Способ выявления дефектов на полупроводниковой пластине


 


Владельцы патента RU 2534434:

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ "ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ" (ДГТУ) (RU)

Изобретение относится к технологии изготовления полупроводниковых приборов и интегральных схем, в частности к процессам обработки поверхности подложек для выявления дефектов линий скольжения. Изобретение позволяет получить однородную и ненарушенную поверхность подложек, снизить температуру и длительность процесса. Выявление линий скольжения проводится погружением подложек в травитель, состоящий из следующих компонентов: фтористоводородной кислоты, азотной кислоты и уксусной кислоты в объемных частях 3:6:3 при комнатной температуре, время травления - 90 секунд. В качестве оборудования используется металлографический микроскоп с увеличением от 40 до 200 крат. Количество дефектов линий скольжения составляет 25±5 шт./мм.

 

Изобретение относится к технологии изготовления полупроводниковых приборов и интегральных схем, в частности к процессам обработки поверхности подложек с целью выявления дефектов линии скольжения.

Известны различные способы выявления дефектов линии скольжения на поверхности подложек: щелочи, кислоты, травители и растворы.

Недостатками этих способов являются: неоднородное распределение температуры по толщине и площади подложек; длительность процесса.

Целью изобретения является получение однородной и ненарушенной поверхности подложек, уменьшение температуры и длительности процесса.

Поставленная цель достигается тем, что выявление линий скольжения проводится погружением подложек в травитель, состоящий из следующих компонентов: фтористоводородной кислоты, азотной кислоты и уксусной кислоты в объемных частях 3:6:3.

Сущность способа заключается в том, что подложки загружают в травитель, состоящий из следующих компонентов: фтористоводородной кислоты, азотной кислоты и уксусной кислоты в объемных частях 3:6:3 при комнатной температуре, время травления - 90 секунд.

Предлагаемый способ отличается от известных тем, что выявление дефектов линий скольжения в травителе позволяет потравить поверхность подложек и выявить дефекты. Линии скольжения, расположенные в центральной части пластины, видны без химической обработки. Эта область выглядит матовой. Отдельные линии представляют собой ступеньки, возникшие в результате действия сжимающих напряжений на центральную область подложки. Предотвращению появления линий скольжения способствует уменьшение температуры процесса ниже того уровня, при котором происходит пластическое течение (для кремния - 1000°С), а также использование бездислокационных подложек и тщательная химическая полировка.

В качестве оборудования используется металлографический микроскоп с увеличением от 40 до 200 крат.

Количество дефектов линий скольжения составляет 25±5 шт./мм.

Сущность изобретения подтверждается следующими примерами.

ПРИМЕР 1. Процесс проводят на установке химической обработки. Эпитаксиальные подложки помешают на дно травильной ванны поверхностью вверх, на которой будут проводиться замеры. Затем медленно наливаем травитель, состоящий из следующих компонентов: фтористоводородной кислоты (HF), азотной кислоты (НNO3) и уксусной кислоты (СН3СООН) в объемных частях 3:8:5 при комнатной температуре, так чтобы над поверхностью эпитаксиальной подложки был слой состава для химического полирования толщиной от 10 до 20 мм. Для этого следует пошевелить травильную ванну легким потряхиванием для продолжения реакции травления. После истечения 70 секунд резко добавить в травильную ванну большое количество деионизованной воды и прекратить тем самым процесс травления. После достаточной промывки эпитаксиальной подложки в деионизованной воде слить воду и убедиться, что измерительная поверхность подложки стала зеркальной.

Область измерений должна составлять всю лицевую поверхность пластин за исключением периферийной области шириной 2 мм. Форма линий скольжения должна представлять собой извилистые линии ямок травления.

Первоначально линии скольжения обнаруживают невооруженным взглядом, затем путем увеличения с помощью микроскопа ведется подсчет числа дефектов травления.

Количество дефектов линий скольжения составляет 45±5 шт./мм.

ПРИМЕР 2. Способ осуществляют аналогично примеру 1. Процесс проводят на установке химической обработки, состоящей из следующих компонентов:

HF:НNО3:СН3СООН

3:7:5

при комнатной температуре, время травления 80 секунд.

Количество дефектов линий скольжения составляет 35±5 шт./мм.

ПРИМЕР 3. Способ осуществляют аналогично примеру 1. Процесс проводят на установке химической обработки, состоящей из следующих компонентов:

HF:НNО3:СН3СООН

3:6:3

при комнатной температуре, время травления 90 секунд.

Количество дефектов линий скольжения составляет 25±5 шт./мм.

Предложенный способ по сравнению с прототипом дает возможность получения однородной, ненарушенной поверхности подложки, что позволяет увеличить процент выхода годных приборов, а также улучшить качество поверхности эпитаксиальных структур.

