Электрохимический способ иммуноанализа для определения микроорганизмов



Электрохимический способ иммуноанализа для определения микроорганизмов
Электрохимический способ иммуноанализа для определения микроорганизмов
Электрохимический способ иммуноанализа для определения микроорганизмов
Электрохимический способ иммуноанализа для определения микроорганизмов
Электрохимический способ иммуноанализа для определения микроорганизмов
Электрохимический способ иммуноанализа для определения микроорганизмов
Электрохимический способ иммуноанализа для определения микроорганизмов

 


Владельцы патента RU 2538153:

Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" (RU)

Изобретение относится к биотехнологии, в частности к определению содержания микроорганизмов в различных объектах и средах. Способ предусматривает конъюгацию бактерий с электрохимической меткой, в качестве которой используют Fe0, MgFe2O4 или Fe3O4, осуществляемую в водной среде при заданных параметрах. Осуществляют отделение несвязавшихся наночастиц с использованием магнитного поля и помещение рабочего электрода, изготовленного из золота, платины или графитсодержащих материалов, поверхность которого предварительно модифицирована антителами, специфичными к определяемому штамму бактерий, в исследуемый раствор. Электрод выдерживают при заданных параметрах с образованием иммунокомплекса на его поверхности и промывают буферным раствором, содержащим нормальную лошадиную сыворотку и Твин-20. Электрод извлекают из раствора и помещают в электрохимическую ячейку, содержащую LiClO4, растворенный в ацетонитриле, диметилформамиде или диметилсульфоксиде, определяют содержание бактерий по величине аналитического окисления наночастиц, локализованных в иммунокомплексе на поверхности рабочего электрода. Изобретение позволяет увеличить чувствительность анализа, повысить производительность и упростить анализ. 7 ил., 6 пр.

 

Изобретение относится к электрохимическим методам анализа, а именно к иммуноанализу, в частности к определению содержания микроорганизмов в различных объектах и средах. Изобретение может быть использовано в микробиологии, медицине, экологии для мониторинга содержания микроорганизмов в природных объектах и дифференциальной диагностики инфекционных заболеваний.

Недостатками используемых в настоящее время методов являются:

низкая чувствительность (реакции агглютинации), высокая стоимость используемых реагентов и оборудования (иммуноферментный анализ), необходимость создания специальных условий (метод анализа, основанный на полимеразной цепной реакции) и длительность проведения анализа (бактериальный посев).

Известен способ определения патогенных микроорганизмов, где в качестве электроактивной сигналообразующей метки использовали наночастицы золота, к которым посредством меркаптоундекановой кислоты присоединяли антитела. В данном способе на поверхности электрода реализована сэндвич-система «антитело - антиген - антитело, меченное нанозолотом». Отклик от нанометки детектировали методом молекулярной абсорбции в фосфатном буфере (Gold nanoparticles as colorimetric sensor: A case study on E. Coli 0157:H7 as a model for Gram-negative bacteria/Haichao Su, Qiang Ma, Kun Shang and oth.// Sensors and Actuators B: Chemical. - 2012. - № 161. - P.298-303).

Недостатком предложенного способа является низкая чувствительность.

Известен способ определения микроорганизмов E.coli 0157:H7 с использованием магнитных шариков, покрытых антителами, посредством авидин-биотинного взаимодействия. Несвязавшиеся компоненты и конъюгаты разделяли с помощью магнитной сепарации. Способ регистрации отклика - флуоресцентный (Detection of E.Coli 0157:H7 by immunomagnetic separation coupled with fluorescence immunoassay/Penxuan Zhu, Daniel R. Shelton, Shuhong Li and oth.// Biosensors and Bioelectronics. - 2011. - № 30. - P.337-341).

К недостаткам предложенного способа можно отнести высокую погрешность в определении, поскольку микроорганизмы также обладают флуоресцентными свойствами, а следовательно, обеспечивают высокий фоновый сигнал; а также дороговизну применяемого оборудования.

