Способ спектрофотометрического определения катионов металлов



Способ спектрофотометрического определения катионов металлов
Способ спектрофотометрического определения катионов металлов
Способ спектрофотометрического определения катионов металлов
Способ спектрофотометрического определения катионов металлов
Способ спектрофотометрического определения катионов металлов

 


Владельцы патента RU 2510013:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Российский химико-технологический университет им. Д.И. Менделеева" (РХТУ им. Д.И. Менделеева) (RU)
Федеральное государственное бюджетное учреждение науки Центр фотохимии Российской академии наук (ЦФРАН) (RU)

Настоящее изобретение относится к сенсорике катионов металлов с использованием фотохромных соединений в жидких средах для мониторинга окружающей среды и биологических объектов. Описан способ спектрофотометрического определения катионов металлов в водных растворах с использованием фотохромных органических соединений из классов спиропиранов и хроменов, основанного на том, что в водный раствор солей металлов помещают обеззоленную фильтровальную бумагу, которую после высушивания опускают в ацетонитрил, выдерживают в нем и удаляют, а в полученный раствор ионов металла добавляют раствор фотохромного соединения в ацетонитриле. Настоящее изобретение обеспечивает простой способ, который не требует синтеза водорастворимых фотохромных функционализированных соединений или полимеров и обеспечивает возможность применения ранее синтезированного широкого ассортимента фотохромных спиросоединений и хроменов для определения содержания ионов металлов в водных растворах. 1 табл., 9 пр., 4 ил.

 

Изобретение относится к сенсорике катионов металлов с использованием фотохромных соединений в жидких средах для мониторинга окружающей среды и биологических объектов.

В качестве фотохромных соединений используются соединения из классов спиропиранов (Z=C) (а), спирооксазинов (Z=N) (а) и хроменов (б), испытывающих обратимые фотоиндуцированные превращения (рис.1) с образованием мероцианиновой формы, образующей комплексы с ионами металлов.

Известен способ спектрофотометрического определения ионов металлов в водных растворах по спектральному сдвигу максимума полосы поглощения фотоиндуцированного комплекса между молекулами спиропирана и катионами металлов, с использованием водорастворимых функционализированные бис - спиропираны [Kumar S., Chau С, Chau G., McCurdy A.Tetrahedron. 2008. V. 64. N 30-31. P.7097].

Наиболее близким прототипом изобретения выбран фотохромный бетаиновый полимер, содержащий в качестве боковых фрагментов молекулы спиропиранов [Suzuki Т., Kato Т., Shinozaki Н. Chem. Commun. 2004. №18. P.2036]. Определение ионов металлов в водных растворах достигается в результате комплексообразования мероцианиновой формы молекул спиропирана, введенных в структуру водорастворимого полимера с ионами металлов.

Недостатком данного способа является то, что для его реализации требуется синтез новых водорастворимых фотохромных полимеров. Этот способ также исключает возможность применения в сенсорике ионов металлов ранее разработанного широкого ассортимента фотохромных спиросоединений и хроменов (более 100), эффективно проявляющих комплексообразование в неводных средах, в частности в ацетонитриле, и обеспечивающих эффективное спектрофотометрическое определение содержания ионов металлов. Предлагаемое изобретение направлено на устранение этого недостатка.

Задачей настоящего изобретения является разработка простого способа, не требующего синтеза водорастворимых фотохромных функционализированных соединений или полимеров и обеспечивающего возможность применения ранее синтезированного широкого ассортимента фотохромных спиросоединений и хроменов для определения содержания ионов металлов в водных растворах.

Поставленная задача достигается тем, что в способе спектрофотометрического определения катионов металлов в водных растворах с использованием фотохромных органических соединений из классов спиропиранов и хроменов в водный раствор солей металлов помещают обеззоленную фильтровальную бумагу, которую после высушивания опускают в ацетонитрил, выдерживают в нем и удаляют, а в полученный раствор ионов металла добавляют раствор фотохромного соединения в ацетонитриле.