Литература

1. З.Ю.Готра. Технология микроэлектронных устройств. М, Радио и связь, 1991 г., стр.128.

Способ выявления дефектов на полупроводниковой пластине, включающий травление поверхности подложек, отличающийся тем, что обработку ведут в травителе, состоящем из следующих компонентов: фтористоводородной кислоты, азотной кислоты и уксусной кислоты в объемных частях 3:6:3
HF:HNO3:СН3СООН
3:6:3
при комнатной температуре и времени травления - 90 секунд, при этом количество дефектов линий скольжения составило 25±5 шт./мм.



 

Похожие патенты:

Изобретение относится к области исследования материалов с помощью оптических средств, а также к технологии изготовления полупроводниковых приборов - для контроля водорода в материале при создании приборов и структур.

Способ включает воздействие на кристалл исходного импульсного поляризованного немонохроматического излучения коротковолнового инфракрасного диапазона для получения исходного импульсного поляризованного излучения коротковолнового инфракрасного диапазона и импульсного поляризованного излучения гармоники видимого диапазона, выделение импульсного поляризованного излучения гармоники видимого диапазона, преобразование его в электрический сигнал, получение зависимости амплитуды электрического сигнала от длины волны импульсного поляризованного монохроматического излучения второй и суммарной гармоник, определение из нее длины волны 90-градусного синхронизма, по значению которого определяют мольное содержание Li2O в монокристалле LiNbO3.

Изобретение относится к контрольно-испытательному оборудованию изделий электронной техники, а именно к устройствам для сортировки на группы по вольт-амперным характеристикам (ВАХ) фотопреобразователей (ФП) в спутниках, и может быть использовано при производстве фотоэлектрических панелей.
Изобретение относится к различным технологическим процессам, а именно к контролю электрических свойств алмазных пластин на промежуточных стадиях технологического процесса изготовления алмазных детекторов ионизирующих излучений.

Изобретение относится к тестированию матричных БИС считывания и может быть использовано для определения координат скрытых дефектов типа утечек сток-исток, которые невозможно обнаружить до стыковки кристаллов БИС считывания и матрицы фоточувствительных элементов.

Изобретение относится к устройствам, используемым для климатических испытаний полупроводниковых приборов при одновременном измерении их электрических параметров.

Изобретение относится к способу выявления наличия дефектов в светодиодной структуре. Способ контроля качества светодиодной структуры заключается в регистрации излучения светодиодной структуры, обработке излучения для получения характеристик светодиодной структуры, на основе которых судят о качестве светодиодной структуры, при этом для каждой светодиодной структуры из партии изделий регистрируют спектр электролюминесценции, проводят построение зарегистрированного спектра в полулогарифмическом масштабе, разделяют коротковолновую область полученного спектра на участки, которые аппроксимируют определенной зависимостью, и выбирают аппроксимированные участки с максимальным и минимальным наклоном, определяют максимальную и минимальную температуры светодиодной структуры на выбранных участках, вычисляют среднее значение разницы температур, проводят сравнение значения разницы температур для каждой светодиодной структуры со средним, если значение разницы температур больше среднего, делают вывод о низком качестве структуры.

Изобретение относится к контрольно-измерительной технике. Технический результат - расширение функциональных возможностей одновременного определения электропроводности и толщины полупроводниковых пластин и электропроводности и толщины тонких полупроводниковых эпитаксиальных слоев в структурах «полупроводниковый слой - полупроводниковая подложка».

Изобретение относится к области измерительной техники, а именно к неразрушающим методам контроля структурного совершенства эпитаксиальных слоев кремния, выращенных на диэлектрических подложках, и может быть использовано в технологии микроэлектроники для контроля качества эпитаксиальных слоев кремния в структурах «кремний на сапфире» (КНС).

Изобретение относится к микроэлектронике и может быть использовано для увеличения выхода годных при изготовлении высокоплотных электронных модулей. Сущность способа заключается в том, что при изготовлении высокоплотных электронных модулей на основе формирования встроенных пассивных элементов, прямого монтажа активных элементов (чипов) и послойного формирования межсоединений до изготовления и монтажа электронных модулей разрабатывают видоизменение схемы, которое предназначено только для ее тестируемости, а за счет технологических операций после формирования пассивных и монтажа активных элементов и перед формированием межсоединений проводят многофункциональный зондовый контроль работоспособности каждого элемента.

