Способ определения удельного сцепления грунтов


 


Владельцы патента RU 2509294:

Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Северный (Арктический) федеральный университет имени М.В. Ломоносова" (САФУ) (RU)

Изобретение относится к инженерно-геологическим исследованиям грунтов, в частности к экспресс-методам определения удельного сцепления грунтов. Способ определения удельного сцепления грунтов заключается в том, что на образец грунта наносится 6 капель смачивающей жидкости с известными значениями поверхностного натяжения. Затем по форме капли на поверхности материала определяют угол смачивания поверхности и по функциональной зависимости cosθ-1=f(1/σ) определяют тангенс угла наклона а. Далее по предварительно построенной калибровочной зависимости находят удельное сцепление грунта. Техническим результатом является повышение скорости определения, возможность проведения испытаний как с предварительно отобранными пробами, так и непосредственно на объекте, упрощение аппаратурного оснащения, возможность проведения анализа на любых грунтах, а также повышение точности определения за счет исключения влияния на результат сопротивления грунта вдавливанию по боковым стенкам зонда. 1 ил., 4 табл.

 

Изобретение относится к способам определения прочностных свойств грунтов при проведении инженерных изысканий в строительстве и может быть использовано для определения удельного сцепления неразрушающим методом.

Удельное сцепление - параметр, характеризующий силу структурных связей между частицами, который препятствует перемещению частиц относительно друг друга. Наличие удельного сцепления частиц грунта и его значение зависит от многих факторов, например, от величины капиллярного давления в поровом пространстве грунта, от силы молекулярного притяжении частиц, состава анализируемого образца и т.д.

Существующие в настоящее время методы определения величины удельного сцепления являются трудоемкими и многозатратными, для которых требуется наличие специального оборудования, проведение большого количества экспериментов и значительный объем испытуемого материала (образцов грунта).

Одним из эффективных путей решения данной проблемы является определение значения удельного сцепления для грунтового материала экспресс-методами.

Известен способ испытания грунта на срез с одновременным определением порового давления и устройство для его осуществления [заявка на выдачу патента РФ №2432572, МПК G01N 33/24, G01N 3/00, E02D 1/00]. Изобретение направлено на определение угла внутреннего трения и сцепления с одновременным определением порового давления при испытаниях грунта на срез.

Недостатками этого способа являются необходимость отбора, сохранности, транспортировки образцов грунта в исходном состоянии, длительность эксперимента.

Известно устройство ручной зонд глубокого зондирования - РЗГ [заявка на выдачу патента РФ №2133314, MПK6 E02D 1/00, G01N 3/42]. Принцип работы устройства заключается в передаче массы человека (испытателя) на специальные штанги для вдавливания зонда в грунт с одновременным фиксированием усилия вдавливания.

Недостатками этого устройства являются значительные погрешности определения вследствие наличия силы трения на боковой поверхности штанг, глубина вдавливания зависит от массы человека, работающего с устройством, сложность сборки и разборки прибора.

Известен метод одноплоскостного среза (ГОСТ 12248-96 «Грунты», МКС 13.080.20). Сущность метода заключается в испытании грунта методом одноплоскостного среза, который проводят для определения прочностных характеристик грунтов, в том числе удельного сцепления. Испытание проводят в одноплоскостных срезных приборах с фиксированной плоскостью среза путем сдвига одной части образца относительно другой его части касательной нагрузкой при одновременном нагружении образца нагрузкой, нормальной к плоскости среза.

Недостатками этого способа являются необходимость отбора, сохранности, транспортировки образцов грунта в исходном состоянии, длительность эксперимента, а также большое количество повторных экспериментов.

Ближайшим аналогом заявленного изобретения является способ испытания грунтов статическим зондированием [заявка на выдачу патента РФ №2301983, МПК G01N 3/42], где описано устройство и процессы, применяемые для испытания грунтов в полевых условиях без отбора проб. Сущность способа заключается в испытании грунтов статическим зондированием, включающий вдавливание в грунт с постоянной скоростью индентора, закрепленного на штанге, непрерывную регистрацию глубины вдавливания индентора и силы сопротивления грунта вдавливанию индентора и расчет показателей характеристик грунта на заданной глубине.