Описан способ определения микроорганизмов, основанный на принципах электрохимической импедансной спектроскопии. В качестве рабочего использовали золотой электрод, модифицированный антителами, меченными наночастицами золота. Регистрируемый параметр -сопротивление рабочего электрода, которое зависит от количества микроорганизмов на его поверхности. В качестве редокс-медиатора использовали систему K3[Fe(CN)6]/K4[Fe(CN)6] (Self-assembled monolayers-based immunosensor for detection of Escherichia coli using electrochemical impedance spectroscopy/ Ping Geng, Xinai Zhang, Weiwei Meng and oth// Electrochimica Acts. - 2008. - № 53. - P.4663-4668).

Недостатками способа являются низкая чувствительность и высокая погрешность определения, вызванные невозможностью точно воспроизвести поверхность электрода от эксперимента к эксперименту, а также необходимость строгого соблюдения условий эксперимента.

Наиболее близким техническим решением, выбранным в качестве прототипа, служит способ определения патогенных микроорганизмов, включающий конъюгацию микроорганизма с магнитными наночастицами в анализируемой среде с последующим концентрированием конъюгатов и определением наличия и концентрации микроорганизмов с помощью электроактивной сигналообразующей метки. В качестве магнитных наночастиц и, одновременно, электроактивной сигналообразующей метки авторы использовали наночастицы переходного металла. Перед концентрированием меченых конъюгатов наночастицы, не связанные с микроорганизмами, выводили из анализируемой среды. Концентрирование меченого конъюгата осуществляли путем формирования на электроде иммунокомлекса «меченный магнитной меткой микроорганизм - антитело» с последующим изъятием иммунокомплекса из среды на электроде. Далее проводили кислотную обработку электрода, содержащего меченный иммунокомплекс. Определение наличия и концентрации микроорганизмов осуществляли по сигналу, генерируемому ионами переходного металла, получаемых путем кислотного разрушения иммунокомплекса (Патент РФ № 2397243 от 20.08.2010).

К недостаткам данного способа следует отнести многостадийность процесса анализа, низкий предел обнаружения, высокую трудоемкость процесса, большие временные затраты, а также высокие требования к квалификации операторов.

Предлагаемое техническое решение направлено на упрощение анализа, увеличение чувствительности, экспрессности, воспроизводимости, а также на расширение круга электрохимически активных меток.

Предлагаемый способ электрохимического иммуноанализа включает в себя конъюгацию микроорганизмов с магнитными наночастицами, магнитную сепарацию с последующим концентрированием конъюгатов и определением наличия и концентрации микроорганизмов с помощью сигналобразующей метки, локализованной путем образования иммунокомплекса на поверхности электрода, в качестве которой выступают магнитные наночастицы переходных металлов и их оксидов, модифицированные биосовместимыми полимерами. Концентрацию микроорганизмов определяют путем получения прямого электрохимического отклика от наночастиц переходных металлов и их оксидов, регистрируемого в результате электрохимического превращения магнитных наночастиц.

Получение электрохимического отклика от метки в результате разряда непосредственно магнитных наночастиц позволит увеличить экспрессность и чувствительность способа определения патогенных микроорганизмов.

Строение биосовместимых полимеров, выступающих в качестве модификаторов поверхности наночастиц, сходно со строением мембраны микробной клетки, поэтому данное покрытие облегчает поглощение наночастиц клетками микроорганизмов, что позволит значительно увеличить чувствительность. Кроме того, модификация поверхности магнитных наночастиц биополимером приводит к уменьшению поверхностной энергии наночастиц и позволит предотвратить их агрегацию, в результате чего размер частиц не изменяется в течение эксперимента. Таким образом, применение модификатора позволит добиться высокой воспроизводимости анализа.

Использование органических растворителей (в том числе апротонных) позволит существенно расширить рабочий диапазон потенциалов, а следовательно, и круг потенциальных электрохимически активных меток.

А также предложенный способ иммуноанализа позволит существенно снизить материало- и трудозатраты на проведение анализа, увеличить производительность и уменьшить себестоимость определения.

Таким образом, из патентной и научно-технической литературы не известен способ определения патогенных микроорганизмов заявляемой совокупности признаков.

На фиг. 1 изображен общий вид рабочего электрода, где 1 -подложка из стеклотекстолита, 2 - дорожка из токопроводящего материала (графит, золото, платина), 3 - слой изолятора или цементита.

На фиг. 2 представлены анодные вольтамперограммы, зарегистрированные в модельных растворах, содержащих (а, 4-5) микроорганизмы E.Coli и не содержащих (б, 4-5) микроорганизмы E.Coli.

