Пьезоэлектрический керамический материал



Пьезоэлектрический керамический материал
Пьезоэлектрический керамический материал
Пьезоэлектрический керамический материал
Пьезоэлектрический керамический материал
Пьезоэлектрический керамический материал

 


Владельцы патента RU 2498960:

Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Южный федеральный университет" (Южный федеральный университет) (RU)

Изобретение относится к пьезоэлектрическим керамическим материалам на основе ниобата натрия и может быть использовано для создания низкочастотных приемных устройств - гидрофонов, микрофонов, гидроприемников, а также для создания низкочастотных электромеханических преобразователей, возбуждающих металлические резонаторы с высокой скоростью звука. Пьезоэлектрический керамический материал содержит оксиды натрия, калия, кадмия и ниобия при следующем соотношении компонентов, мас.%: Na2O 8,75÷9,72, K2O 5,31÷5,38, CdO 9,15÷10,88, Nb2O5 75,05÷75,77. Материал изготавливается по обычной керамической технологии. Технический результат изобретения - материал обладает высокими значениями относительной диэлектрической проницаемости поляризованных образцов, скорости звука, механической добротности. 3 пр., 5 ил.

 

Изобретение относится к пьезоэлектрическим керамическим материалам на основе ниобата натрия и может быть использован для создания низкочастотных приемных устройств - гидрофонов, микрофонов, сейсмоприемников, а также для создания низкочастотных электромеханических преобразователей, возбуждающих металлические резонаторы с высокой скоростью звука. Для указанных применений материал должен обладать высокими значениями относительной диэлектрической проницаемости, ε 33 T / ε 0 , (1300÷2000), скорости звука, V 1 E , (4.5÷5.5 км/с), механической добротности, Qm, (>1000).

Известен пьезоэлектрический керамический материал на основе ниобата натрия, включающий Na2O, Li2O, Nb2O5, PbO, TiO2, ZrO2. Материал имеет ε 33 T / ε 0 = 2000 ÷ 2300 , V 1 E = 3.15 ÷ 4.0 км/с, Qm=125÷145 (Е.Г. Фесенко, O.H. Разумовская, А.Я. Данцигер, Л.А. Резниченко. Пьезоэлектрический керамический материал // Авторское свидетельство №601260 от 14.12.1977, по заявке 2421001 от 18.11.1976 (приоритет), опубликовано 05.04.1978. Бюллетень №13). Для указанных применений материал имеет недостаточно высокие значения Qm. Кроме того, материал в своем составе содержит токсичный элемент Pb.

Известен пьезоэлектрический керамический материал на основе ниобата натрия, включающий Na2O, Li2O, Nb2O5, CdO. Материал имеет ε 33 T / ε 0 = 1070 ÷ 1240 . Для указанных применений материал имеет заниженное значение ε 33 T / ε 0 (Е.Г. Фесенко, О.Н. Разумовская, А.Я. Данцигер, Л.А. Резниченко, А.Н. Клевцов. Пьезоэлектрический керамический материал. // Авторское свидетельство №619470 от 21.04.1978, по заявке 2421002 от 18.11.1976 (приоритет), опубликовано 15.08.1978. Бюллетень №30).

Известен пьезоэлектрический керамический материал на основе ниобата натрия, включающий Na2O, Li2O, Nb2O5, PbO. Материал имеет ε 33 T / ε 0 = 330 ÷ 1080 , V 1 E = ( 4.89 ÷ 5.15 ) км/с, Qm=70÷100. Для указанных применений материал имеет недостаточно высокие значения ε 33 T / ε 0 и Qm (Е.Г. Фесенко, Л.А. Резниченко, О.Н. Разумовская, Л.С. Иванова, Л.А. Шилкина, С.И. Дудкина. Пьезоэлектрический керамический материал. // Авторское свидетельство №1425181 от 22.05.1988, по заявке 4215651 от 26.03.1987 (приоритет), опубликовано 23.09.1988. Бюллетень №35).

Наиболее близким заявляемому материалу по технической сущности и достигаемому результату является пьезоэлектрический керамический материал на основе ниобата натрия, включающий Na2O, Li2O, Nb2O5, Sb2O5. Материал имеет ε 33 T / ε 0 = 1510 ÷ 2700 , V 1 E = ( 5.50 ÷ 5.65 ) км/с, Qm=300÷632 (Е.Г. Фесенко, Л.А. Резниченко, О.Н. Разумовская, Л.С. Иванова, Н.В. Дергунова. Пьезоэлектрический керамический материал. // Авторское свидетельство №1294791 от 8.11.1986, по заявке 3967500 от 14.10.1985 (приоритет), опубликовано 07.03.1987. Бюллетень №9) (прототип). Для указанных применений материал имеет недостаточно высокое значение Qm.