Недостатками данного способа является:

1. Способ может быть использован только непосредственно на месте изучаемого объекта.

2. Способ является трудоемким (транспортировка, сборка и разборка оборудования и др.).

3. Ограниченность применения. Достоверные данные получаются только в случае однородных грунтов.

4. Значительная погрешность определения для плотных грунтов вследствие сопротивления грунта вдавливанию по боковым стенкам зонда.

Задачей, на решение которой направлено изобретение, является устранение указанных выше недостатков, а именно повышение скорости определения, возможность проведения испытаний как с предварительно отобранными пробами, так и непосредственно на объекте, упрощение аппаратурного оснащения, возможность проведения анализа на любых грунтах, повышение точности определения за счет исключения влияния на результат сопротивления грунта вдавливанию по боковым стенкам зонда.

Это достигается измерением угла смачивания (θ) испытуемых образцов грунта специальными жидкостями с известным значением поверхностного натяжения (σ), расчетом величины косинуса этого угла (cosθ), построением прямолинейной зависимости в координатах cosθ-1=f(1/σ), расчетом величины тангенса угла наклона этой прямой (а) и определением значения удельного сцепления по предварительно построенной калибровочной зависимости.

Способ осуществляется следующим образом. На образец грунта (в нашем случае песок и глина или смесь) наносится 6 капель смачивающей жидкости с известным значением поверхностного натяжения. По форме капель на поверхности материала определяют угол смачивания поверхности θ и рассчитывают значения косинусов этого угла. По функциональной зависимости cosθ-1=f(1/σ) определяется тангенс угла наклона а и по предварительно построенной калибровочной зависимости определяется удельное сцепление грунта.

Осуществить способ можно следующим образом. Предварительно получают калибровочную зависимость между углом наклона прямой в координатах cosθ-1=f(1/σ) для образцов грунта с известным значением удельного сцепления. Поверхностное натяжение жидкости устанавливают любым известным способом: методом Ребиндера, сталагмометром, капиллярным поднятием, используя справочные данные. В нашем случае использовалась установка Easy Drop.Удельное сцепление образцов грунта устанавливают любым известным способом, в нашем случае с помощью прибора прямого плоскостного среза «Shear Trac-II».

В качестве смачивающей жидкости может использоваться раствор, обладающий поверхностным натяжением, не превышающим величину 35 мН/м. В нашем случае использовались водные растворы этилового спирта с объемной его концентрацией от 50 до 96%.

Результаты измерений поверхностного натяжения жидкости приведены в таблице 1.

Таблица 1
№ п/п Содержание воды, об.% ж±0,02)×103, Н/м
1 4 24,74
2 10 26,61
3 20 27,34
4 30 28,11
5 40 28,42
6 50 31,31

Величина угла смачивания θ для образцов грунта определяется любым известным методом: цифровым фотографированием, измерением с помощью увеличительных приборов и пр. В нашем случае видеосъемкой на установке Easy Drop с непосредственным расчетом косинуса угла смачивания с помощью программного обеспечения DSA 20E. Кроме того, для повышения точности определения замеры угла смачивания проводит в продолжение 1-1,5 сек. По полученным данным строится калибровочная зависимость в координатах cosθ-1=f(1/σ).

После построения калибровочной зависимости cosθ-1=f(1/σ) берут образец грунта и наносят последовательно шесть капель водно-спиртового для определения угла смачивания на установке Easy Drop. Поверхностное натяжение водно-спиртовых растворов определяют методом висячей капли также на установке Easy Drop. В таблице 1 представлены полученные результаты значений поверхностного натяжения водно-этанольных растворов g. Все эксперименты проводились при постоянной температуре 22±1°С.

По полученным значениям θ и σ строится функциональная зависимость cosθ-1=f(1/σ), которую можно описать уравнением прямой линии: cosθ-1=a×(1/σ)+b. В таблице 2 приведены коэффициенты а и b, на фиг. 1 представлена корреляционная зависимость коэффициента а и удельного сцепления с.