Новизна заявленных признаков состоит в том, что в водный раствор солей металлов помещают обеззоленную фильтровальную бумагу, которую после высушивания опускают в ацетонитрил, выдерживают в нем и удаляют, а в полученный раствор ионов металла добавляют раствор фотохромного соединения в ацетонитриле.

Изучение и анализ известной научно-технической и патентной литературы показал, что полной совокупности признаков, характеризующих данные технические решения, не известно, т.е. заявляемые решения отвечают критерию ″новизна″.

Сущность изобретения поясняется примерами и рисунками.

На рис.1 представлена обобщенная схема фотохромных превращений спиросоединений и хроменов, а также структурные формулы исследованных соединений.

На рис.2 приведены спектры поглощения соединения СПП 1 1 в ацетонитриле до (кр. 1,3,5) и после (кр.2,4,6) облучения УФ-светом без (1,2) и в присутствии ионов Mg2+, вымытых из фильтровальной бумаги (3,4) и растворенных непосредственно в ацетонитриле (С=1.10-3М) (5,6).

На рис.3 приведены спектры поглощения СНО 2 в ацетонитриле до (кр. 1,3,5) и после (кр.2,4,6) облучения УФ-светом без (1,2) и в присутствии ионов Mg2+, вымытых из фильтровальной бумаги (3,4) и растворенных непосредственно в ацетонитриле (С=1.10-2М) (5,6).

На рис.4 приведены спектры поглощения ХР 3 в ацетонитриле до (кр. 1,3,5) и после (кр.2,4.6) облучения УФ - светом без (1,2) и в присутствии ионов Mg, вымытых из фильтровальной бумаги (3,4) и растворенных непосредственно в ацетонитриле (С=1.10-2М) (5,6).

Изобретение иллюстрируется следующими примерами

Пример 1

Готовят раствор соли Mg(ClO4)2 (фирма ″Aldrich″) в воде (С=1.10-1М). Помещают обеззоленную фильтровальную бумагу (фильтр обеззоленный, белая лента, ТУ 6-09-1678-95) в приготовленный раствор на 30 мин. После этого фильтровальную бумагу извлекают из раствора и высушивают до полного испарения воды в сушильном шкафу. Готовят раствор 8- метокси-1′,3′,3′-триметил-6-нитроспиро[хромен-2,2′-индол (СПП 1) в ацетонитриле (С= 2.10-4М). Измеряют спектр поглощения, раствора до и после УФ облучения. Высушенную фильтровальную бумагу опускают в чашку Петри с ацетонитрилом. После выдержки в течение 10 минут фильтровальную бумагу извлекают и в чашку Петри добавляют приготовленный раствор спиробензопирана 1 в ацетонитриле. Полученный раствор переливают в спектрофотометрическую кювету и измеряют спектры поглощения до и после УФ облучения. Для сравнения измеряют спектр поглощения раствора спиробензопирана 1 в ацетонитриле в присутствии соли Mg(ClO4)2 до и после УФ облучения. Полученные данные заносят в таблицу 1 и представляют в виде рис.1. Из представленных данных следует, что в присутствии ионов Mg2+, введенных в раствор ацетонитрила как непосредственно, так и с извлеченными из водного раствора, наблюдается гипсохромный спектральный сдвиг полосы поглощения, регистрируемой в видимой области спектра. Следовательно, заявляемый способ обеспечивает определение содержания ионов Mg2+ в водном растворе с помощью фильтровальной бумаги.

Пример 2

В раствор, приготовленный по п.1, вместо соли Mg(ClO4)2 (фирма ″Aldrich″) вводят соль (Ca(СlO4)2O (фирма ″Aldrich″). Проводят операции в соответствии с п.1. Полученные данные заносят в таблицу 1. Из представленных данных следует, что в присутствии ионов Са2+, введенных в раствор ацетонитрила как непосредственно, так и с извлеченными из водного раствора, наблюдается гипсохромный спектральный сдвиг полосы поглощения, регистрируемой в видимой области спектра. Следовательно, заявляемый способ обеспечивает определение содержания ионов Ca2+ в водном растворе с помощью фильтровальной бумаги.