Задачей изобретения является повышение Qm (до значений >1000) при сохранении высоких значений ε 33 T / ε 0 и V 1 E .

Указанный результат достигается тем, что пьезоэлектрический керамический материал на основе ниобата натрия, включающий Na2O, Nb2O5, дополнительно содержит K2O и CdO при следующем соотношении компонентов, в масс.%:

Na2O=8.75÷9.72, K2O=5.31÷5.38,
CdO=9.15÷10.88, Nb2O5=75.05÷75.77

Состав материала отвечает формуле (NaaKbCdc)NbO3, где

a=(0.5÷0.55 мол.%), b=(0.2 мол.%), c=(0.125÷0.15 мол.%).

a+b+2c=100%.

1. Пример 1 изготовления пьезоэлектрического керамического материала (здесь и далее нумерация примеров соответствует таблице1).

Материал изготавливался по обычной керамической технологии следующим образом. В качестве исходных реагентов использовались гидрокарбонаты, карбонаты и оксиды следующих квалификаций: NaHCO3 - «чда», KHCO3 - «ч», Nb2O5 - «NbO-РТ», CdO - «хч».

Синтез осуществлялся путем однократного обжига смесей сырьевых компонентов: NaHCO3, KHCO3, Nb2O5, CdO, взятых в количествах (масс %, в случае NaHCO3, KHCO3 в пересчете на соответствующие оксиды): Na2O=6.82, K2O=5.22, Nb2O5=73.63, CdO=14.33; с промежуточным помолом синтезированного продукта. Температуры обжига при синтезе Тсинт.1=1220 K, Тсинт.2=1240 K, длительности изотермических выдержек τсинт.1=5 ч, τсинт.2=10 ч. Спекание образцов в виде столбиков ⌀12 мм, высотой 15÷18 мм осуществлялось при Тсп.=1460 K, длительность изотермической выдержки τсп=1.5 ч. Металлизация (нанесение электродов) производилась путем нанесения на плоские поверхности предварительно сошлифованных до толщины 1 мм образцов серебросодержащей пасты и последующего ее вжигания при температуре Твжиг.=1070 K в течение 0.5 ч. Образцы поляризовали в полиэтиленсилоксановой жидкости при температуре 420 K в течение 15 мин. в постоянном электрическом поле напряженностью 3.6 кВ/см.

2. Пример 4 изготовления пьезоэлектрического керамического материала.

Материал изготавливался по обычной керамической технологии следующим образом. В качестве исходных реагентов использовались гидрокарбонаты, карбонаты и оксиды следующих квалификаций: NaHCO3 -«чда», KHCO3 - «ч», Nb2O5 - «NbO-РТ», CdO - «хч».

Синтез осуществлялся путем однократного обжига смесей сырьевых компонентов: NaHCO3, KHCO3, Nb2O5, CdO, взятых в количествах (масс %, в случае NaHCO3, KHCO3 в пересчете на соответствующие оксиды): Na2O=9.23, K2O=5.34, Nb2O5=75.42, CdO=10.01; с промежуточным помолом синтезированного продукта. Температуры обжига при синтезе Тсинт.1=1220 K, Тсинт.2=1240 K, длительности изотермических выдержек τсинт.1=5 ч, τсинт.2=10 ч. Спекание образцов в виде столбиков ⌀12 мм, высотой 15÷18 мм осуществлялось при Тсп.=1460 K, длительность изотермической выдержки τсп=1.5 ч. Металлизация (нанесение электродов) производилась путем нанесения на плоские поверхности предварительно сошлифованных до толщины 1 мм образцов серебросодержащей пасты и последующего ее вжигания при температуре Твжиг.=1070 K в течение 0.5 ч. Образцы поляризовали в полиэтиленсилоксановой жидкости при температуре 420 K в течение 15 мин. в постоянном электрическом поле напряженностью 3.0 кВ/см.

3. Пример 7 изготовления пьезоэлектрического керамического материала.

Материал изготавливался по обычной керамической технологии следующим образом. В качестве исходных реагентов использовались гидрокарбонаты, карбонаты и оксиды следующих квалификаций: NaHCO3 - «чда», KHCO3 - «ч», Nb2O5 - «NbO-РТ», CdO - «хч».