4 - вольтамперограмма фонового электролита, 5 - вольтамперограмма пробы.

На фиг. 3 представлены циклические вольтамперограммы, зарегистрированные в пробах, содержащих (а, 6-7) и не содержащих (б, 6-7) микроорганизмы E.Coli.

6 - вольтамперограмма фонового электролита, 7 - вольтамперограмма пробы.

На фиг. 4 представлены анодные вольтамперограммы, зарегистрированные в пробах, содержащих (а, 8-9) и не содержащих (б, 8-9) микроорганизмы Salmonella typhimnriiim.

8 - вольтамперограмма фонового электролита, 9 - вольтамперограмма пробы.

На фиг. 5 представлены циклические вольтамперограммы, зарегистрированные в пробах, содержащих (а, 10-11) и не содержащих (б, 10-11) микроорганизмы Salmonella typhimurium.

10 - вольтамперограмма фонового электролита, 11 - вольтамперограмма пробы.

На фиг. 6 представлены циклические вольтамперограммы, зарегистрированные в пробах, содержащих (а, 12-13) и не содержащих (б, 12-13) микроорганизмы E.Coli.

12 - вольтамперограмма фонового электролита, 13 -вольтамперограмма пробы.

На фиг. 7 представлены циклические вольтамперограммы, зарегистрированные в пробах, содержащих (а, 14-15) и не содержащих (б, 14-15) микроорганизмы E.Coli.

14 - вольтамперограмма фонового электролита, 15 -вольтамперограмма пробы.

Способ иллюстрируется следующими примерами.

Пример 1

Вытяжку анализируемой среды (модельного раствора) инкубируют в течение 30 минут с магнитными наночастицами Fe3O4 при температуре 37°C. После инкубации несвязавшиеся наночастицы отделяют с использованием магнитного поля. В подготовленную таким образом вытяжку помещают платиновый электрод (фиг.1), модифицированный антителами против E.Coli (штамм O-12), и выдерживают в течение 20 минут при температуре 37°C. Для ускорения доставки меченых микроорганизмов к поверхности сенсора используют магнитное поле. Затем электрод промывают буферным раствором, содержащим нормальную лошадиную сыворотку (НЛС) и твин-20. Извлеченный из анализируемого раствора электрод помещают в электрохимическую ячейку. В качестве фонового электролита используют раствор LiClO4 в ацетонитриле. В качестве аналитического сигнала используют электрохимический отклик окисления предварительно восстановленного магнетита, локализованного в иммунокомплексе на поверхности платинового электрода. Для проведения холостого опыта используют раствор, не содержащий микроорганизмы E.Coli (штамм O-12) (фиг.2). В модельном растворе обнаружили 103 клеток/мл микроорганизма E.Coli (штамм O-12).

Пример 2

Вытяжку анализируемой среды инкубируют в течение 30 минут с магнитными наночастицами Fe3O4 при температуре 37°C. После инкубации несвязавшиеся наночастицы отделяют с использованием магнитного поля. В подготовленную таким образом вытяжку помещают платиновый электрод (фиг.1), модифицированный антителами против E.Coli (штамм O-12), и выдерживают в течение 20 минут при температуре 37°C. Для ускорения доставки меченых микроорганизмов к поверхности сенсора используют магнитное поле. Затем электрод промывают буферным раствором, содержащим нормальную лошадиную сыворотку (НЛС) и твин-20.

Извлеченный из анализируемого раствора электрод помещают в электрохимическую ячейку. В качестве фонового электролита используют раствор LiClO4 в ацетонитриле. В качестве аналитического сигнала используют электрохимический отклик окисления предварительно восстановленного магнетита, локализованного в иммунокомплексе на поверхности платинового электрода. Для проведения холостого опыта используют раствор, не содержащий микроорганизмы E.Coli (штамм O-12) (фиг.3). В пробе, взятой у пациента, обнаружили 2,05×102 клеток/мл микроорганизма E.Coli (штамм O-12).