Изобретение относится к области микроэлектроники. Технический результат направлен на повышение достоверности определения типа и количества загрязняющих примесей на поверхности полупроводниковых пластин после плазмохимического травления и определения оптимального значения длительности времени травления. В способе определения длительности времени плазмохимического травления поверхности полупроводниковых пластин для удаления пленок с немаскированных поверхностей и получения чистой поверхности осуществляется травление нескольких пластин в течение разных длительностей времени, определяются количества остаточных и загрязняющих примесей на поверхностях пластин и определяется длительность времени травления по времени травления пластины с минимальным количеством загрязняющих примесей на поверхности, при этом определение количества остаточных и загрязняющих примесей на поверхностях пластин производится зондированием поверхностей ионными пучками гелия и неона с энергиями 1-5 кэВ, плотностью тока пучка менее 100 мкА/см2 и регистрацией энергетического спектра отраженных ионов под углом рассеяния более 90° и по энергиям и величинам максимумов в спектре определяется соответственно тип и количество загрязняющих примесей. 1 ил.

Изобретение относится к нанотехнологии и может применяться при изготовлении планарных двухэлектродных резистивных элементов запоминающих устройств. Способ получения резистивного элемента памяти включает в себя создание проводящих электродов на непроводящей подложке, напыление в зазор между электродами металлической пленки и последующий термический отжиг пленки. Во время напыления и термического отжига пленки контролируется ее сопротивление, причем напыление останавливают при уменьшении сопротивления до сотен кОм, а отжиг прекращают при резком увеличении сопротивления более чем в 106 раз. Способ обеспечивает четкий контроль готовности изделия во время его изготовления без контроля фактора покрытия, а также позволяет упростить процесс изготовления и увеличить производительность. 4 ил.
Изобретение относится к полупроводниковой технике, а именно к способам отбраковки мощных светодиодов на основе InGaN/GaN, излучающих в видимом диапазоне длин волн. Способ отбраковки мощных светодиодов на основе InGaN/GaN включает проведение измерений при комнатной температуре в любой последовательности падений напряжения в прямом и обратном направлениях и плотностей тока на светодиодах, отбраковку по определенным критериям, последующее проведение старения светодиодов при определенных условиях, повторное проведение упомянутых измерений при первоначальных условиях, кроме одного, с окончательной отбраковкой ненадежных светодиодов. Изобретение обеспечивает повышение точности отбраковки и расширение области применения светодиодов за счет обеспечения отбраковки ненадежных светодиодов со сроком службы меньше 50000 часов любых производителей без долговременных испытаний.

Изобретение относится к области полупроводниковой электроники, в частности к модификации электрофизических свойств полупроводниковых транзисторных структур. Способ включает определение критериальных параметров приборов, облучение в пассивном режиме ограниченной выборки однотипных полупроводниковых приборов слабым ИЭМП с варьируемыми параметрами, включая амплитуду импульса, его длительность и частоту следования, обработку экспериментальных данных статистическими методами путем сравнения критериальных параметров полупроводниковых приборов до и после облучения ИЭМП, по результатам которой выявляют положительный эффект модификации и производят повторное облучение необработанных полупроводниковых приборных структур при оптимальных для этого типа приборных структур режимах генерации ИЭМП. При этом в качестве критериального параметра выбирают значение интегрального параметра - коэффициента усиления в схеме с общим эмиттером биполярного транзистора - h21E, а сравнение результатов измерений проводят с использованием двухсвязной доверительной S-области, по результатам которого выносят заключение о степени влияния ИЭМП. Технический результат заключается в повышении точности количественной оценки направленной модификации полупроводниковых приборных структур с использованием ИЭМП. 1 з.п. ф-лы, 7 ил.

Изобретение относится к испытательной технике, применяемой при прочностных испытаниях (в частности, к испытаниям на прочность электронных плат (ЭП) при изготовлении). Устройство содержит силовой каркас, включающий крепления для установки ЭП и опорные стойки, на которых фиксируется нажимной механизм, измерительный щуп и индикатор. Силовой каркас выполнен из четырех опорных стоек, соединенных стержнями по периметру, причем к двум противоположным стержням крепятся поперечины с установленными на них креплениями для ЭП, с возможностью перемещения ЭП вдоль параллельных стержней и вдоль поперечен. Над ЭП на опорные стойки размещен кондуктор, выполненный из кольца с верхней и нижней сетками, в ячейки которых установлены инденторы до упора в поверхность платы. Над кондуктором на опорные стойки закреплен нажимной механизм, состоящий из крестовины с плитой, а измерительный щуп и индикатор зафиксированы в подвесной узел на поперечинах под ЭП. Количество точек установки инденторов определяется по формулам. Технический результат: разработка простого нагрузочного устройства для испытаний на механические воздействия ЭП. 1 з.п. ф-лы, 7 ил.