Таблица 2
Удельное сцепление, кПа Коэффициенты
a×l02 b
7,8 4,35 -1,07
9,4 4,61 -2,08
10,8 5,78 -2,71
11,4 5,76 -2,95
16 6,37 -3,07
12 5,44 -1,93
14,7 6,25 -2,31
16,5 7,56 -3,38
17,6 7,51 -3,38
19,3 7,23 -3,21
4,2 3,15 -2,14
12,7 6,53 -2,89
18,6 7,56 -2,40
16,5 7,09 -3,22
16,9 6,83 -3,20

Функциональная зависимость тангенса угла наклона прямой cosθ-1=а×(1/σ)+b от удельного сцепления (с) имеет линейный характер с удовлетворительным значением достоверности аппроксимации (R2=0,92). Удельное сцепление можно определить по следующей зависимости: c=(a-0,022)/0,029,

где с - удельное сцепление, кПа;

а - тангенс угла наклона зависимости cosθ-1=f(1/σж).

Примеры реализации изобретения, подтверждающие возможность достижения указанного технического результата, представлены в таблице 3 (примеры 1-10). При этом используются грунты: песок и глина. Экспериментальное значение удельного сцепления сэкс определялось на приборе прямого плоскостного среза «Shear Trac-II» методом одноплоскостного среза.

Таблица 3
Определение удельного сцепления
№ примера Наименование грунта Поверхностное натяжение жидкости, σж Коэффициент а Расчетное значение удельного сцепления срасч, кПa Экспериментально определенное значение удельного сцепления сэкс, кПа
1 Песок пылеватый 24,74 0,21 6,37 6,5
26,61
27,34
28,11
28,42
31,31
2 Песок пылеватый 24,74 0,19 5,70 5,8
26,61
27,34
28,11
28,42
31,31
3 Песок пылеватый 24,74 0,25 7,95 7,8
26,61
27,34
28,11
28,42
31,31
4 Песок пылеватый 24,74 0,2 6,23 6,1
26,61
27,34
28,11
28,42
31,31
5 Песок пылеватый 24,74 0,8 26,78 26,3
26,61
27,34
28,11
28,42
31,31
6 Глина 24,74 0,88 29,15 29,8
26,61
27,34
28,11
28,42
31,31
7 Глина 24,74 0,78 26,50 26,1
26,61
27,34
28,11
28,42
31,31
8 Глина 24,74 0,73 24,82 24,4
26,61
27,34
28,11
28,42
31,31
9 Глина 24,74 0,82 27,91 27,5
26,61
27,34
28,11
28,42
31,31
10 Глина 24,74 0,83 28,25 27,8
26,61
27,34
28,11
28,42
31,31

Приведенные примеры реализации изобретения 1-10 подтверждают возможность применения представленного экспресс-метода определения удельного сцепления грунтов.

Способ определения удельного сцепления грунта, включающий операцию отбора пробы грунта, отличающийся тем, что на образец грунта наносится 6 капель смачивающей жидкости с известными значениями поверхностного натяжения, по форме капли на поверхности материала определяют угол смачивания поверхности и по функциональной зависимости cosθ-1=f(1/σ) определяют тангенс угла наклона а и по предварительно построенной калибровочной зависимости находят удельное сцепление грунта.



 

Похожие патенты:

Изобретение относится к технике определения разрушения металлической пластины, детали, сформированной из металлической пластины (листа), и конструкции, сформированной из металлической пластины, и подобного при моделировании столкновения для автомобиля, моделировании штамповки детали или подобного.

Изобретение относится к области моделирования автомобильных аварий. Сущность: максимальные значения допустимой нагрузки сваренной части в соответствующих режимах разрушения из нагрузочного разрушения, моментного разрушения и внутреннего разрушения ядра сварной точки находятся на основе, по меньшей мере, одного из толщины t листа, прочности TS на растяжение, удлинения Еl и химического состава части ядра сварной точки в каждом из точечно сваренных стальных листов, диаметра d ядра сварной точки сваренной части, эффективной ширины В сваренной части, определенной посредством расстояния между смежными сваренными частями, ребрами или линиями хребта, и высоты Н в сечении.