Пример 3

Вытяжку из пробы анализируемого объекта инкубируют в течение 30 минут с магнитными наночастицами Fe3O4 при температуре 37°C. Несвязавшиеся наночастицы отделяют с использованием магнитного поля. В подготовленную таким образом вытяжку помещают толстопленочный графитовый электрод (фиг.1), модифицированный антителами против Salmonella typhimurium (штамм SL 7207), и выдерживают в течение 20 минут при температуре 37°C. Для ускорения доставки меченых микроорганизмов к поверхности электрода используют магнитное поле. Затем электрод промывают буферным раствором, содержащим нормальную лошадиную сыворотку (НЛС) и твин-20. Извлеченный из анализируемого раствора электрод помещают в электрохимическую ячейку. В качестве фонового электролита используют раствор LiClO4 в диметилсульфоксиде (ДМСО). В качестве аналитического сигнала, используют электрохимический отклик окисления предварительно восстановленного магнетита, локализованного в иммунокомплексе на поверхности рабочего электрода. Для проведения холостого опыта используют раствор, не содержащий микроорганизмы Salmonella typhimurium (штамм SL 7207) (фиг.4). В пробе, взятой у пациента, обнаружили 4×102 клеток/мл микроорганизма Salmonella typhimurium штамм SL 7207.

Пример 4

Вытяжку пробы инкубируют в течение 30 минут с магнитными наночастицами MgFe2O4 при температуре 37°C. Несвязавшиеся наночастицы отделяют с использованием магнитного поля. В подготовленную таким образом вытяжку помещают золотой электрод (фиг.1), модифицированный антителами против Salmonella typhimurium (штамм SL 7207) и выдерживают в течение 20 минут при температуре 37°C. Для ускорения доставки меченых микроорганизмов к поверхности сенсора используют магнитное поле. Затем электрод промывают буферным раствором, содержащим нормальную лошадиную сыворотку (НЛС) и твин-20. Извлеченный из анализируемого раствора электрод помещают в электрохимическую ячейку. В качестве фонового электролита используют раствор соляной кислоты. В качестве аналитического сигнала, используют электрохимический отклик окисления наночастиц, локализованных в иммунокомплексе на поверхности рабочего электрода. Для проведения холостого опыта используют раствор, не содержащий микроорганизмы Salmonella typhimurium (штамм SL 7207) (фиг.5). В пробе, взятой у пациента, обнаружили 1,75×102 клеток/мл микроорганизма Salmonella typhimurium (штамм SL 7207).

Пример 5

Вытяжку пробы инкубируют в течение 30 минут с магнитными наночастицами Fe0 при T=37°C. Несвязавшиеся наночастицы отделяют с использованием магнитного поля. В подготовленную таким образом вытяжку помещают платиновый электрод (фиг.1), модифицированный антителами против E.coli (штамм O-12), и выдерживают в течение 20 минут при температуре 37°C. Для ускорения доставки меченых микроорганизмов к поверхности электрода используют магнитное поле. Затем электрод промывают буферным раствором, содержащим нормальную лошадиную сыворотку (НЛС) и твин-20. Извлеченный из анализируемого раствора электрод помещают в электрохимическую ячейку. В качестве фонового электролита используют раствор LiClO4 в диметилформамиде (ДМФА). В качестве аналитического сигнала, используют электрохимический отклик окисления наночастиц, локализованных в иммунокомплексе на поверхности рабочего электрода. Для проведения холостого опыта используют раствор, не содержащий микроорганизмы E.coli (штамм O-12) (фиг.6). В пробе, взятой у пациента, обнаружено 3,75×10 клеток/мл микроорганизма E.coli (штамм O-12).

Пример 6

Пробу воды инкубируют в течение 30 минут с магнитными наночастицами Fe3O4 при Т=37°C. Несвязавшиеся наночастицы отделяют с использованием магнитного поля. В подготовленную таким образом вытяжку помещают платиновый электрод (фиг.1), модифицированный антителами против E.coli (штамм O-12), и выдерживают в течение 20 минут при температуре 37°C. Для ускорения доставки меченых микроорганизмов к поверхности электрода используют магнитное поле. Затем электрод промывают буферным раствором, содержащим нормальную лошадиную сыворотку (НЛС) и твин-20. Извлеченный из анализируемого раствора электрод помещают в электрохимическую ячейку. В качестве фонового электролита используют раствор LiClO4 в ацетонитриле. В качестве аналитического сигнала используют электрохимический отклик окисления предварительно восстановленных наночастиц, локализованных в иммунокомплексе на поверхности рабочего электрода. Для проведения холостого опыта используют раствор, не содержащий микроорганизмы E.coli (штамм O-12) (фиг.7). В пробе, взятой у пациента, обнаружено 3,75×107 клеток/мл микроорганизма E.coli (штамм O-12).