Пример 3

В раствор, приготовленный по п.1, вместо соли Mg(ClO4)2 (фирма ″Aldrich″) вводят соль (Sr(ClO4)H2O (фирма ″Aldrich″). Проводят операции в соответствии с п.1. Полученные данные заносят в таблицу 1. Из представленных данных следует, что в присутствии ионов Sr2+, введенных в раствор ацетонитрила как непосредственно, так и с извлеченными из водного раствора, наблюдается гипсохромный спектральный сдвиг полосы поглощения, регистрируемой в видимой области спектра. Следовательно, заявляемый способ обеспечивает определение содержания ионов Sr2+ в водном растворе с помощью фильтровальной бумаги.

Пример 4

В раствор, приготовленный по п.1, вместо спиробензопирана СБН 1 вводят 1,3,3-триметил-6′-пиперидино-1-ил-1,3-дигидроспиро[индол-2,3′-нафто[2,1-b][1,4]оксазин] (СНО 2). Проводят операции в соответствии с п.1. Полученные данные заносят в таблицу 1 и представляют в виде рис.3. Из представленных данных следует, что в присутствии ионов Mg2+, введенных в раствор ацетонитрила как непосредственно, так и с извлеченными из водного раствора, наблюдается гипсохромный спектральный сдвиг полосы поглощения, регистрируемой в видимой области спектра. Следовательно, заявляемый способ обеспечивает определение содержания ионов Mg2+ в водном растворе с помощью фильтровальной бумаги.

Пример 5

В раствор, приготовленный по п.4, вместо соли Mg(ClO4)2 (фирма ″Aldrich″) вводят соль (Ca(ClO4)4H2O (фирма ″Aldrich″). Проводят операции в соответствии с п.1. Полученные данные заносят в таблицу 1. Из представленных данных следует, что в присутствии ионов Са2+, введенных в раствор ацетонитрила как непосредственно, так и с извлеченными из водного раствора, наблюдается гипсохромный спектральный сдвиг полосы поглощения, регистрируемой в видимой области спектра. Следовательно, заявляемый способ обеспечивает определение содержания ионов Са2+ в водном растворе с помощью фильтровальной бумаги.

Пример 6

В раствор, приготовленный по п.4, вместо соли Mg(ClO4)2 (фирма ″Aldrich″) вводят соль (Sr(ClO4)H2O (фирма ″Aldrich″). Проводят операции в соответствии с п.1. Полученные данные заносят в таблицу 1. Из представленных данных следует, что в присутствии ионов Sr2+, введенных в раствор ацетонитрила как непосредственно, так и с извлеченными из водного раствора, наблюдается гипсохромный спектральный сдвиг полосы поглощения, регистрируемой в видимой области спектра. Следовательно, заявляемый способ обеспечивает определение содержания ионов Sr2+ в водном растворе с помощью фильтровальной бумаги.

Пример 7

В раствор, приготовленный по п.1, вместо спиробензопирана СБН 1 вводят 3-(4-метоксифенил)-3-(2-тиенил)-5-морфолинокарбонил-3Н-нафто[2,1-b]пиран (ХР 3). Проводят операции в соответствии с п.1. Полученные данные заносят в таблицу 1 и представляют в виде рис.4. Из представленных данных следует, что в присутствии ионов Mg2+, введенных в раствор ацетонитрила как непосредственно, так и с извлеченными из водного раствора, наблюдается гипсохромный спектральный сдвиг полосы поглощения, регистрируемой в видимой области спектра. Следовательно, заявляемый способ обеспечивает определение содержания ионов Mg2+ в водном растворе с помощью фильтровальной бумаги.

Пример 8

В раствор, приготовленный по п.7, вместо соли Mg(ClO4)2 (фирма ″Aldrich″) вводят соль (Ca(ClO4)4H2O (фирма ″Aldrich″). Проводят операции в соответствии с п.1. Полученные данные заносят в таблицу 1. Из представленных данных следует, что в присутствии ионов Са2+, введенных в раствор ацетонитрила как непосредственно, так и с извлеченными из водного раствора, наблюдается гипсохромный спектральный сдвиг полосы поглощения, регистрируемой в видимой области спектра. Следовательно, заявляемый способ обеспечивает определение содержания ионов Са2+ в водном растворе с помощью фильтровальной бумаги.