Изобретение относится к области генерирования воздушной ударной волны в ударных трубах и может быть использовано для испытаний конструкций в ударных трубах на действие воздушной ударной волны.

Изобретение относится к горячей листовой штамповке (вытяжке) и может быть использовано во всех отраслях народного хозяйства для установления технологических параметров деформирования листовых материалов из титановых сплавов.

Использование: для контроля прочности железобетонного изделия в условиях чистого изгиба. Сущность: заключается в том, что изделие циклически нагружают от нуля с постепенно возрастающей амплитудой до появления сигналов акустической эмиссии перед окончанием разгружения, и по среднему для максимальных нагрузок двух последних циклов судят о максимальной неразрушающей нагрузке изделия, причем при появлении сигналов акустической эмиссии перед окончанием разгружения определяют координаты ее источника (дефекта), амплитуды и нагрузки возникновения этих сигналов, после чего продолжают циклическое нагружение с повышением амплитуды, после каждого разгружения определяют координаты новых источников сигналов акустической эмиссии, амплитуды и нагрузки возникновения сигналов, контролируют изменение амплитуды и нагрузки возникновения сигналов для каждого источника от цикла к циклу, а при их возрастании у одного из источников прекращают нагружения.

Изобретение относится к горному делу, предназначено для определения твердости и может быть использовано для определения твердости обсадной колонны в скважине. .

Изобретение относится к области испытательной техники и может быть использовано в наземных испытаниях изделий на прочность и герметичность, а также в качестве контрольной операции подтверждения качества изготовления крупногабаритных криогенных емкостных конструкций, преимущественно топливных баков ракет-носителей, спроектированных с учетом криогенного упрочнения и нагруженных внутренним давлением в условиях криогенного захолаживания.

Изобретение относится к способам по испытаниям строительных материалов из бетона, а именно к определению их механических свойств, в частности прочности, как при промежуточном контроле изделий на стадии формирования физико-механических свойств, так и при обследовании конструкций уже построенных зданий и сооружений.

Изобретение относится к способам испытания и конструкции оборудования для испытания прочности асфальтобетонных покрытий автомобильных дорог. .

Изобретение относится к определению параметров деформирования бетона и направлено на получение диаграмм деформирования бетона при статическом приложении нагрузки и динамическом догружении.

Устройство предназначено для высокотемпературного испытания металлов и сплавов в вакууме или газовой среде. Устройство содержит герметизированную разъемную камеру, состоящую из верхней и нижней частей, скрепленных между собой фланцевым соединением, тигель с размещенным в нем испытуемым образцом из металла или сплава, трубопроводы для откачки воздуха из камеры и подачи в нее газа, измеритель температуры, индукционный нагреватель. В верхней части герметизированной разъемной камеры размещены охлаждаемый коробчатый элемент с закрепленной на нем съемной охлаждаемой пластиной, калиброванной по массе, из легированной жаростойкой стали. Тигель расположен внутри герметизированной разъемной камеры. Охлаждаемый коробчатый элемент соединен трубопроводами с агрегатом подачи и циркуляции охлаждающего вещества в указанном элементе. Использование изобретения обеспечивает определение количества и химического состава твердофазного возгона, образующего при плавлении металлических сплавов и протекании металлургических процессов в печах. 1 ил., 1 табл.

Изобретение относится к области обеспечения надежности и безопасности технических устройств, преимущественно тонкостенных конструкций, в частности сосудов и аппаратов, применяемых для сетей газораспределения, а именно цельносварных шаровых кранов, проведением ресурсно-прочностных исследований и обследования технического состояния средствами неразрушающего контроля. Технический результат − повышение точности прогнозирования назначенного ресурса корпуса цельносварного шарового крана и возможности выявления и оценки местных напряжений в материале корпуса цельносварного шарового крана. Особенность заявленного способа прогнозирования назначенного ресурса корпуса цельносварного шарового крана заключается в том, что на поверхности корпуса определяют максимальный градиент магнитного поля Земли. Разрушают корпус цельносварного шарового крана (натурный образец шаровых кранов) и заготовку корпуса цельносварного шарового крана после обжима без технологического отверстия под горловину, отобранные из одной партии изготовления. Определяют пределы прочности корпуса цельносварного шарового крана и заготовки корпуса цельносварного шарового крана после обжима без технологического отверстия под горловину и устанавливают корреляционную зависимость. После чего устанавливают прогнозируемый назначенный ресурс корпуса крана исходя из введенного выражения. 1 ил., 1 табл.