Способ определения содержания грамотрицательных патогенных бактерий в анализируемой среде, характеризующийся конъюгированием бактерий с электрохимической меткой, в качестве которой используют магнитные наночастицы Fe0, MgFe2O4 или Fe3O4, осуществляемым в водной среде в течение 30 минут при температуре 370С, отделением несвязавшихся наночастиц с использованием магнитного поля, помещением в среду рабочего электрода, изготовленного из золота, платины или графитсодержащих материалов, поверхность которого предварительно модифицируют антителами, специфичными к определяемому штамму бактерий, образованием иммунокомплекса на поверхности электрода в течение 20 мин при температуре 37°С с использованием магнитного поля, промыванием электрода буферным раствором, содержащим нормальную лошадиную сыворотку и твин-20, помещением извлеченного из анализируемой среды рабочего электрода в электрохимическую ячейку, содержащую фоновый электролит LiClO4, растворенный в ацетонитриле, диметилформамиде или диметилсульфоксиде, и определением содержания бактерий по величине аналитического сигнала, в качестве которого используют электрохимический отклик окисления наночастиц, локализованных в иммунокомплексе на поверхности рабочего электрода.



 

Похожие патенты:

Изобретение относится к медицине, экспериментальной и клинической фармакологии. Суть способа: окисленный декстран растворяют в трис-ацетатном буферном растворе с рН 5,0-5,5, добавляют к полученному раствору гидразид биотина в соотношении к окисленному декстрану, равном 1:(20-25), после чего полученный раствор нагревают до 80-90°С и выдерживают в течение 30-60 минут.
Изобретение относится к области медицины, а именно к акушерству, предназначено для прогнозирования патологии в родах, в частности дискоординации родовой деятельности (дистоции шейки матки).

Изобретение относится к медицине, а именно к диагностике, и может быть использовано для оценки угрозы формирования гемической гипоксии у беременных при обострении цитомегаловирусной инфекции.
Изобретение относится к области медицины и может быть использовано для оценки устойчивости мембран эритроцитов периферической крови у беременных с цитомегаловирусной инфекцией на третьем триместре гестации.
Изобретение относится к медицине, в частности к вопросу изучения антиадгезивной активности противохолерных иммуноглобулинов и усиления ее для совершенствования специфической профилактики холеры.

Группа изобретений относится к способу обнаружения множественных цитокинов из отдельно взятых клеток и предназначено для создания набора иммунологических характеристик заболеваний.
Изобретение относится к области медицины и представляет собой способ экспресс-диагностики острых кишечных инфекций (ОКИ), включающий выявление маркеров-индикаторов этиологии ОКИ, с использованием иммунологического лабораторного исследования, отличается тем, что этиологию ОКИ устанавливают у детей ранней возрастной категории, предпочтительно у новорожденных, при этом определяют концентрацию в копрофильтрате цитокина - интерлейкина IL-10 и наличие хронической фетоплацентарной недостаточности (ХФПН), после чего рассчитывают вероятность (Р) бактериальной этиологии ОКИ, причем значение Р больше 50% свидетельствует о бактериальной этиологии ОКИ, а меньше 50% свидетельствует об отсутствии бактериальной этиологии ОКИ, и необходимости проведения второго этапа диагностики, на котором определяют концентрацию в копрофильтрате цитокина - интерлейкина IL-4, выявляют срок прикладывания к груди, а также вид вскармливания, при этом рассчитывают вероятность (Р) вирусной либо вирусно-бактериальной этиологии ОКИ, причем значение Р больше 50% свидетельствует о вирусной этиологии ОКИ, а меньше 50% свидетельствует о вирусно-бактериальной ОКИ.
Изобретение относится к области медицины, а именно к медицинской диагностике, и описывает способ качественной дифференциальной диагностики доброкачественных и злокачественных новообразований слизистой оболочки губы по содержанию биомаркеров в ротовой жидкости пациента.
Изобретение относится к медицине, в частности к элюированию сконцентрированного на магнитной матрице патогена. Способ элюции осуществляется следующим образом: 0,1 мл 10% взвеси магнитно-иммунного сорбента (МИС) туляремийного, чумного или бруцеллезного инкубируют с микробными взвесями возбудителей туляремии, бруцеллеза или чумы в течение 30 мин, удаляют надосадок, далее МИС инкубируют с 0,5 мл элюирующего раствора в течение 10 мин, pH элюата возвращают к физиологическому значению, проводят постановку реакции непрямой гемагглютинации или реакции агглютинации латекса.