Синтез осуществлялся путем однократного обжига смесей сырьевых компонентов: NaHCO3, KHCO3, Nb2O5, CdO, взятых в количествах (масс %, в случае NaHCO3, KHCO3 в пересчете на соответствующие оксиды): Na2O=11.65, K2O=5.48, Nb2O5=77.18, CdO=5.69; с промежуточным помолом синтезированного продукта. Температуры обжига при синтезе Тсинт.1=1220 K, Тсинт.2=1240 K, длительности изотермических выдержек τсинт.1=5 ч, τсинт.2=10 ч. Спекание образцов в виде столбиков ⌀12 мм, высотой 15÷18 мм осуществлялось при Тсп.=1410 K, длительность изотермической выдержки τсп=1.5 ч. Металлизация (нанесение электродов) производилась путем нанесения на плоские поверхности предварительно сошлифованных до толщины 1 мм образцов серебросодержащей пасты и последующего ее вжигания при температуре Твжиг.=1070 K в течение 0.5 ч. Образцы поляризовали в полиэтиленсилоксановой жидкости при температуре 420 K в течение 15 мин. в постоянном электрическом поле напряженностью 3.5 кВ/см.

Электрофизические характеристики определяли в соответствии с ОСТ 11.0444-87. Измерялись относительные диэлектрические проницаемости поляризованных образцов, ε 33 T / ε 0 0 - диэлектрическая постоянная) образцов, механическая добротность, Qm, скорость звука, V 1 E .

На фиг.1, где изображена таблица 1, приведены основные характеристики материала в зависимости от состава, а на фиг.2, где изображена таблица 2, приведены основные электрофизические характеристики оптимальных составов предлагаемого материала.

Полученных экспериментальные данные (фиг.1, табл.1, примеры №№3-5) свидетельствуют о том, что пьезоэлектрический керамический материал предлагаемого состава обладает оптимальными, с точки зрения решаемой технической задачи, характеристиками в указанном интервале величин концентраций.

Таким образом, положительный эффект предлагаемого материала обусловлен его качественным и количественным составом, что подтверждают также примеры №№1, 2, 6, 7, демонстрирующие ухудшение свойств за пределами предлагаемой области концентраций компонентов. Нарушение этих пределов приводит, как видно из табл.1 (фиг.1), к снижению Qm, ε 33 T / ε 0 при сохранении V 1 E .

Предлагаемый пьезоэлектрический керамический материал получают по обычной керамической технологии без использования дорогостоящего метода горячего прессования (как в прототипе). Это значительно упрощает и удешевляет технологический процесс.

Данные, приведенные на фиг.1, 2 (табл.1, 2), подтверждают преимущества пьезоэлектрического керамического материала по сравнению с материалом-прототипом, а именно, повышение Qm (в полтора раза) до значений 1000÷1060 при сохранении высоких ε 33 T / ε 0 = 1356 ÷ 2024 и V 1 E (4.56÷4.74) км/с. Эффект повышения Qm достигается по существу дополнительным введением в материал, включающий Na2O и Nb2O5, оксидов калия и кадмия.

Высокое значение относительной диэлектрической проницаемости ε 33 T / ε 0 , предлагаемого керамического материала (>2000) определяет его основное назначение - низкочастотные приемные устройства - гидрофоны, микрофоны, сейсмоприемники, а также для создания низкочастотных электромеханических преобразователей, возбуждающих металлические резонаторы с высокой скоростью звука. Это следует, прежде всего, из того, что твердые растворы (TP) на основе ниобатов щелочных металлов (НЩМ) могут использоваться в качестве резонансных элементов пьезоэлектрических преобразователей в высокочастотных (ВЧ) (3.0÷30.0 МГц) и (ОВЧ) и (30.0÷300.0) МГц, среднечастотном (СЧ) (0.3÷3.0) МГц; низкочастотном (НЧ) (30.0÷300.0) кГц) и ультранизкочастотном (ОНЧ) (<30.0 кГц) диапазонах. Классификация электромагнитных волн по частотным диапазонам представлена в (Носов Ю.Н., Кукаев А.А. Энциклопедия отечественных антенн. / Справочное издание. М., 2001. С.49): высокие частоты (ВЧ) - (3.0÷30.0) МГц; очень высокие частоты (ОНЧ) - (30.0÷300.0) МГц; средние частоты (СЧ) - (300.0÷3000.0) кГц; низкие частоты (НЧ) - (30.0÷300.0) кГц; очень низкие частоты (ОНЧ) - (3.0÷30.0) кГц.