Пример 9

В раствор, приготовленный по п.7, вместо соли Mg(ClO4)2 (фирма ″Aldrich″) вводят соль (Sr(ClO4)H2O. Проводят операции в соответствии с п.1. Полученные данные заносят в таблицу 1. Из представленных данных следует, что в присутствии ионов Sr2+, введенных в раствор ацетонитрила как непосредственно, так и с извлеченными из водного раствора, наблюдается гипсохромный спектральный сдвиг полосы поглощения, регистрируемой в видимой области спектра. Следовательно, заявляемый способ обеспечивает определение содержания ионов Sr в водном растворе с помощью фильтровальной бумаги.

Как видно из приведенных примеров, предлагается простой способ определения содержания ионов металлов в водных растворах за счет использования обеззоленной фильтровальной бумаги для переноса ионов металлов из водного раствора в ацетонитрил, который обеспечивает эффективное комплексообразование между молекулами фотоиндуцированной мероцианиновой формы и ионами металлов. Это позволяет использовать большой ассортимент известных спиросоелинений и хроменов в сенсорике ионов металлов, не требуя дополнительных материальных затрат на синтез водорастворимых функционализированных фотохромных соединений или фотохромных полимеров.

Способ спектрофотометрического определения катионов металлов в водных растворах с использованием фотохромных органических соединений из классов спиропиранов и хроменов, отличающийся тем, что в водный раствор солей металлов помещают обеззоленную фильтровальную бумагу, которую после высушивания опускают в ацетонитрил, выдерживают в нем и удаляют, а в полученный раствор ионов металла добавляют раствор фотохромного соединения в ацетонитриле.



 

Похожие патенты:

Изобретение относится к области оптического приборостроения и касается спектрометра на основе поверхностного плазмонного резонанса. Спектрометр содержит последовательно расположенные на одной оптической оси источник излучения света с непрерывным спектром, коллиматор, поляризатор, цилиндрическую линзу или цилиндрическое зеркало, устройство нарушенного полного внутреннего отражения с отражающим элементом, диспергирующее устройство, фокусирующий объектив и светочувствительную фотоматрицу, установленную в фокусе объектива.

Изобретение относится к аналитической химии, в частности к способам определения концентрации примесей в питьевой воде. Способ включает обработку проб воды раствором йодида калия, поочередное измерение оптической плотности проб диоксида хлора при pH 7 и хлорит-иона и диоксида хлора при pH 2,5, определение из градуировочных графиков концентрации диоксида хлора при pH 7 и суммарной концентрации хлорит-иона и диоксида хлора при pH 2,5, расчет концентрации хлорит-иона по формуле: ( C 2 16,86 − C 1 67,46 ) × 16,86 , где C1 - концентрация диоксида хлора при pH 7, мг/дм3; C2 - суммарная концентрация диоксида хлора и хлорит-иона при pH 2,5, мг/дм3; 67,46 - окислительный эквивалент диоксида хлора, соответствующий pH 7; 16,86 - окислительный эквивалент хлорит-иона, соответствующий pH 2,5.

Изобретение относится к области пищевой промышленности, в частности к способу и устройству определения зрелости икры. Икру (W) погружают на загрузочный лоток (6), направляют свет от светового излучателя (11) на икру (W) и изображение, по меньшей мере, части икры (W) в состоянии облучения светом от светового излучателя (11) икры (W) снимают с помощью устройства для съемки изображений (12).

Изобретение относится к обнаружению вещества в атмосфере и основано на использовании, по меньшей мере, одного датчика, реагирующего на наличие определяемого вещества и который облучается, по меньшей мере, одним источником света, и, по меньшей мере, одного фотоприемника.

Изобретение относится к измерительной технике, а именно к калибровке измерительной системы. .