Изобретение относится к медицине и касается способа проведения иммунохроматографического анализа с диссоциирующей флуоресцентной меткой, в котором на мембранной тест-полоске формируют комплексы, в состав которых входят молекулы антигена или антигенов, специфичные к ним антитела и молекулы метки.
Изобретение относится к области медицинской микробиологии и биотехнологии, в частности к микробиологической лабораторной диагностике инфекционных болезней. Питательная среда содержит триптон, дрожжевой экстракт, глюкозу, хлорид натрия, эритроциты человека 0(I) группы Rh(+), сульфат железа(II), агар «Дифко» и дистиллированную воду при заданных соотношениях компонентов.
Изобретение относится к биотехнологии и может быть использовано при бактериологических исследованиях по выделению и идентификации бактерий рода Klebsiella, производстве питательных сред для этих исследований.
Изобретение относится к биотехнологии и может быть использовано для диагностики неспецифических инфекционных заболеваний мочеполовой системы. Питательная среда содержит питательный агар, сухой, из каспийской кильки, парааминобензойную кислоту, трис-(оксиметил) аминометан (трис-буфер), салицин, нейтральный красный, L-триптофан, 5-бром-4-хлор-3-индолил β-D-глюкуронид циклогексиламмонийной соли, 2-нитрофенил β-D-галактопиранозид и дистиллированную воду в заданном соотношении компонентов.

Группа изобретений относится к области биотехнологии и направлена на идентификацию микроорганизмов в тестируемом образце. В одном варианте способ идентификации неизвестного микроорганизма включает получение тестируемого образца, который может содержать неизвестный микроорганизм.

Изобретение относится к области лабораторной диагностики и может быть использовано для определения присутствия патогенных микроорганизмов в биологических образцах.
Изобретение относится к санитарной и клинической микробиологии. Питательная среда содержит панкреатический гидролизат казеина, пептон мясной, дрожжевой экстракт, натрий хлористый, калий фосфорнокислый двузамещенный, калий фосфорнокислый однозамещенный, магний сернокислый, цетримид, агар бактериологический, натрий углекислый, налидиксовую кислоту, глицерин и дистиллированную воду в заданном соотношении компонентов.
Изобретение относится к биотехнологии, в частности к ветеринарной микробиологии. Определяют чувствительность бактерий, вызывающих кишечные инфекции, к комплексным антибактериальным препаратам.
Изобретение относится к биотехнологии, а именно к получению питательных сред, которые создают оптимальные условия для выделения и выращивания бруцеллезного микроба.

Способ оценки выживаемости бифидо- и лактобактерий в желудочно-кишечном тракте экспериментальных животных включает получение мутантов указанных бактерий на плотных питательных средах с повышающимися концентрациями рифампицина, начиная от 10 мкг·мл-1.

Группа изобретений относится к области микробиологии и биотехнологии. Способ детекции живых клеток микроорганизма в тестируемом образце путем отличия живых клеток от мертвых клеток или поврежденных клеток предусматривает добавление в тестируемый образец средства, способного к ковалентному связыванию с ДНК или РНК при облучении светом с длиной волны от 350 нм до 700 нм; облучение тестируемого образца; амплификацию мишеневой области ДНК или РНК микроорганизма, содержащегося в тестируемом образце, способом амплификации нуклеиновых кислот в присутствии средства подавления действия вещества, ингибирующего амплификацию нуклеиновых кислот, соли магния, соли органической кислоты или соли фосфорной кислоты, без выделения нуклеиновых кислот из клеток и анализа продукта амплификации.

Группа изобретений относится к биохимии. Предложено устройство для поверхностного выращивания микроорганизма на жидкой питательной среде.
Наверх