При условии согласования преобразователя с нагрузкой (Ri=Rн) (обычно реализуемое в выпускаемой промышленностью радиоэлектронной аппаратуре выходное сопротивление Rн~50 Ом для высоких и средних частот и 1000 Ом для низких частот), используя формулу для емкостного сопротивления преобразователя: Ri=1/ωC, где Ri - емкостное сопротивление преобразователя, Ом; ω - круговая частота, Гц; C - емкость, Ф, можно приблизительно оценить интервалы значений емкости C=1/2πfRi для указанных диапазонов частот, а, следовательно, и относительной диэлектрической проницаемости поляризованных элементов, ε 33 T / ε 0 = k C , где k - коэффициент, зависящий от размеров элементов, ε0=8.85·10-12 Ф - диэлектрическая проницаемость вакуума; при k=1, ε 33 T / ε 0 = C .

На фиг 3-5 (табл.3-5) приведены значения относительной диэлектрической проницаемости ε 33 T / ε 0 , реализуемые на объемных керамических образцах.

Таким образом, при повышенных частотах необходимы достаточно высокие значения емкости (относительной диэлектрической проницаемости) для снижения сопротивления преобразователя, что улучшает его согласование с нагрузкой. Высокие значения ε 33 T / ε 0 полезны и для снижения габаритов, что важно при разработке гидроакустических устройств. Высокие Qm материалов определяют высокую эффективность электромеханических преобразователей на их основе (т.е. низкие потери на внутреннее трение, 1/Qm) (А.Я. Данцигер, О.Н. Разумовская, Л.А. Резниченко, С.И. Дудкина. Высокоэффективные пьезокерамические материалы. Оптимизация поиска. / Ростов-на-Дону: Пайк. 1995. 92 с.).

Из вышеуказанного следует, что технический результат изобретения достигается новой совокупностью существенных признаков, как вновь введенных, так и известных, следовательно, заявляемый пьезоэлектрический керамический материал соответствует критерию патентоспособности «изобретательский уровень».

Предлагаемый пьезоэлектрический керамический материал обеспечивает результат, не вызывает затруднений при изготовлении, предлагает использование основных (доступных и дешевых) материалов (реактивов) и стандартного оборудования, соответствующего промышленному методу обычной керамической технологии (без использования дорогостоящего, затратного метода горячего прессования (К. Окадзаки. Технология керамических диэлектриков. / Пер. с яп. М.: Энергия. 1976. 336 с.)), что свидетельствует о соответствии заявляемого технического решения критерию патентоспособности «промышленная применимость».

Пьезоэлектрический керамический материал на основе ниобата натрия, включающий Na2O, Nb2O5, отличающийся тем, что дополнительно содержит K2O и CdO при следующем соотношении компонентов, мас.%:

Na2O 8,75÷9,72
K2O 5,31÷5,38
CdO 9,15÷10,88
Nb2O5 75,05÷75,77



 

Похожие патенты:

Изобретение относится к производству пьезоэлектрических керамических материалов и может быть использовано для создания высокочастотных электромеханических преобразователей, применяемых, в частности, в ультразвуковых линиях задержки (эксплуатируемых в частотном диапазоне (20÷30) мГц), высокочувствительных моночастотных резонаторах, работающих на толщинных колебаниях; в устройствах, где весовые характеристики являются решающими.
Изобретение относится к химически устойчивым материалам, в частности, применяемым для облицовки реакционных сосудов, реакторов, мельниц, пресс-форм и т.п., которые используют при производстве анодов для электролитических конденсаторов с твердым электролитом.
Изобретение относится к области пироэлектрических керамических материалов и может быть использовано для создания пироэлектрических детекторов для регистрации теплового и светового потоков излучения.

Изобретение относится к пьезоэлектрическим керамическим материалам на основе метаниобата лития и может быть использовано в устройствах дефектоскопического контроля оборудования атомных реакторов, работающих при высоких температурах.
Изобретение относится к способу получения керамических образцов на основе оксида ванадия V2О3 , легированного оксидом хрома Cr2О3. .

Изобретение относится к керамическим материалам на основе окислов титана и может быть использовано в производстве многослойных высокочастотных термостабильных керамических конденсаторов с электродами на основе сплава, содержащего Ag и Pd, а также в производстве микроволновых фильтров.