Изобретение относится к измерительной технике, а именно к калибровке измерительной системы. .

Изобретение относится к анализу оптических характеристик наноразмерных пленок, образующихся при конденсации продуктов газовыделения нагретых неметаллических материалов в вакууме.
Изобретение относится к способу получения количественных и качественных данных о материальных носителях культурных ценностей, музейных предметов, антиквариата, древностей, памятников истории и культуры, объектов средовой природы, предметов коллекционирования, нумизматических и фалеристических материалов и т.п.

Изобретение относится к химическим методам анализа жидкостей с использованием автоанализаторов проточного или проточно-дискретного тип. .

Изобретение относится к способу прогнозирования фотостабильности коллоидных полупроводниковых квантовых точек со структурой ядро-оболочка в кислородсодержащей среде, включающий измерение кинетик фотолюминесцентного сигнала квантовых точек для тестируемой и эталонной партий, определение для указанных партий значений параметра, характеризующего скорость спада фотолюминесцентного сигнала во времени.
Изобретение относится к аналитической химии, а именно к фотометрическим способам определения редкоземельных элементов в природных объектах и технических материалах. Способ включает разложение пробы путем ее сплавления со смесью безводных соды и буры, обработку разложенной пробы соляной кислотой, осаждение гидроксидов металлов, промывание осадка гидроксидов металлов гидроксидом аммония, устранение мешающего влияния соединений титана путем добавления перекиси водорода перед осаждением гидроксидов, устранение мешающего влияния железа и алюминия путем маскирования железа добавлением аскорбиновой кислоты и маскирования алюминия добавлением сульфосалициловой кислоты, перевод нерастворимых соединений редкоземельных элементов в растворимые соединения, перевод редкоземельных элементов в окрашенные соединения с арсеназо III и последующее фотометрирование. Изобретение позволяет сократить время на проведение анализа, а также снизить трудоемкость анализа и увеличить его точность. 4 з.п. ф-лы, 1 табл.

Изобретение относится к контролю формы, которая имеет пористый слой оксида алюминия на своей поверхности с множеством мельчайших углублений. Способ включает этап обеспечения на основании зависимости между первым параметром, который является показателем толщины пористого слоя оксида алюминия, и цветовым параметром, который является показателем цвета света, отраженного от пористого слоя оксида алюминия, первой цветовой информации, которая представляет допуск на первый параметр пористого слоя оксида алюминия, который имеет неровную структуру, которая находится в пределах допуска, этап обеспечения формы, которая является объектом контроля, при этом форма имеет пористый слой оксида алюминия на своей поверхности; этап получения цветового параметра, который является показателем цвета света, отраженного от пористого слоя оксида алюминия формы-объекта контроля, и этап определения пригодности первого параметра формы-объекта контроля на основании полученного цветового параметра и первой цветовой информации. Изобретение позволяет без разрушения и легко контролировать, находится ли или нет мельчайшая неровная структура на поверхности в пределах заданного диапазона. 6 з.п. ф-лы, 9 ил., 2 табл.