Изобретение относится к методикам оценки ресурса металла трубопроводов, корпусов сосудов и технологических аппаратов, а также их конструктивных элементов - входных и выходных патрубков, штуцеров и пр. Способ может быть использован в нефтяной, газовой, химической и других отраслях промышленности. Предлагаемый способ определения ресурса металла трубопровода или сосуда включает определение: геометрических и механических параметров стенок (энергии межкристаллитных связей между частицами металла в стенке; энергии напряжения в стенке от действия разности давлений текучей и внешней сред; расхода энергии межкристаллитных связей между частицами металла - естественного старения); основных параметров текучей среды (расхода энергии потока, действующего на металл стенки; загрязненность потока частицами абразивного материала); ресурса металла по расчетной формуле, связывающей эти параметры. Отличительной особенностью способа является учет при расчете ресурса металла дополнительно определенных величины скорости коррозии металла и величины расхода энергии межкристаллитных связей между частицами металла от действия коррозии. Технический результат заключается в повышении точности определения ресурса металла. 1 з.п. ф-лы.

Изобретение относится к методикам оценки остаточного ресурса металла труб эксплуатируемого магистрального трубопровода. Сущность: осуществляют установление текущего срока эксплуатации трубопроводов, вырезку образцов для проведения циклических испытаний, испытаний образцов на усталость, измерение твердости поверхности металла. Образцы для испытаний вырезают из материала, не бывшего в эксплуатации, аналогичного материалу обследуемого трубопровода. Измерение твердости выполняют не менее 100 раз на каждом из образцов. Рассчитывают дисперсию показаний твердости и определяют остаточный ресурс металла трубопровода из соотношения. Технический результат: повышение достоверности и упрощение реализации способа. 3 з.п. ф-лы.

Изобретение относится к испытательной технике, в частности к области инженерных изысканий, и может быть использовано для определения напряженно-деформированного состояния пород, а именно определения стадии развития деформационных процессов в массиве материала (в горном массиве, грунтов под инженерным сооружением и т.п.). Сущность: отбирают образцы материала с хрупким скелетом. Осуществляют нагружение образцов с регистрацией физико-механических характеристик материала и строят кривую напряжение-деформация, по которой находят параметры, характеризующие предвестник разрушения материала. При сжатии образцов определяют коэффициенты α p − , α-, αJ, характеризующие изменение потенциальной энергии упругого деформирования при рассеянном разрушении материала, а предвестник разрушения материала находят по формуле ω = α _ I 1 + α J J + α p − Δ p − γ − , где γ- - положительный параметр, задающий квадратичную зависимость поверхностной энергии накопленного ансамбля микротрещин в хрупком материале, I1 - относительное изменение объема материала, J - интенсивность касательных деформаций, Δp - изменение внутрипорового давления. Технический результат: возможность характеризовать стадию состояния материала перед разрушением, что и является предвестником разрушения материала, путем сокращения времени измерения за счет уменьшения количества испытываемых образцов. 2 з.п. ф-лы, 3 ил.

Изобретение относится к области строительства, в частности к испытанию строительных материалов на прочность при растяжении и сжатии, и может быть использовано для определения параметров деформирования бетона при статическом и динамическом приложении нагрузки. Способ осуществляют закреплением опытного бетонного образца в виде призмы в зажимах испытательного стенда с использованием центрирующего устройства, обеспечивающего центральное приложение растягивающей нагрузки в процессе нагружения, и регистрацией усилия и деформаций образца во времени с использованием динамометра и тензостанции при нагружении, осуществляемом через рычажную систему в два этапа: на первом - ступенчатое статическое нагружение образца до заданного уровня посредством укладки штучных грузов на грузовую платформу, на втором - мгновенное или ступенчатое динамическое догружение или разгружение посредством кратковременного изменения диаметра оси в точке передачи силы от рычага компенсирующему элементу, задавая в случае необходимости величину перемещений в упругом элементе. Достигается упрощение методики и повышение достоверности и надежности результатов испытаний. 5 ил., 2 пр.