Изобретение относится к керамическим материалам на основе цинкзамещенного ниобата висмута и может быть использовано в производстве многослойных высокочастотных термостабильных керамических конденсаторов с электродами на основе сплава, содержащего Ag и Pd, а также в производстве многослойных микроволновых фильтров.

Изобретение относится к области цветной металлургии и может быть использовано в производстве синтетических материалов для керамических диэлектриков. .

Изобретение относится к электронной технике, может быть использовано при изготовлении линейных датчиков температуры - терморезисторов с отрицательным коэффициентом электросопротивления, применяемых в системах аварийной сигнализации.

Изобретение относится к пьезоэлектрическим керамическим материалам на основе ниобатов натрия-калия и может быть использовано в среднечастотных радиоэлектронных устройствах, работающих в режиме приема, в том числе в трансдукторах ультразвуковых передатчиков. Техническим результатом изобретения является снижение механической добротности, повышение значений пьезомодуля, пьезочувствительности, удельной чувствительности и коэффициента электромеханической связи. Пьезоэлектрический керамический материал на основе ниобатов натрия-калия включает Na2O, K2O, Nb2O5, Li2O, Ta2O5, Sb2O5 и NiO при следующем соотношении компонентов, в мас.%: Na2O - 8,49-8,67; K2O - 11,00-11,25; Nb2O5 - 60,68-61,98; Li2O - 0,49-0,65; Ta2O5 - 11,20-11,44; Sb2O5 - 5,33-7,15; NiO - 0,82-0,83. 3 пр., 5 ил., 2 табл.

Изобретение относится к пьезоэлектрическим керамическим материалам. Технический результат изобретения заключается в снижении механической добротности, относительной диэлектрической проницаемости поляризованных образцов, в повышении пьезомодуля, пьезочувствительности, удельной чувствительности, коэффициента электромеханической связи планарной моды колебаний. Пьезоэлектрический керамический материал содержит следующие элементы, мас.%: Na2O 8,77-8,84; K2O 11,36-11,44; Li2O 0,32-0,33; Ta2O5 11,58-11,67; Sb2O5 3,53-3,56; Nb2O5 62,71-63,17; NiO 0,99-1,73. 3 табл., 3 пр.

Изобретение относится к пьезоэлектрическим керамическим материалам. Технический результат изобретения заключается в повышении коэффициента электромеханической связи планарной моды колебаний, снижении относительной диэлектрической проницаемости. Пьезоэлектрический керамический материал содержит следующие компоненты, мас.%: Na2O 8,61-8,70; К2O 11,15-11,26; Li2O 0,49-0,50; Та2O5 11,37-11,49; Nb2O3 61,59-62,19; Bi2O3 0,37-1,10; Fe2O3 0,13-0,38; Sb2O5 5,31-5,37. 3 пр., 3 табл.
Изобретение относится к пьезоэлектрическим керамическим материалам. Технический результат изобретения заключается в снижении относительной диэлектрической проницаемости и механической добротности, в повышении пьезочувствительности, коэффициента электромеханической связи планарной моды колебаний, скорости звука. Пьезоэлектрический керамический материал содержит следующие компоненты, мас.%: Na2O 9,41-9,51; K2O 12,25-12,42; CdO 0,75-1,12; Nb2O5 77,22-77,32. 3 пр., 3 табл.

Изобретение относится к пьезоэлектрическим керамическим материалам и может быть использовано при создании высокочастотных акустоэлектрических преобразователей. Пьезоэлектрический керамический материал содержит оксиды натрия, ниобия, стронция, лития, алюминия, висмута и железа при следующем соотношении компонентов, мас.%: Na2O 16.32-16.40, Nb2O5 79.81-80.20, SrO 0.63, Li2O 1.12-1.13, Al2O3 0.40, Bi2O3 0.92-1.28, Fe2O3 0.32-0.44. Технический результат изобретения - снижение значения относительной диэлектрической проницаемости и повышение значения коэффициента электромеханической связи планарной моды колебаний при сохранении достаточно высоких значений механической добротности. 2 табл.