Группа изобретений относится к горному делу, в частности к геофизическим исследованиям скважин, и может быть использовано для осмотра скважин при проведении ремонтных работ. Техническим результатом является сокращение времени и затрат на проведение исследования скважины. Способ включает спуск в скважину с мутной средой видеокамеры на каротажном кабеле по колонне насосно-компрессорных труб (НКТ). Из столба мутной среды посредством пакера и перегородки в подвеске НКТ выделяют зону каротажа, в которой осуществляют гравитационное осаждение взвешенных горных пород. В столбе отслоенной оптически прозрачной жидкости перемещением видеокамеры внутри подвески НКТ проводят визуализированный каротаж. С получением результатов исследования определяют техническое состояние скважины. Зону каротажа при необходимости ограничивают снизу дополнительной перегородкой. Каротажное устройство по первому варианту содержит подвеску НКТ с пакером, разобщающим зону каротажа с надпакерной полостью скважины, каротажный кабель, видеокамеру, подвешенную на каротажном кабеле внутри подвески. К видеокамере цанговым зацепом присоединена перегородка с возможностью посадки ее в гнездо подвески и отцепления при спуске видеокамеры вдоль подвески в зону каротажа. Перегородка и гнездо в подвеске снабжены элементами стопорного устройства. Перегородка выполнена с центральным отверстием, снабженным сальником для скольжения каротажного кабеля, и может содержать фильтровальные ячейки. Перегородка выполнена с наружным диаметром, меньшим внутреннего диаметра НКТ. На видеокамере установлены центраторы положения видеокамеры в полости подвески. Каротажный кабель выполнен в полиамидной оболочке на длине каротажа. Второй вариант каротажного устройства содержит подвеску НКТ с пакером, разобщающим зону каротажа с надпакерной полостью скважины, каротажный кабель, видеокамеру, подвешенную на каротажном кабеле внутри подвески. На видеокамере закреплена перегородка с возможностью скольжения периметром по стенке подвески. На видеокамере установлены центраторы положения видеокамеры в полости подвески. По периметру перегородки выполнены сальниковые уплотнения. Перегородка может быть выполнена из фильтрующего материала. Подвеска выполнена с внутренним диаметром, меньшим внутреннего диаметра НКТ. 3 н. и 12 з.п. ф-лы, 2 ил.
Изобретение относится к медицине, в частности к клинической биохимии, и предназначено для определения окислительной модификации белков в пуле веществ средней молекулярной массы в биологической среде при любых патологических состояниях путем биохимического исследования. Производят забор биологической среды, выбранной из плазмы крови, эритроцитов или мочи, осаждают белки путем добавления 10% раствора трихлоруксусной кислоты, и в случае образования осадка проводят центрифугирование при 1000 об/мин в течение 15 минут, затем добавляют 0,05 М раствор 2,4-динитрофенилгидразина в 2 М соляной кислоте, после чего пробу центрифугируют при 1000 об/мин в течение 20 минут, и в случае выпадения осадка осадок промывают 2 раза раствором этанол-этилацетат (1:1), затем подсушивают на водяной бане 10 минут и затем растворяют в 8 М растворе мочевины, выдерживая пробы в кипящей водяной бане в течение 10 минут до полного растворения, с последующим анализом раствора спектрофотометрическим методом. Способ обеспечивает увеличение информативности биохимических тестов, снижение расходов биологического материала. Способ пригоден как для однократного исследования, так и для мониторинга состояния окислительной модификации белков и уровня средних молекул в раннем послеоперационном периоде. 9 табл., 2 прим.

Изобретение относится к способам определения содержания лигнина Класона. Способ определения лигнина заключается в том, что к лигноцеллюлозному материалу добавляют водно-диоксановый раствор, полученный смешением концентрированной азотной кислоты и 1,4-диоксана в соотношении 1:4 (по объему), реакционную смесь нагревают на кипящей водяной бане в течение 15 минут, затем добавляют 2 М раствор гидроксида натрия, объем реакционной смеси доводят дистиллированной водой и фильтруют, измеряют оптическую плотность фильтрата при 440 нм, и по величине оптической плотности судят о содержании лигнина в целлюлозном полуфабрикате. Изобретение заключается в упрощении и ускорении выполнения анализа. 2 табл., 24 пр.

Изобретение относится к способу и системе для анализа свойств флюидов в микрофлюидном устройстве. Флюид вводится под давлением в микроканал, и в ряде мест, расположенных вдоль микроканала, оптически детектируются фазовые состояния флюида. Газообразная и жидкая фазы флюида распознаются на основе множества оцифрованных изображений флюида в микроканале. Двухуровневые изображения могут создаваться на основе оцифрованных изображений, и на основе двухуровневых изображений можно оценивать долю жидкости или газа во флюиде в зависимости от давления. На основе детектируемых фазовых состояний флюида можно оценивать свойства, такие как значения в точке начала кипения и/или распределение объемного соотношения фаз флюида в зависимости от давления. 2 н. и 21 з.п. ф-лы, 19 ил.