Изобретение относится к области геофизики и может быть использовано для определения характеристик буровой скважины для проведения операции бурения. Заявлены способы и системы для сбора, получения и отображения индекса азимутальной хрупкости буровой скважины. По меньшей мере некоторые варианты осуществления включают в себя различные способы для вычисления и отображения измерений буровой скважины в реальном времени для геологического сопровождения бурения скважины и операций бурения. По меньшей мере один вариант осуществления раскрытого способа для вычисления и отображения азимутальной хрупкости включает в себя этап, на котором производят измерения скоростей продольной и поперечной волн как функции положения и ориентации изнутри буровой скважины. Эти измерения скоростей произведены посредством азимутального акустического прибора. Азимутальную хрупкость затем получают на основе по меньшей мере частично скоростей продольной и поперечной волн. Технический результат - повышение достоверности данных планирования геолого-разведочных мероприятий. 3 н. и 16 з.п. ф-лы, 6 ил.

Изобретение относится к области прогнозирования остаточного ресурса резервуаров и магистральных газопроводов, эксплуатирующихся в условиях Крайнего Севера с применением способов неразрушающего контроля. Сущность: осуществляют вычисление допустимого суммарного повреждения - потеря пластичности за все время эксплуатации. После измерений твердости металла устанавливается фактическая потеря пластичности. В течение назначенного срока определяется скорость увеличения суммарных повреждений - потери пластичности от различных факторов. Принимается значение эксплуатационного повреждения - потеря пластичности и определяется остаточный ресурс конструкции. Технический результат: возможность учитывать как условия эксплуатации металлоконструкций, так и происходящие при этом изменения структуры и свойств металла. 1 ил.

Изобретение относится к способам установления возможности термического совмещения различных конструкционных сталей в плакированных изделиях и может найти применение на предприятиях энергетической отрасли, в проектных и научно-исследовательских организациях при проектировании и изготовлении энергетического оборудования. Для обеспечения совместимости конструкционных сталей плакированного изделия способ включает подготовку эталонов из каждой стали, проведение их термоциклирования, по результатам которого вычисляют остаточные напряжения первого рода после соответствующих температур термоциклирования. Определяют зависимости остаточных напряжений первого рода от температуры термоциклирования для каждого эталона и предел прочности σв для каждой рассматриваемой стали. Сравнивают модуль разности остаточных напряжений первого рода эталонов при рабочей температуре изделия с наименьшим из значений предела прочности σв при этой же температуре. По результатам определяют термическую совместимость конструкционных сталей, используемых в плакированном изделии, для которых модуль разности остаточных напряжений первого рода при температуре термоциклирования эталонов должен быть меньше наименьшего из значений пределов прочности σв. 2 ил., 4 табл., 3 пр.

Изобретение относится к методам испытания металлов, в частности к методам определения толщины наклепанного слоя металлических деталей, и может быть применено в дробеструйной обработке рабочих поверхностей. Сущность: осуществляют поверхностное пластическое деформирование до получения остаточного отпечатка, измерение диаметра остаточного отпечатка на поверхности детали и определение расчетным путем толщины упрочненного дробеструйной обработкой поверхностного слоя. Перед проведением дробеструйной обработки определяют исходную твердость материала детали по методу Бринелля, измеряют плотность материала дроби, а также рассчитывают скорость дроби в момент удара, исходя из которых определяют толщину упрочненного дробеструйной обработкой поверхностного слоя, измеряя диаметр шара (дроби) D, плотность материала ρ и скорость шаров в момент удара V, а также статическую твердость обрабатываемой поверхности HB. Рассчитывают толщину упрочненного наклепом поверхностного слоя по формуле. Технический результат: снижение времени определения толщины наклепанного слоя за счет уменьшения количества измеряемых параметров.
Наверх