Использование: для климатических испытаний готовых полупроводниковых приборов при одновременном измерении их электрических параметров. Сущность изобретения заключается в том, что термокамера содержит корпус, в котором размещена рабочая камера, вентилятор, узел очистки рециркуляционного воздуха, установленный в нагнетательном патрубке и выполненный в виде соосно соединенных суживающегося диффузора с винтообразными канавками на внутренней поверхности и расширяющегося сопла, в котором размещено осушивающее устройство в виде емкости, вентилятор снабжен приводом с регулятором скорости вращения, соединенным с выходами регулятора температуры и регулятора давления, и датчиками температуры и давления, подсоединенными соответственно к регулятору температуры и давления, каждый из которых содержит блок сравнения и блок задания, выпрямитель, который на входе подключен к регулятору скорости в виде блока порошковых электромагнитных муфт привода вентилятора, при этом на внутренней поверхности расширяющегося сопла выполнены винтообразные канавки, узел очистки рециркуляционного воздуха снабжен сеткой, выполненной из биметалла, установленной после внутренней круговой канавки на входе в суживающийся диффузор и соединенной с накопителем загрязнений, при этом на наружной поверхности корпуса расположен тонковолокнистый базальтовый материал, выполненный в виде витых пучков по высоте корпуса. Технический результат: обеспечение возможности поддержания оптимального температурного режима для испытаний электронных изделий при длительной эксплуатации. 5 ил.

Изобретение относится к вопросам проектирования схемотехники и топологии интегральных схем и может быть использовано для коррекции топологии БИС, гибридных тонко- и толстопленочных микросхем, а также совмещенных ГИС. Кроме того, предложенный способ может быть использован также и для восстановления целостности металлизированных шин, создания новых межсоединений и контактных площадок для контроля тестовых структур. Задачей изобретения является снижение стоимости выполнения операции коррекции топологии при минимизации времени на ее проведение. В способе коррекции топологии БИС формирование новых связей между элементами или узлами схемы для осуществления коррекции топологии кристалла производят с помощью индиевых перемычек. Формирование индиевой перемычки между выбранными металлизированными шинами проводят механическим способом с помощью электродов с плоским основанием. 1 з.п. ф-лы, 8 ил.

Изобретение относится к электронной технике, к области производства и эксплуатации интегральных схем, может быть использовано для проведения комплекса мероприятий по подготовке образцов изделий радиоэлектронной аппаратуры, к проведению испытаний на стойкость, к воздействию ионизирующего излучения космического пространства. Способ декорпусирования интегральных микросхем для последующего проведения испытаний характеризуется тем, что проводят технологическую подготовку испытуемых изделий из выборки партий произвольных функциональных классов, включающую визуальный контроль на отсутствие механических повреждений, идентификацию изделия путем определения типа корпуса и его внутреннего строения, характеристик кристалла, его геометрических размеров, наличия и толщины защитных покрытий, слоев металлизации, электрических характеристик, компонентного состава корпуса, полученные данные используют для определения области, направления, глубины, профиля проводимого далее утонения корпуса, и/или декорпусирования, осуществляемого плазмохимическим, или плазменным, или химическим травлением, с подбором шаблона из химически стойкой резины с окном, определяющим требуемую зону декорпусирования, или механическим или лазерным методами, или их совокупностью, с последующей промывкой испытуемого изделия в ультразвуковой ванне растворителями и выходным визуальным, функциональным, параметрическим контролем его. Изобретение позволяет проводить декорпусирование кристалла электронных микросхем с сохранением их работоспособности. 8 з.п. ф-лы, 4 табл., 1 пр.

Изобретение относится к микроэлектронике и может быть использовано для проведения ускоренных испытаний и получения сравнительной оценки надежности металлической разводки при производстве интегральных схем. Изобретение обеспечивает уменьшение времени испытаний тестовых структур, что позволяет увеличить размер выборки при испытаниях и повысить достоверность получаемой информации. В способе оценки надежности металлических проводников интегральных схем, состоящем в проведении ускоренных испытаний металлических проводников при постоянной температуре за счет саморазогрева протекающим током, определяют скорость нарастания сопротивления металлических проводников в зависимости от времени в пологой области, при этом в дальнейшем испытания до наступления отказа металлических проводников не проводятся. 3 табл., 9 ил.

Изобретение относится к области инновационных технологий и может быть использовано для определения параметров кристаллов силленитов, определяющих эффективность перспективных технических систем, и их экспресс-характеризации методами диэлектрической спектроскопии. При соответствующей стартовой подготовке образцов и выборе частоты регистрации, основанном на информации о частотных спектрах, могут быть определены ключевые параметры примесных центров в кристаллах силленитов. Изобретение обеспечивает возможность оценки параметров, характеризующих оптоэлектронные свойства силленитов, по результатам измерений частотных зависимостей проводимости, комплексной диэлектрической проницаемости и тангенса угла диэлектрических потерь при разных температурах. 4 ил.
Наверх