Изобретение относится к способу идентификации живых и мертвых организмов мезозоопланктона в морских пробах, который включает отбор пробы, крашение организмов соответствующими красителями, визуальную оценку интенсивности окраски особей под микроскопом, которую выполняют одновременно с микрофотосъемкой организмов, используя настройки фотокамеры в ручном режиме, сохраняя эти настройки неизменными на протяжении фотосъемки по крайней мере одной пробы, после чего в полученных изображениях, применяя редактор растровой графики, например программный пакет Adobe Photoshop, измеряют средние для каждой особи цветовые и яркостные характеристики и относят особи к классу живых или мертвых, осуществляя дискриминантный анализ измеренных цифровых величин.

Изобретение относится к способам обработки изображений, отображаемых на электронных устройствах. Техническим результатом является обеспечение поддержания заданных цветовых свойств отображаемых изображений вне зависимости от значений их текстурных свойств. Предложен способ отображения изображения декоративного покрытия с текстурными и цветовыми свойствами с использованием измеренных цветовых данных и измеренных текстурных данных в качестве входных данных для генерирования изображения. Способ включает в себя этап, на котором генерируют изображение в оттенках серого, используя измеренные цветовые данные и измеренные текстурные данные, причем текстурные свойства выбираются из: рассеянной шероховатости, эффекта отблеска или их комбинации. Далее осуществляют преобразование сгенерированного текстурированного изображения в оттенках серого в текстурированное изображение. А также отображают текстурированное изображение с визуальными цветовыми свойствами, которые поддерживаются на предварительно заданном уровне независимо от возможных отклонений в текстурных свойствах. 3 н. и 13 з.п. ф-лы.

Изобретение относится к определению физико-химических свойств веществ и материалов: относительной плотности, средней числовой молекулярной массы, коксуемости по Конрадсону, энергии активации вязкого течения многокомпонентных углеводородных систем. Сущность способа заключается в том, что определение физико-химических свойств: относительной плотности, средней числовой молекулярной массы, коксуемости по Конрадсону, энергии активации вязкого течения МУВС - производится путем определения интегрального показателя поглощения многокомпонентной углеводородной системы, линейно коррелирующего с определяемыми физико-химическими свойствами. Интегральный показатель поглощения многокомпонентной углеводородной системы определяется по концентрации раствора образца и его цветовой характеристике в колориметрической системе XYZ, причем первичное определение цветовых характеристик раствора образца производится по фотографическому изображению раствора образца в колориметрической системе sRGB, затем производится переход из колориметрической системы sRGB в колориметрическую систему XYZ, при этом после перехода к колориметрической системе XYZ производится корректировка цветовой характеристики раствора образца в колориметрической системе XYZ на стандартный источник излучения. Определение цветовой характеристики растворов образцов по фотографическим изображениям производится без использования приборов для регистрации электронных спектров поглощения, что позволяет упростить и повысить производительность заявляемого способа. Далее по цветовой характеристике и концентрации раствора определяется интегральный показатель поглощения вещества, который линейно коррелирует с определяемыми ФХС. Достигается упрощение и ускорение определения ФХС МУВС. 3 пр., 6 табл., 3 ил.

Использование: для автоматического контроля водного теплоносителя на ТЭС и АЭС. Сущность изобретения заключается в том, что способ включает последовательные операции подготовки проточной пробы путем охлаждения пробы до 10-50°C и понижения давления до атмосферного, кондуктометрического измерения электропроводности (χt) и температуры (t) прямой пробы, пропуск пробы через H-катионитовую колонку, кондуктометрического измерения электропроводности (χt H) и температуры (tH) H-катионированной пробы, приведения измеренных величин электропроводности к температуре 25°C (χ, χH), проверки на достоверность, определения разности значений электропроводностей прямой и H-катионированной пробы (χ- χH) и расчет значения pH решением системы уравнений ионных равновесий водного раствора. Технический результат: создание способа определения pH малобуферных предельно разбавленных водных растворов типа конденсата, который обеспечит точное и быстрое определение pH, эффективного по затратам и легкого в использовании. 2 табл., 2 ил.
Наверх