наклона ее жалюзи. Отбойник струи щелочного металла может быть оснащен электроприводом и может быть также соединен с генератором ультразвуковых колебаний. Шибер патрубка может быть оснащен электроприводом. Кроме того, в состав химического реактора могут входить запорный вентиль (4), манометр (6), напорный трубопровод (7) охлаждающей жидкости, сливной трубопровод (13) вытяжной вентиляции. Техническим результатом является возможность периодической переработки щелочного металла при исключении уноса радиоактивных частиц. 4 з.п. ф-лы, 1 ил.

Изобретение относится к средствам получения источников ионизирующего излучения. Заявленный способ герметизации источника ионизирующего излучения (ИИИ) включает герметизацию ИИИ, помещенного в капсулу (19), загерметизированную аргонодуговой сваркой. В качестве ИИИ используется заготовка из кобальта, при этом капсула выполнена в виде стакана из нержавеющей стали (4). Герметизация капсулы производится герметичной крышкой (20) из нержавеющей стали, приваренной по окружности стыка капсулы и крышки. Аргонодуговая сварка производится неплавящимся электродом без присадок в среде защитного газа в радиационно-защитных «горячих» камерах. Заявленное устройство включает капсулу с ИИИ и устройство аргонодуговой сварки, закрепленное в сварочной головке (10), которая закреплена в механизме перемещения (6). Сварочная головка состоит из корпуса (11), устройства для подачи электричества (12), штуцера (13) для подвода защитного газа и сварочного сопла (14). Техническим результатом является возможность дистанционного использования способа и устройства герметизации источника ионизирующего излучения в радиационно-защитных «горячих» камерах. 2 н. и 5 з. п. ф-лы, 2 ил.

Изобретение относится к области изготовления двусторонних герметичных изотопных источников осколков деления на основе калифорния-252, применяемых в ядерно-физических экспериментах, основанных на время-пролетном методе. В заявленном изобретении для того, чтобы двусторонний источник осколков деления был герметичным и в то же время спектрометрическим, т.е. с энергетическим спектром осколков деления, в котором возможно выделить тяжелую и легкую группы, предусмотрено использование в качестве подложки (1) прозрачной для осколков деления (~0,15 мкм) пленки из окиси алюминия, на которую наносят активное пятно (2) из радиохимически чистого раствора калифорния-252. При этом полученный источник вначале упрочняют с обеих сторон тонкими слоями золота (3) толщиной 50-100 мкг/см2, а затем герметизируют слоями никеля (4). При этом энергетические спектры осколков деления, вылетающих с обеих сторон, идентичны. Техническим результатом является обеспечение возможности использования в экспериментах герметичного двустороннего спектрометрического источника источника, в том числе во время-пролетных экспериментах. 2н.п. ф-лы, 1 ил., 1 пр.

Изобретение относится к способу получения высокочистых соединений 177Lu, свободных от носителя, для медицинских целей и/или диагностических целей. Способ получения соединений 177Lu из соединений l76Yb, облучаемых тепловыми нейтронами, включает введение в первую колонку, заполненную катионообменным материалом, исходных веществ, растворенных в минеральной кислоте и содержащих l77Lu и 176Yb в примерном массовом соотношении от 1:102 до 1:1010, замену протонов катионообменного материала на ионы аммония с использованием раствора NH4Cl, промывку катионообменного материала водой, соединение выходного отверстия первой колонки и входного отверстия второй колонки, введение воды и хелатообразующего агента во входное отверстие первой колонки, чтобы элюировать соединения 177Lu из первой и второй колонок, определение уровня радиоактивного излучения на выходе второй колонки для подтверждения элюирования соединений 177Lu, сбор первого элюата 177Lu из выходного отверстия второй колонки в сосуд, протонирование хелатообразующего агента, загрузка конечной колонки путем непрерывной подачи полученного элюата l77Lu во входное отверстие конечной колонки, промывку от хелатообразующего агента разбавленной минеральной кислотой, удаление следов ионов других металлов из раствора l77Lu путем промывки катионообменного материала конечной колонки минеральной кислотой в разных концентрациях и элюирование ионов 177Lu из конечной колонки с помощью высококонцентрированной минеральной кислоты. Изобретение позволяет получать миллиграммовые количества высокочистых соединений 177Lu, свободных от носителя. 4 н. и 12 з.п. ф-лы, 4 ил., 1 пр.
Наверх