Изобретение относится к пьезокерамическим материалам и может быть использовано при создании ультразвуковых преобразователей, в частности устройств медицинской диагностики. Пьезокерамический материал на основе системы твердых растворов aNaNbO3+bKNbO3+cCuNb2O6 (а+b+с=100%) содержит оксиды натрия, калия, ниобия и меди при следующем соотношении компонентов, мас.%: Na2O 13,87-14,87; K2O 4,24-5,62; Nb2O5 79,32-79,70; CuO 1,19. Технический результат изобретения: материал характеризуется повышенным значением относительной диэлектрической проницаемости , при сохранении достаточно высоких значений механической добротности (Qm=1050) и пьезоэлектрических характеристик. Это обусловлено образованием в процессе спекания промежуточных Cu-содержащих соединений с низкой температурой плавления, с которыми связано формирование жидких фаз, способствующих образованию более совершенной микрокристаллической (зеренной) структуры. 2 табл.

Изобретение относится к технологии получения пьезоэлектрических керамических материалов на основе твердых растворов ниобатов калия-натрия (КНН), предназначенных для использования в электромеханических преобразователях, работающих в режиме приема, в частности, в гидроакустических приемных устройствах. Техническим результатом является улучшение спекаемости, повышение плотности пьезокерамических материалов, способность выдерживать жесткие условия поляризации для более полной переориентации сегнетоэлектрических доменов, снижение расхода сырья при производстве готовых изделий за счет исключения образования устойчивых промежуточных фаз, приводящих к нарушению стехиометрии материала, и за счет уменьшения летучести Na2O в процессе спекания. Для этого предварительно методом твердофазной реакции синтезируют соединения KNbO3 и NaNbO3, которые вводят в шихту, затем активируют шихту путем помола в планетарной мельнице с использованием мелющих тел с высокой удельной поверхностью, а спекание заготовок проводят в замкнутом объеме в присутствии засыпки порошка NaNbO3. 5 з.п. ф-лы, 1 табл., 1 пр.
Изобретение относится к пьезокерамическим материалам и может быть использовано при создании ультразвуковых преобразователей, в частности устройств медицинской диагностики. Пьезокерамический материал на основе системы твердых растворов aNaNbO3+bKNbO3+cCuNb2O6 (а+b+с=100%) содержит оксиды натрия, калия, ниобия и меди при следующем соотношении компонентов, мас.%: Na2O - 8,56÷8,75, K2O 12,75÷13,01, Nb2O5 77,28÷77,35, CuO 1,16 или Na2O 9,22÷9,50, K2O 11,69÷12,09, Nb2O5 77,53÷77,64, CuO 1,16. Технический результат изобретения: материал характеризуется повышенным значением механической добротности (Qm=500), пониженной величиной относительной диэлектрической проницаемости (εT 33/ε=345) при сохранении высоких пьезоэлектрических характеристик. Это обусловлено образованием в процессе спекания промежуточных Сu-содержащих соединений с низкой температурой плавления, с которыми связано формирование жидких фаз, уплотняющих структуру, и, как следствие, снижающих сопротивление образца на частоте пьезоэлектрического резонанса. 2 табл.

Изобретение относится к пьезоэлектрическим керамическим материалам на основе ниобатов натрия, калия, лития и может быть использовано в ультразвуковых преобразователях, работающих в широком диапазоне температур в режиме приема, в частности в датчиках детонации двигателей внутреннего сгорания. Технический результат - повышение температурной стабильности относительной диэлектрической проницаемости ε33 T/ε0 и коэффициента электромеханической связи Kp материала в диапазоне температур от 293 К до 393 К, и повышение Кр до значений, превышающих 0.40, при сохранении высоких значений ε33 T/ε0 и d31. Пьезоэлектрический керамический материал содержит оксиды натрия, калия, лития, тантала, сурьмы и никеля при следующем соотношении исходных компонентов, мас.%: Na2O 8.25-8.42, K2O 10.68-10.89, Li2O 0.47-0.48, Ta2O5 10.89-11.11, Sb2O5 5.09-5.19, Nb2O5 58.96-60.16, NiO 3.75-5.66. 2 табл., 3 ил.

Изобретение относится к пьезоэлектрическим керамическим материалам на основе титаната свинца. Технический результат изобретения заключается в повышении значений относительной диэлектрической проницаемости ε 33 T / ε 0 = 13500 − 16460 при сохранении высоких значений пьезомодуля |d31|=131-156 пКл/Н и коэффициента электромеханической связи планарной моды колебаний Kp=0.19-0.24. Пьезоэлектрический керамический материал на основе титаната свинца содержит, мас.%: PbO 65.61-65.92, Nb2O5 19.28-20.56, TiO2 6.19-7.46, ВаО 2.37-2.38, MgO 0.61-0.68, NiO 3.46-3.64, ZnO 0.89-0.95. 2 табл., 1 ил.
Наверх